Supporting Information for

Outer-sphere effects on ligand-field excited-state dynamics: solvent dependence of high-spin to low-spin conversion in [Fe(bpy)₃]²⁺

Jennifer N. Miller^a and James K. McCusker^{b*}

Contribution from the Department of Chemistry, Michigan State University

578 South Shaw Lane East Lansing, Michigan 48824 USA

^aEmail address: <u>mill1985@msu.edu</u>

^bEmail address: <u>jkm@chemistry.msu.edu</u>

Table of Contents

Experimental Section	S5
Syntheses and Characterization of Fe(II) Complexes	S5
Ground State Electronic Absorption Spectra	S7
Ultrafast Laser System for Time-Resolved Spectroscopic Measurements	S12
Results and Discussion	S13
Correlation of Solvent Properties with Ground State Recovery Lifetimes	S13
[Fe(bpy) ₃] ²⁺ Concentration Studies for Ion Pairing	S17
DFT Calculations to Estimate Solvation Energy of Fe(II) Polypyridyls	S19
Ground State Recovery Lifetimes of [Fe(bpy)3]Br2 in Binary Solvent Systems	S22
References	S23

List of Figures and Tables

Figure S1.	Electronic absorption spectrum of [Fe(bpy) ₃]Cl ₂ in acetonitrile
Figure S2.	Electronic absorption spectrum of [Fe(bpy) ₃]Br ₂ in acetonitrileS8
Figure S3.	Electronic absorption spectrum of [Fe(bpy) ₃]I ₂ in acetonitrileS8
Figure S4.	Electronic absorption spectrum of [Fe(bpy) ₃](PF ₆) ₂ in acetonitrileS9
Figure S5.	Electronic absorption spectrum of [Fe(bpy) ₃](BPh ₄) ₂ in acetonitrile
Figure S6.	Electronic absorption spectrum of [Fe(bpy) ₃](BAr ^F ₄) ₂ in acetonitrileS10
Figure S7.	Electronic absorption spectrum of [Fe(dmb) ₃]Br ₂ in acetonitrileS10
Figure S8.	Electronic absorption spectrum of [Fe(5,5'-dmb) ₃]Br ₂ in acetonitrileS11
Figure S9.	Electronic absorption spectrum of [Fe(dtbbpy) ₃]Br ₂ in acetonitrileS11
Figure S10.	Layout of the ultrafast laser system used in this study. The green beam represents the pump beam line. The red beam bypassing TOPAS 2 is the probe beam which generates a white light continuum in calcium fluoride just before the sample S12
Figure S11.	Comparison of ground state recovery lifetime for $[Fe(bpy)_3]^{2+}$ versus (a) dipole moment, (b) molar volume, (c) optical dielectric constant, (d) polarizability, (e) static dielectric constant, and (f) viscosity. The data in (e) is also in the main text, in Figure 2a. S14
Figure S12.	Comparison of ground state recovery lifetime for $[Fe(bpy)_3]^{2+}$ versus (a) dipole moment, (b) molar volume, (c) optical dielectric constant, (d) polarizability, (e) static dielectric constant, and (f) viscosity for alcohols (red circles), diols (green diamonds), and nitriles (blue squares). The results for water (black triangles) are presented in the figures, but are not included in any fits. The data in (e) can also be found in the main text, in Figure 2b
Figure S13.	Comparison of the static dielectric constant versus (a) viscosity, (b) molar volume, (c) dipole moment, (d) optical dielectric constant, and (e) polarizability for alcohols (red circles), diols (green diamonds), and nitriles (blue squares). The results for water (black triangles) are presented in the figures, but are not included in any fits. S16
Figure S14.	Time constants for ground state recovery of $[Fe(bpy)_3]Br_2$ in (a) water, (b) dimethyl sulfoxide, (c) methanol, (d) acetonitrile, and (e) 1-butanol at different concentrations after excitation at 550 nm. The error associated with each data point has been omitted for clarity

- **Figure S15.** Ground state recovery lifetimes for [Fe(bpy)₃]²⁺ in acetonitrile at different concentrations. Error bars represent the standard deviation of the x- and y-values.
- **Figure S16.** Correlating the static dielectric constant to the estimated differential solvation energy of $[Fe(bpy)_3]^{2+}$ from SMD calculations for (a) all solvents in this study present in the SMD solvent list and (b) a subset of the data from the left panel grouped according to solvent type, with alcohols (red circles) and nitriles (blue squares). The green diamond represents results in ethylene glycol (a diol), and the black triangle corresponds to water; neither are included in any of the fits in (b).

Experimental Section

Syntheses and Characterization of Fe(II) Complexes. All of the following complexes were prepared under an inert atmosphere. In general, 1 equivalent of the Fe(II) source was dissolved in nitrogen-sparged water and transferred via cannula to a flask containing 3.1 equivalents of the ligand dissolved in air-free methanol, resulting in a red-colored solution. 10 equivalents of the anion source, dissolved in bubble-degassed water, were cannula-transferred to the reaction flask, after which the reaction mixture was allowed to stir for 2 hours. Any modifications to this procedure are noted in the appropriate section. Purification methods are described individually.

Tris(2,2'-bipyridine)iron(II) chloride, [Fe(bpy)₃]Cl₂. This complex was prepared by a previous group member, Amanda Smeigh, in a N₂-filled glovebox by mixing FeCl₂·2H₂O and 2,2'-bipyridine in methanol. No water was used in this reaction. The solution was allowed to stir for 10 minutes at room temperature. After evaporating the solvent under a stream of nitrogen, the product was recrystallized via diethyl ether vapor diffusion into a saturated acetonitrile solution of the complex. ¹H NMR (CD₃CN, 500 MHz): δ 8.57 (d, 6H, *J* = 8 Hz), 8.10 (m, 6H), 7.40 (m, 12H). TOF-MS [ESI, *m/z*]: 262.07 [C₃₀H₂₄N₆Fe]²⁺. Elemental Analysis for C₃₀H₂₄N₆FeCl₂·2H₂O, Calculated: C, 57.07%; H, 4.47%; N, 13.31%. Found: C, 57.15%; H, 4.33%; N, 13.32%. UV-Vis (CH₃CN) λ (ϵ (M⁻¹cm⁻¹)): 298 nm (55600), 350 (5700), 521 (6900).

Tris(2,2'-bipyridine)iron(II) bromide, [Fe(bpy)₃]Br₂. This complex was prepared on a Schlenk line, under air-free conditions. (NH₄)₂Fe(SO₄)₂·6H₂O, 2,2'-bipyridine, and NaBr were the starting materials for this reaction. Following 2 hours of stirring, the solvent was removed from the reaction mixture by a rotary evaporator. The crude product was dissolved in acetonitrile and filtered. The filtrate was then recrystallized by diethyl ether vapor diffusion into a saturated acetonitrile solution of the complex. The last two steps were repeated. ¹H NMR (CD₃CN, 500 MHz): δ 8.55 (d, 6H, *J* = 8 Hz), 8.11 (m, 6H), 7.39 (m, 12H). TOF-MS [ESI, *m/z*]: 262.07 [C₃₀H₂₄N₆Fe]²⁺. Elemental Analysis for C₃₀H₂₄N₆FeBr₂·3H₂O, Calculated: C, 48.81%; H, 4.10%; N, 11.38%. Found: C, 48.79%; H, 4.04%; N, 11.80%. UV-Vis (CH₃CN) λ (ϵ (M⁻¹cm⁻¹)): 299 nm (60200), 350 nm (5800), 520 nm (7800).

*Tris(2,2'-bipyridine)iron(II) iodide, [Fe(bpy)₃]I*₂. This complex was prepared on a Schlenk line, under air-free conditions. (NH₄)₂Fe(SO₄)₂·6H₂O, 2,2'-bipyridine, and NaI made up the reactants. Some of the crude product from this reaction formed a precipitate which was filtered. Under vacuum filtration, the precipitate was rinsed with acetone and diethyl ether. The product was then dissolved in acetonitrile, filtered, and recrystallized twice by diethyl ether vapor diffusion. ¹H NMR (CD₃CN, 500 MHz): δ 8.53 (d, 6H, *J* = 8 Hz), 8.10 (m, 6H), 7.39 (m, 12H). TOF-MS [ESI, *m/z*]: 262.07 [C₃₀H₂₄N₆Fe]²⁺. Elemental Analysis for C₃₀H₂₄N₆FeI₂·2H₂O, Calculated: C, 44.25%; H, 3.47%; N, 10.32%. Found: C, 45.52%; H, 3.53%; N, 10.36%. UV-Vis (CH₃CN) λ (ϵ (M⁻¹cm⁻¹)): 298 nm (64900), 351 nm (6500), 520 nm (8400).

Tris(2,2'-bipyridine)iron(II) hexafluorophosphate, [Fe(bpy)₃](PF₆)₂. This complex was prepared on a Schlenk line, under air-free conditions. The reaction mixture contained $(NH_4)_2Fe(SO_4)_2\cdot 6H_2O$, 2,2'-bipyridine, and NH_4PF_6 . The product precipitated out upon the addition of NH_4PF_6 . The solid product was filtered and rinsed with water, then diethyl ether. The product was then dissolved in acetonitrile, filtered, and recrystallized twice by diethyl ether vapor diffusion. ¹H NMR (CD₃CN, 500 MHz): δ 8.51 (d, 6H, J = 8 Hz), 8.10 (m, 6H), 7.38 (m, 12H).

TOF-MS [ESI, m/z]: 262.07 [C₃₀H₂₄N₆Fe]²⁺. Elemental Analysis for C₃₀H₂₄N₆FeP₂F₁₂, Calculated: C, 44.25%; H, 2.97%; N, 10.32%. Found: C, 44.23%; H, 3.03%; N, 10.32%. UV-Vis (CH₃CN) λ (ϵ (M⁻¹cm⁻¹)): 299 nm (69500), 351 nm (6700), 520 nm (9100).

Tris(2,2'-bipyridine)iron(II) tetraphenylborate, [Fe(bpy)₃](BPh₄)₂. This complex was prepared on a Schlenk line, under air-free conditions. It was prepared from FeCl₂·2H₂O, 2,2'-bipyridine, and NaBPh₄. The product formed a precipitate which was filtered and rinsed with water and diethyl ether. The product was then dissolved in acetone, filtered, and recrystallized twice by diethyl ether vapor diffusion. ¹H NMR (CD₃CN, 500 MHz): δ 8.49 (d, 6H, *J* = 8Hz), 8.08 (td, 6H, *J* = 7.5, 2 Hz), 7.37 (m, 12H), 7.26 (m, 16H), 6.98 (t, 16H, *J* = 7.3), 6.83 (t, 8H, *J* = 7.3). TOF-MS [ESI, *m/z* (rel. int.)]: 262.07 (100) [C₃₀H₂₄N₆Fe]²⁺, 843.31 (13) {[C₃₀H₂₄N₆Fe](C₂₄H₂₀B)}⁺. Elemental Analysis for C₇₈H₆₄N₆FeB₂·H₂O, Calculated: C, 79.34%; H, 5.63%; N, 7.12%. Found: C, 79.48%; H, 5.85%; N, 6.90%. UV-Vis (CH₃CN) λ (ϵ (M⁻¹cm⁻¹)): 299 nm (68200), 351 nm (6600), 520 nm (8900).

Tris(2,2'-bipyridine)iron(II)tetrakis(3,5-bis(trifluoromethyl)phenyl)borate,[Fe(bpy)_3](BArF_4)_2.This complex was prepared on a Schlenk line, under air-free conditions,starting from $(NH_4)_2Fe(SO_4)_2\cdot 6H_2O$, 2,2'-bipyridine, and 2.10 equivalents of NaBArF4.product precipitated from the solution and was subsequently filtered.Under vacuum filtration, theproduct was dissolved in diethyl ether and filtered.The product was precipitated out of the filtrateby adding acetone.The last two steps were repeated.¹H NMR (CD_3CN, 500 MHz): δ 8.50 (d, 6H,J = 7.5 Hz), 8.10 (m, 6H), 7.69 (m, 16H), 7.66 (s, 8H), 7.38 (m, 12H).TOF-MS [ESI, m/z (rel.int.)]: 262.07 (100) [C_{30}H_{24}N_6Fe]^{2+}, 1387.22 (40) {[C_{30}H_{24}N_6Fe](C_{32}H_{12}BF_{24})}^+.ElementalAnalysis for C_{94}H_{48}N_6FeB_2F_{48}·2H_2O,Calculated: C, 49.37%; H, 2.29%; N, 3.67%.Found: C,50.21%; H, 2.36%; N, 3.60%.UV-Vis (CH_3CN) λ (ϵ (M⁻¹cm⁻¹)): 299 nm (64900), 351 nm (6300),521 nm (8400).

Tris(4,4'-dimethyl-2,2'-bipyridine)iron(II) bromide, [*Fe*(dmb)₃]*Br*₂. This complex was prepared on a Schlenk line, under air-free conditions. [Fe(dmb)₃]Br₂ was synthesized from (NH₄)₂Fe(SO₄)₂·6H₂O, 4,4'-dimethyl-2,2'-bipyridine, and NaBr. After allowing the reaction to stir for 2 hours, the solvent was removed by a rotary evaporator. The crude product was dissolved in acetonitrile and filtered. The product was crashed out of the filtrate with diethyl ether. The solid product was collected by vacuum filtration. The last three steps were repeated. Allowing the sample to recrystallize in diethyl ether led to the solution developing an orange tint. ¹H NMR (CD₃CN, 500 MHz): δ 8.37 (s, 6H), 7.19 (m, 12H), 2.53 (s, 18H). TOF-MS [ESI, *m/z* (rel. int.)]: 212.07 (61) [C₂₄H₂₄N₄Fe]²⁺, 304.12 (100) [C₃₆H₃₆N₆Fe]²⁺, 503.05 (41) {[C₂₄H₂₄N₄Fe]Br}⁺. Elemental Analysis for C₃₆H₃₆N₆FeBr₂·H₂O, Calculated: C, 54.98%; H, 4.87%; N, 10.69%. Found: C, 54.29%; H, 4.72%; N, 10.63%. UV-Vis (CH₃CN) λ (ϵ (M⁻¹cm⁻¹)): 297 nm (64300), 356 nm (7300), 527 nm (8500).

Tris(5,5'-dimethyl-2,2'-bipyridine)iron(II) bromide, $[Fe(5,5'-dmb)_3]Br_2$. This complex was prepared on a Schlenk line, under air-free conditions. The reagents for this reaction were $(NH_4)_2Fe(SO_4)_2\cdot 6H_2O$, 5,5'-dimethyl-2,2'-bipyridine, and NaBr. After allowing the reaction to stir for 2 hours, the solvent was removed by a rotary evaporator. The crude product was dissolved in acetonitrile and filtered. The product was recrystallized twice by diethyl ether vapor diffusion into a saturated acetonitrile solution of the complex. ¹H NMR (CD₃CN, 500 MHz): δ 8.35 (d, 6H, J = 8 Hz), 7.88 (dd, 6H, J = 7.8, 1.3 Hz), 7.09 (s, 6H), 2.16 (s, 18H). TOF-MS [ESI, m/z (rel. int.)]:

212.07 (47) $[C_{24}H_{24}N_4Fe]^{2+}$, 304.12 (100) $[C_{36}H_{36}N_6Fe]^{2+}$, 503.05 (27) $\{[C_{24}H_{24}N_4Fe]Br\}^+$. Elemental Analysis for $C_{36}H_{36}N_6FeBr_2 \cdot H_2O$, Calculated: C, 54.98%; H, 4.87%; N, 10.69%. Found: C, 54.81%; H, 5.11%; N, 10.58%. UV-Vis (CH₃CN) λ (ϵ (M⁻¹cm⁻¹)): 306 nm (78700), 355 nm (6500), 510 nm (9400).

Tris(4,4'-di-tert-butyl-2,2'-bipyridine)iron(II) bromide, [*Fe*(dtbbpy)₃]Br₂. This complex was prepared on a Schlenk line, under air-free conditions. (NH₄)₂Fe(SO₄)₂·6H₂O, 4,4'-di-tert-butyl-2,2'-bipyridine and NaBr were the starting materials for this reaction. After stirring for 2 hours, the solvent was removed from the reaction mixture by a rotary evaporator. The crude product was dissolved in acetonitrile and filtered. The filtrate was then recrystallized twice by diethyl ether vapor diffusion into a saturated acetonitrile solution of the complex. ¹H NMR (CD₃CN, 500 MHz): δ 8.51 (d, 6H, J = 2.0 Hz), 7.39 (dd, 6H, J = 6.0, 2.0 Hz), 7.20 (d, 6H, J = 6.0 Hz), 1.41 (s, 54H). TOF-MS [ESI, m/z]: 430.26 [C₅₄H₇₂N₆Fe]²⁺. Elemental Analysis for C₅₄H₇₂N₆FeBr₂, Calculated: C, 63.53%; H, 7.11%; N, 8.23%. Found: C, 63.35%; H, 6.84%; N, 8.34%. UV-Vis (CH₃CN) λ (ε(M⁻¹cm⁻¹)): 298 nm (67300), 357 nm (8500), 527 nm (10200).

Ground State Electronic Absorption Spectra.

Figure S1. Electronic absorption spectrum of [Fe(bpy)₃]Cl₂ in acetonitrile.

Figure S2. Electronic absorption spectrum of [Fe(bpy)₃]Br₂ in acetonitrile.

Figure S3. Electronic absorption spectrum of [Fe(bpy)₃]I₂ in acetonitrile.

Figure S4. Electronic absorption spectrum of [Fe(bpy)₃](PF₆)₂ in acetonitrile.

Figure S5. Electronic absorption spectrum of [Fe(bpy)₃](BPh₄)₂ in acetonitrile.

Figure S6. Electronic absorption spectrum of [Fe(bpy)₃](BAr^F₄)₂ in acetonitrile.

Figure S7. Electronic absorption spectrum of [Fe(dmb)₃]Br₂ in acetonitrile.

Figure S8. Electronic absorption spectrum of [Fe(5,5'-dmb)₃]Br₂ in acetonitrile.

Figure S9. Electronic absorption spectrum of [Fe(dtbbpy)₃]Br₂ in acetonitrile.

Ultrafast Laser System for Time-Resolved Spectroscopic Measurements.

Figure S10. Layout of the ultrafast laser system used in this study. The green beam represents the pump beam line. The red beam bypassing TOPAS 2 is the probe beam which generates a white light continuum in calcium fluoride just before the sample.

Results and Discussion

Correlation of Solvent Properties with Ground State Recovery Lifetimes.

	Dipole Moment (D)	Molar Volume ^c (cm ³ /mol)	Optical Dielectric Constant ^d	Polariz- ability ^e (Å ³)	Static Dielectric Constant	Viscosity (cP)
Water	1.85	18.05	1.78	1.47	80.10	0.89
Dimethyl Sulfoxide	3.96	70.97^{f}	2.19	7.98 ^g	47.24	1.99
Ethylene Glycol	2.36	55.74	2.05	5.73	41.40	16.06
1,3-Propanediol	2.55	72.21	2.07	7.54	35.10	41.11 ^h
1,4-Butanediol	2.58	88.60	2.09	9.37	32.86	71.14^{h}
1,5-Pentanediol	2.50	105.05	2.10	11.18	26.20	86.79^{h}
Propylene Carbonate	4.90	84.74	2.01	8.48	66.14	2.47^{i}
Methanol	1.70	40.49	1.77	3.26	33.00	0.54
Ethanol	1.69	58.37	1.85	5.12	25.30	1.07
Acetonitrile	3.93	52.25	1.81 ^j	4.39 ^g	36.64	0.37
Propionitrile	4.05	70.45	1.86	6.25	29.70	0.29
2-Propanol	1.58	76.95	1.90	7.03	20.18	2.04
Butyronitrile	3.82 ^k	87.08	1.92	8.07	24.83	0.55
1-Butanol	1.66	91.56	1.96	8.78	17.84	2.54
Tetrahydrofuran	1.75	81.63 ^f	1.97^{f}	7.93^{f}	7.56	0.46
Hexanenitrile	3.48 ¹	120.68	1.98	11.77	17.26^{f}	0.91
Diethyl Ether	1.10	103.84	1.83	8.92	4.27	0.22
Dichloromethane	1.60	64.02	2.03	6.48	9.00	0.41
R² coefficient ^m	0.068	0.198	0.044	0.090	0.697	0.095

Table S1. Properties associated with each solvent^{a,b}

^aFrom reference 1, unless otherwise indicated.

^bAll solvent properties but viscosity are based on a temperature of 20 °C, unless noted, with viscosity values established at 25 °C.

^cCalculated from density (g/cm³) and molar mass (g/mol).

^dCalculated from refractive index.

^eCalculated from refractive index, density (g/cm³), and molar mass (g/mol).

^fAt 25 °C.

^gCalculated from data encompassing two different temperatures.

^hFrom reference 2.

ⁱFrom reference 3.

^jAt 30 °C.

^kAverage dipole moment between *gauche* (3.91 D) and *anti* (3.73 D) conformers of butyronitrile.

¹From reference 4.

^mFrom linear fit for ground state recovery time constant of [Fe(bpy)₃]²⁺ plotted against that solvent property.

Figure S11. Comparison of ground state recovery lifetime for $[Fe(bpy)_3]^{2+}$ versus (a) dipole moment, (b) molar volume, (c) optical dielectric constant, (d) polarizability, (e) static dielectric constant, and (f) viscosity. The data in (e) is also in the main text, in Figure 2a.

Figure S12. Comparison of ground state recovery lifetime for $[Fe(bpy)_3]^{2+}$ versus (a) dipole moment, (b) molar volume, (c) optical dielectric constant, (d) polarizability, (e) static dielectric constant, and (f) viscosity for alcohols (red circles), diols (green diamonds), and nitriles (blue squares). The results for water (black triangles) are presented in the figures, but are not included in any fits. The data in (e) can also be found in the main text, in Figure 2b.

Figure S13. Comparison of the static dielectric constant versus (a) viscosity, (b) molar volume, (c) dipole moment, (d) optical dielectric constant, and (e) polarizability for alcohols (red circles), diols (green diamonds), and nitriles (blue squares). The results for water (black triangles) are presented in the figures, but are not included in any fits.

[Fe(bpy)₃]²⁺ Concentration Studies for Ion Pairing.

Figure S14. Time constants for ground state recovery of $[Fe(bpy)_3]Br_2$ in (a) water, (b) dimethyl sulfoxide, (c) methanol, (d) acetonitrile, and (e) 1-butanol at different concentrations after excitation at 550 nm. The error associated with each data point has been omitted for clarity.

Figure S15. Ground state recovery lifetimes for $[Fe(bpy)_3]^{2+}$ in acetonitrile at different concentrations. Error bars represent the standard deviation of the x- and y-values.

	Gi	round State Recovery (p	os)
_	[Fe(bpy) ₃]Cl ₂	[Fe(bpy) ₃]Br ₂	[Fe(bpy)3]]2
Water	670 ± 10	675 ± 10	690 ± 15
Dimethyl Sulfoxide	800 ± 5	800 ± 10	800 ± 15
Methanol	975 ± 10	985 ± 20	995 ± 20
Acetonitrile	1020 ± 15	1015 ± 15	1015 ± 15
1-Butanol	1055 ± 15	1060 ± 20	1070 ± 10

Table S2. Comparison of relaxation times for [Fe(bpy)₃]²⁺ as the counterion is changed^a

^aAt Abs = 0.4 at the excitation wavelength.

DFT Calculations to Estimate Solvation Energy of Fe(II) Polypyridyls.

			In Hartrees		
	LS E ₀ +G _{corr} ^b	$LS\Delta G_{solv}$	HS E ₀ +G _{corr} ^b	$HS \ \Delta G_{solv}$	$\Delta\Delta G_{solv}$
Vacuum	-1609.370133	-	-1609.381973	-	-
Water	-1609.565603	-0.19546982	-1609.572589	-0.19061616	-0.00485366
Dimethyl Sulfoxide	-1609.586934	-0.21680023	-1609.593817	-0.21184403	-0.00495620
Ethylene Glycol	-1609.568534	-0.19840090	-1609.574268	-0.19229524	-0.00610566
Methanol	-1609.584926	-0.21479233	-1609.590365	-0.20839209	-0.00640024
Ethanol	-1609.585110	-0.21497634	-1609.591953	-0.20998045	-0.00499589
Acetonitrile	-1609.595720	-0.22558674	-1609.603318	-0.22134551	-0.00424123
Propionitrile	-1609.596522	-0.22638842	-1609.603779	-0.22180658	-0.00458184
2-Propanol	-1609.583220	-0.21308662	-1609.588189	-0.20621647	-0.00687015
Butyronitrile	-1609.595812	-0.22567825	-1609.602916	-0.22094289	-0.00473536
1-Butanol	-1609.580662	-0.21052815	-1609.585422	-0.20344916	-0.00707899
Tetrahydrofuran	-1609.572898	-0.20276501	-1609.585249	-0.20327613	0.00051112
Diethyl Ether	-1609.554638	-0.18450457	-1609.563335	-0.18136227	-0.00314230
Dichloromethane	-1609.584294	-0.21416043	-1609.590666	-0.20869324	-0.00546719

Table S3. DFT Calculations for $[Fe(bpy)_3]^{2+}$ with SMD^a in various environments at 20 °C

^aSolvent environment was applied based on the solvent list and properties built into Gaussian 09. ${}^{b}E_{0}+G_{corr}$ refers to the sum of electronic and thermal free energies.

Figure S16. Correlating the static dielectric constant to the estimated differential solvation energy of $[Fe(bpy)_3]^{2+}$ from SMD calculations for (a) all solvents in this study present in the SMD solvent list and (b) a subset of the data from the left panel grouped according to solvent type, with alcohols (red circles) and nitriles (blue squares). The green diamond represents results in ethylene glycol (a diol), and the black triangle corresponds to water; neither are included in any of the fits in (b).

Figure S17. Correlating the estimated differential solvation energy of $[Fe(bpy)_3]^{2+}$ from SMD calculations to the associated GSR rate for (a) all solvents in this study present in the SMD solvent list and (b) a subset of the data from the left panel highlighting alcohol-based (red circles) and nitrile-based (blue squares) solvents. The green diamond represents results in ethylene glycol (a diol), and the black triangle corresponds to water; neither are included in any of the fits in (b).

			In Hartrees		
	LS E ₀ +G _{corr} ^b	LS AG _{solv}	HS E ₀ +G _{corr} ^b	HS AG _{solv}	$\Delta\Delta G_{solv}$
Vacuum	-1609.370133	-	-1609.381973	-	-
Water	-1609.262891	0.10724206	-1609.254108	0.12786517	-0.02062311
Dimethyl Sulfoxide	-1609.414762	-0.04462827	-1609.412865	-0.03089195	-0.01373632
Ethylene Glycol	-1609.395190	-0.02505665	-1609.392800	-0.01082682	-0.01422983
1,3-Propanediol	-1609.414624	-0.04449012	-1609.412790	-0.03081718	-0.01367294
1,4-Butanediol	-1609.428152	-0.05801836	-1609.426961	-0.04498854	-0.01302982
1,5-Pentanediol	-1609.436912	-0.06677828	-1609.436249	-0.05427592	-0.01250236
Propylene Carbonate	-1609.428178	-0.05804455	-1609.526835	-0.04486247	-0.01318208
Methanol	-1609.364297	0.00583626	-1609.360358	0.02161452	-0.01577826
Ethanol	-1609.396101	-0.02596743	-1609.393856	-0.01188362	-0.01408381
Acetonitrile	-1609.389014	-0.01888034	-1609.386526	-0.00455277	-0.01432757
Propionitrile	-1609.411848	-0.04171457	-1609.409954	-0.02798169	-0.01373288
2-Propanol	-1609.415117	-0.04498394	-1609.413520	-0.03154772	-0.01343622
Butyronitrile	-1609.425171	-0.05503717	-1609.423946	-0.04197296	-0.01306421
1-Butanol	-1609.425358	-0.05522423	-1609.424308	-0.04233529	-0.01288894
Tetrahydrofuran	-1609.403473	-0.03333930	-1609.402178	-0.02020512	-0.01313418
Hexanenitrile	-1609.440733	-0.07059983	-1609.440489	-0.05851666	-0.01208317
Diethyl Ether	-1609.399169	-0.02903544	-1609.398771	-0.01679824	-0.01223720
Dichloromethane	-1609.389877	-0.01974352	-1609.388043	-0.00606986	-0.01367366

Table S4. DFT Calculations for [Fe(bpy)₃]²⁺ with CPCM^a in various environments at 20 °C

^aSolvent environment was applied under generic setting, with properties written in directly.

^bE₀+G_{corr} refers to the sum of electronic and thermal free energies.

Figure S18. Correlating the static dielectric constant to the estimated change in Gibbs free energy of solvation of $[Fe(bpy)_3]^{2+}$ from CPCM calculations for (a) all solvents in this study and (b) all of the alcohol-based (red circles), diol-based (green diamonds), and nitrile-based (blue squares) solvents. The result for water (black triangle) is depicted in (b), but is not included in any of the linear fits. The data in (b) can also be found in the main text, in Figure 5a.

Figure S19. Correlating the estimated change in Gibbs free energy of solvation of $[Fe(bpy)_3]^{2+}$ from CPCM calculations to the associated GSR rate for (a) all solvents in this study and (b) all of the alcohol-based (red circles), diol-based (green diamonds), and nitrile-based (blue squares) solvents. The result for water (black triangle) is presented in (b), but is not included in any of the linear fits. The data in (b) can also be found in the main text, in Figure 5b.

	In Har	trees
-	LS E ₀ +G _{corr} ^a	HS E ₀ +G _{corr} ^a
$[Fe(bpy)_3]^{2+}$	-1609.370133	-1609.381973
$[Fe(dmb)_{3}]^{2+}$	-1845.177892	-1845.189616
$[Fe(5,5'-dmb)_3]^{2+}$	-1845.163174	-1845.174697
[Fe(dtbbpy) ₃] ²⁺	-2552.360790	-2552.371226

Table S5. DFT Calculations for [Fe(R-bpy)₃]²⁺ under vacuum at 20 °C

^aE₀+G_{corr} refers to the sum of electronic and thermal free energies.

Ground State Recovery Lifetimes of [Fe(bpy)₃]Br₂ in Binary Solvent Systems.

Percent Acetonitrile by Mass	Dielectric Constant ^b	Ground State Recovery (ps)
0	80.14	675 ± 10
25	69.71	855 ± 15
50	56.92	920 ± 10
75	46.86	965 ± 15
100	36.62	1015 ± 15

Table S6. Lifetimes for [Fe(bpy)₃]Br₂ in water/acetonitrile solvent mixtures^a

^aAt Abs = 0.4 at the excitation wavelength.

^bDielectric constants (at 20 °C) reported in reference 5, with 25% and 75% acetonitrile by mass values calculated by solving Equation 6 (within reference) with the parameters listed in Gagliardi et al.'s Table 2.

References

- 1 *CRC Handbook of Chemistry and Physics*, 98th edn.
- 2 M. Moosavi and A. A. Rostami, J. Chem. Eng. Data, 2017, 62, 156–168.
- 3 P. K. Muhuri, B. Das and D. K. Hazra, J. Chem. Eng. Data, 1996, 41, 1473–1476.
- 4 S. Mehrotra, A. Kumbharkhane and A. Chaudhari, in *Binary Polar Liquids: Structural* and Dynamics Characterization Using Spectroscopic Methods, Elsevier, 2017, pp. 215– 248.
- 5 L. G. Gagliardi, C. B. Castells, C. Ràfols, M. Rosés and E. Bosch, J. Chem. Eng. Data, 2007, **52**, 1103–1107.