Selective Oxo Ligand Functionalisation and Substitution Reactivity in an Oxo/Catecholate-Bridged U^{V}/U^{V} Pacman Complex

Bradley E. Cowie,^a Iskander Douair,^c Laurent Maron,^c Jason B. Love,^{* a} Polly L. Arnold^{* a,b}

a EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King's Buildings, Edinburgh, EH9 3FJ, UK.

b Current address: Department of Chemistry, University of California, Berkeley, CA94720, US; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720, US. pla@berkeley.edu c Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France.

1.1 Table of Contents

1.1.1	General Details	S2
1.1.2	Syntheses	S 3
	[{(py)U ^{IV} (μ-OH) ₂ U ^{IV} (μ-O ₂ C ₆ H ₄)(py)}(L ^A)] (1)	S3
	[{(py)U ^{IV} (μ-OMe)(μ-OH)U ^{IV} (μ-O ₂ C ₆ H ₄)(py)}(L ^A)] (2)	S 3
	$[\{(py)U^{IV}(\mu-\eta^2:\eta^2-S_2)U^{IV}(\mu-O_2C_6H_4)(py)\}(L^A)] \text{ (3)}$	S 3
	$[{(py)U^{IV}(\mu-\eta^2:\eta^2-S_2)U^{IV}(\mu-O_2C_6H_4)(py)}(L^A)]$ (3) from CS ₂	S4
	$[\{(py)U^{IV}(\mu-\eta^2:\eta^2-Se_2)U^{IV}(\mu-O_2C_6H_4)(py)\}(L^A)] \ \textbf{(4)}$	S4
	[{(py)U ^{IV} (μ-F) ₂ U ^{IV} (μ-O ₂ C ₆ H ₄)(py)}(L ^A)] (5)	S4
	[{(py)U ^{IV} (μ-F)(μ-OBcat)U ^{IV} (μ-O ₂ C ₆ H ₄)(py)}(L ^A)] (5A)	S5
	$[\{(py)U^{ v}(\mu-Cl)_2U^{ v}(\mu-O_2C_6H_4)(py)\}(L^A)] \text{ (6)}$	S 5
	$[{(py)U^{ v }(\mu-Cl)_2U^{ v }(\mu-O_2C_6H_4)(py)}(L^A)]$ (6) from 1 and [PyH]Cl	S6
	$[\{(py)U^{ v}(\mu-Cl)(\mu-OBcat)U^{ v}(\mu-O_2C_6H_4)(py)\}(L^A)] \text{ (6A)}$	S6
	$[{(py)U^{V}OU^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})] + 4Te$	S6
	$[{(py)U^{V}OU^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})] + P_{4}$	S6
	$[{(py)U^{V}OU^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})] + Ph_{3}P=Se$	S6
	[{(py)(pinBO)U ^{IV} OU ^{IV} (OBpin)(py)}(L ^A)] + XeF ₂	S7
	[{(py)(OH)U ^{IV} OU ^{IV} (OH)(py)}(L ^A)] (7) from [{(py)(pinBO)U ^{IV} OU ^{IV} (OBpin)(py)}(L ^A)] and Excess H ₂ O	S7
	[{(py)ClU ^{IV} OU ^{IV} Cl(py)}(L ^A)] (8) from [{(py)(pinBO)U ^{IV} OU ^{IV} (OBpin)(py)}(L ^A)] and Me ₃ SiCl	S7
	$[{(py)(pinBO)U^{V}OU^{V}(OBpin)(py)}(L^{A})] + 10 equiv. of Me_3SiCl$	S7
1.1.3	Crystallographic Details	S8
	General X-Ray Experimental Details	S8
	Standard X-Ray Details for Each Complex	S10
1.1.4	NMR Spectra	S14
1.1.5	FTIR Spectra	S46
1.1.6	Computational Details	S54
1.1.7	<u>References</u>	S73

1.1.1 General Details

All manipulations were carried out under a dry, oxygen-free atmosphere of either dinitrogen, using standard glovebox technique, or argon, using standard Schlenk techniques. Pyridine was distilled from potassium and stored over 4 Å molecular sieves. THF, toluene, hexanes, 1,2-dimethoxyethane (dme) and dichloromethane were degassed and purified by passage through activated alumina towers and stored over 4 Å molecular sieves. All gases were supplied by BOC gases UK. All glassware items, cannulae and Fisherbrand 1.2 μ m retention glass microfibre filters were dried in a 150 °C oven overnight before use.

The deuterated solvent d₅-pyridine was boiled over potassium for 24 hours, freeze-pumpthaw degassed and vacuum-transferred prior to use. ¹H, ²H, ¹³C{¹H}, ¹¹B, ¹⁹F and ²⁹Si_INEPT NMR spectra were recorded on Bruker AVA500, PRO500 or AVA600 spectrometers between 300 and 360 K, as indicated on the respective NMR spectra/data. Chemical shifts are reported in parts per million, δ . All ¹H NMR and ¹³C{¹H} NMR spectra were referenced relative to external SiMe₄, and internal proteo resonances of the solvent; 8.74, 7.58 and 7.22 ppm for d₅-pyridine in ¹H NMR, and 150.35, 135.91 and 123.87 ppm for d₅-pyridine in ¹³C{¹H} NMR spectra. ¹¹B, ¹⁹F and ²⁹Si NMR spectra were referenced using an external standard of BF₃(OEt₂) (0.0 ppm), α , α , α -trifluorotoluene (–63.8 ppm) and SiMe₄ (0.0 ppm), respectively. Please see the NMR Spectra section below for specific details pertaining to the collection of NMR data for complexes **1-6**. Infrared spectra were recorded on a Perkin Elmer Spectrum 65 FT-IR spectrometer as nujol mulls between NaCl disks. Elemental analyses were carried out at Pascher Labor, Germany or at the London Metropolitan University.

¹H NMR chemical shifts are provided for [{(py)U^{IV}(μ -OMe)(μ -OH)U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (2), [{(py)U^{IV}(μ -F₂)U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (5) and [{(py)U^{IV}(μ -F)(μ -OBcat)U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (5A) at 300 K, but integrations were not defined due to inaccuracies caused by dynamic behaviour in solution (i.e. line broadening). As a result, high temperature data (360 K) were recorded since the line broadening was significantly decreased at elevated temperatures. A multiplet located between 0 and 3 ppm in the ¹H NMR spectrum of [{(py)U^{IV}(μ -η²:η²-Se₂)U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (4) has been assigned as a mixture of hydrocarbyl impurities (i.e. toluene, hexanes, silicon grease). A ¹H NMR spectrum of [{(py)U^{IV}(μ -Cl)₂U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (6) generated *in situ* was used for the assignment as once precipitated, it is almost completely insoluble in common solvents. Insufficient 6 could be retained in solution to allow meaningful ¹³C{¹H} NMR spectra to be obtained. No ¹⁹F resonance for 5, and no ¹¹B resonance for 5A could be located, even when samples were heated to 360 K.

Single crystal X-ray diffraction data for 1·3THF, 2·C₆H₆, 3·5py, 4·2CH₂Cl₂, 5·4py, 6·solvent and 8·solvent were collected using an Excalibur Eos diffractometer, fitted with a CCD area detector and using Mo Kα radiation; data for 1·3THF, 3·5py, 6·solvent and 8·solvent was collected at 120.0(1) K, whereas data for 2·C₆H₆, 4·2CH₂Cl₂ and 5·4py was collected at 173(2) K. Single crystal X-ray data for 5'·3dme was collected using an Oxford Diffraction Supernova instrument at 120.0(1) K, fitted with a CCD area detector using Mo Kα radiation.

 B_2cat_2 , $BF_3(OEt_2)$, selenium powder, α, α, α -trifluorotoluene, S_8 , Me_3SiCl and [PyH]Cl were purchased from Sigma-Aldrich; α, α, α -trifluorotoluene was used as was, selenium powder, S_8 and [PyH]Cl were stored in the glove box prior to use, and $BF_3(OEt_2)$ and Me_3SiCl were distilled and stored in the glove box prior to use. XeF_2 and tellurium powder were purchased from Alfa Aesar and stored in the glove box prior to use. $Ph_3P=Se$ was purchased from Merck and stored in the glove box prior to use. P_4 was provided by the University of Sussex as a gift and stored in the glove box prior to use. $[{(py)U^{IV}OU^{IV}(\mu-O_2C_6H_4)(py)}(L^A)]$ (A) and $[{(py)(pinBO)U^{IV}OU^{IV}(OBpin)(py)}(L^A)]$ (B) were prepared according to the literature procedures.¹

1.1.2 Syntheses

 $[(py)U^{V}(\mu-OH)_{2}U^{V}(\mu-O_{2}C_{6}H_{4})(py)](L^{A})]$ (1): A solution of water in pyridine (0.0250 mL, 5.56 M) was added to $[{(py)U^{V}OU^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})]$ (204 mg, 0.126 mmol) in pyridine (20 mL) in a 100 mL Schlenk flask under an argon atmosphere. The reaction was stirred for 30 minutes at room temperature. The solvent was then removed under a reduced pressure, and hexanes (30 mL) were added to the crude product. The resulting slurry was sonicated, then the hexanes were removed under a reduced pressure, providing [{(py)U^{IV}(μ -OH)₂U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] as a yellow solid. Yield = 151 mg (73 %). X-ray quality crystals of $[{(py)U^{V}(\mu-OH)_{2}U^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})] \cdot 2THF$ were obtained by vapour diffusion of hexanes into a solution of $[{(py)U^{V}(\mu-OH)_2U^{V}(\mu-O_2C_6H_4)(py)}(L^A)]$ in THF at room temperature. **Elemental Analysis:** Found: C, 54.60; H, 4.17; N, 8.49. Calc. for C₇₄H₆₄N₁₀O₄U₂: C, 54.41; H, 3.95; N, 8.58 %. IR (Nujol Mull, v_{max}/cm⁻¹): 1718w, 1596s, 1555m, 1484s, 1459s, 1377s, 1354w, 1315w, 1290m, 1273w, 1257w, 1236w, 1212w, 1171w, 1150w, 1097w, 1084w, 1055s, 1037m, 1016w, 1007w, 980w, 970w, 960w, 905w, 895w, 880w, 837m, 799m, 791m, 758w, 736s, 722w, 697m, 659w, 632w, 618w, 607w, 588w. ¹H NMR (500 MHz; d₅-pyridine; 298 K; SiMe₄): δ 95.46 (s, 2H), 57.41 (s, 2H), 36.87 (s, 4H), 33.92 (s, 4H), 29.82 (s, 2H), 25.86 (s, 8H), 22.66 (br s, 6H), 21.88 (s, 6H), 8.99 (br s, 4H), 4.36 (s, 4H), -29.85 (br s, 4H), -34.71 (s, 4H), -36.08 (br s, 2H). ¹³C{¹H} NMR (126 MHz; d₅-pyridine; **298 K; SiMe**₄): δ 283.2 (br s), 212.4 (br s), 207.0 (br s), 206.3 (br s), 188.4 (br s), 168.7 (br s), 162.1 (s), 157.0 (s), 153.8 (s), 152.7 (s), 151.6 (s), 147.7 (s), 144.7 (s), 137.6 (s), 129.9 (s), 129.2 (s), 127.7 (s), 127.6 (s), 125.8 (s), 122.1 (s), 121.7 (s), 120.6 (s), 119.6 (s), 118.8 (s), 117.7 (s), 111.3 (s), 110.3 (s), 109.4 (s), 106.6 (s), 102.8 (br s), 9.77 (s), 2.39 (s).

[{(py)U^{IV}(μ -OMe)(μ -OH)U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (2): A solution of methanol in pyridine (0.110 mL, 1.24 M) was added to [{(py)U^VOU^V(μ -O₂C₆H₄)(py)}(L^A)] (225 mg, 0.139 mmol) in pyridine (20 mL) in a 100 mL Schlenk flask under an argon atmosphere. The reaction was stirred for 30 minutes at room temperature. The solvent was then removed under a reduced pressure, and hexanes (30 mL) were added to the crude product. The resulting slurry was sonicated, then the hexanes were removed under a reduced pressure, providing [{(py)U^{IV}(μ -OMe)(μ -OH)U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] as a yellow solid. Yield = 124 mg (54 %). X-ray quality crystals of $[{(py)U^{|v|}(\mu-OMe)}_{(\mu-OMe)}_{(\mu-OH)}]U^{|v|}(\mu-OH)_{0.31}]U^{|v|}(\mu-OH)_{0.31}]U^{|v|}(\mu-OH)_{0.31}]U^{|v|}(\mu-OH)_{(\mu-OH)}U^{|v|}(\mu-OH)}U^{|v|}(\mu-OH)_{$ $O_2C_6H_4)(py)$ (L^A)]·C₆H₆ were obtained by vapour diffusion of hexanes into a solution of [{(py)U^{IV}(μ -OMe)(μ -OH)U^{IV}(μ -O₂C₆H₄)(py){(L^A)] in benzene at room temperature. **Elemental Analysis:** Found: C, 54.77; H, 4.02; N, 8.32. Calc. for C₇₅H₆₆N₁₀O₄U₂: C, 54.68; H, 4.04; N, 8.50 %. IR (Nujol Mull, v_{max}/cm⁻¹): 1599s, 1556m, 1485s, 1457s, 1377m, 1367w, 1354w, 1316w, 1304w, 1290w, 1274w, 1256w, 1243w, 1234w, 1214w, 1169w, 1149w, 1098w, 1085w, 1057m, 1037w, 1015w, 1008w, 978w, 964w, 909w, 895w, 879w, 863w, 839m, 798w, 791w, 761w, 736m, 724w, 698m, 661w, 646w, 638w, 624w, 619w, 606w, 589w. ¹H NMR (500 MHz; d₅-pyridine; 298 K; SiMe₄): δ 96.65 (s), 58.18 (s), 37.40, 37.28 (2×s), 34.96 (s), 33.71 (s), 30.66 (s), 29.48 (s), 26.04 (s), 23.56 (s), 22.62 (s), 21.50 (s), 9.79 (s), 4.76 (s), 4.36 (s), 3.64 (s), -28.08, -28.55 (2×br s), -32.32 (br s), -33.36 (s), -35.89 (s). ¹H NMR (500 MHz; d₅pyridine; 360 K; SiMe₄): δ 78.48 (s, 1H), 47.87 (s, 2H), 30.53 (s, 2H), 30.20 (s, 2H), 29.35 (s, 2H), 28.59 (s, 2H), 25.89 (s, 1H), 25.01 (s, 1H), 21.27 (s, 8H), 19.43 (s, 2H), 18.71 (2, 6H), 18.57 (s, 2H), 9.16 (s, 1H), 5.24 (s, 2H), 4.65 (s, 2H), 3.64 (s, 6H), -21.69 (s, 2H), -24.63 (s, 2H), -25.01 (s, 2H), -26.47 (s, 1H), -27.28 (s, 2H). ¹³C{¹H} NMR (126 MHz; d₅-pyridine; 298 K; SiMe₄): δ 289.0 (br s), 209.6 (br s), 191.8 (br s), 173.8 (br s), 167.6 (br s), 164.2 (s), 162.9 (s), 161.6 (s), 161.0 (s), 160.0 (br s), 158.0 (br s), 157.0 (br s), 151.6 (s), 146.5 (s), 145.9 (s), 144.6 (s), 138.5 (s), 137.6 (s), 134.0 (s), 133.8 (s), 133.0 (br s), 132.3 (s), 127.8 (s), 127.6 (s), 127.3 (s), 126.9 (s), 126.7 (s), 126.6 (br s), 126.4 (s), 126.2 (s), 125.7 (s), 122.1 (s), 121.8 (s), 121.7 (s), 120.6 (br s), 119.9 (br s), 119.4 (br s), 118.0 (s), 117.2 (s), 116.1 (s), 113.6 (s), 113.1 (s), 111.2 (s), 110.4 (br s), 109.9 (br s), 106.7 (s), 104.3 (br s), 50.2 (br s), 45.6 (br s), 24.2 (br s), 9.3 (br s).

 $[{(py)U^{V}(\mu-\eta^{2}:\eta^{2}-S_{2})U^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})]$ (3): Pyridine (20 mL) was added to $[{(py)U^{V}OU^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})]$ $O_2C_6H_4$)(py)}(L^A)] (188 mg, 0.117 mmol) and S₈ (15.0 mg, 5.85×10⁻² mmol) in a 100 mL ampoule under an argon atmosphere. The reaction was stirred overnight at room temperature then overnight at 80 ^oC. The reaction solution was then cannulated into a Schlenk flask and the solvent was removed under a reduced pressure. The crude product was sonicated in hexanes (20 mL) and filtered, providing $[\{(py)U^{iv}(\mu-\eta^2:\eta^2-S_2)U^{iv}(\mu-O_2C_6H_4)(py)\}(L^A)]$ as a brown/yellow powder which was washed with hexanes (2×10 mL) and dried under a reduced pressure. Yield = 107 mg (55 %). X-ray quality crystals of $[(py)U^{V}(\mu-\eta^{2}:\eta^{2}-S_{2})U^{V}(\mu-O_{2}C_{6}H_{4})(py)](L^{A})]$ · 5py were obtained from a concentrated solution of $[{(py)U^{V}(\mu-\eta^{2}:\eta^{2}-S_{2})U^{V}(\mu-O_{2}C_{6}H_{4})(py)}]$ in pyridine at room temperature. **Elemental Analysis**: Found: C, 53.21; H, 3.81; N, 8.30. Calc. for C₇₄H₆₂N₁₀O₂S₂U₂: C, 53.43; H, 3.76; N, 8.42 %. IR (Nujol Mull, v_{max}/cm⁻¹): 1714w, 1597s, 1553m, 1481s, 1458s, 1377s, 1353w, 1314w, 1305w, 1281m, 1252w, 1236w, 1210w, 1167w, 1149w, 1091m, 1056s, 1039m, 1008m, 973w, 958w, 905w, 892w, 874m, 840m, 784w, 751w, 735s, 699m, 658w, 625w, 612w, 603w, 589w, 533w. ¹H NMR (600 MHz; d₅**pyridine; 298 K; SiMe₄):** δ 62.24 (s, 2H), 39.03 (s, 4H), 37.38 (s, 8H), 32.37 (s, 6H), 32.05 (s, 2H), 22.98 (s, 4H), 15.44 (s, 6H), 7.01, 6.95 (2×s, 10H), -11.87 (br s, 2H), -28.81 (s, 4H), -40.90 (s, 4H). ¹³C{¹H} NMR (126 MHz; d₅-pyridine; 298 K; SiMe₄): δ 176.3 (s), 167.0 (s), 156.9 (s), 153.8 (s), 149.9 (s), 146.8 (br s), 145.8 (s), 138.5 (s), 137.6 (s), 136.5 (s), 136.4 (s), 135.5 (s), 134.0 (s), 127.6 (s), 127.5 (s), 127.3 (s), 126.2 (s), 124.6 (s), 124.5 (s), 124.4 (s), 121.6 (s), 120.6 (s), 120.0 (s), 119.8 (s), 119.6 (s), 118.7 (s), 117.7 (s), 116.1 (s), 111.2 (s), 110.3 (s), 109.4 (s), 107.7 (s), 106.6 (s), 32.2 (s), 23.3 (s), 14.7 (s), 2.36 (s).

Synthesis of [{(py)U^{IV}(μ -n²:n²-S₂)U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (3) from CS₂: CS₂ (3.6 mg, 4.73×10⁻² mmol) was added to [{(py)U^{IV}OU^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (24.6 mg, 1.52×10⁻² mmol) dissolved in d₅-pyridine (~0.6 mL) in a J-Young NMR tube, and heated to 120 °C for 4 days. The resulting ¹H NMR spectrum (in d₅-pyridine) was the same as that of complex **3**.

 $[(py)U^{V}(\mu-\eta^{2}:\eta^{2}-Se_{2})U^{V}(\mu-O_{2}C_{6}H_{4})(py)](L^{A})]$ (4): Pyridine (50 mL) was added to $[(py)U^{V}OU^{V}(\mu-O_{2}C_{6}H_{4})(py)](L^{A})]$ O₂C₆H₄)(py)}(L^A)] (231 mg, 0.143 mmol) and elemental selenium (90.5 mg, 1.15 mmol (8 equiv., excess)) in a 100 mL ampoule under an argon atmosphere. The reaction was stirred for 48 hours while heated to 125 °C. The reaction solution was then cannulated into a Schlenk flask and the solvent was removed under a reduced pressure. The crude product was sonicated in hexanes (50 mL) and filtered, providing [{(py)U^{IV}(μ - η^2 : η^2 -Se₂)U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] as a hickory coloured powder which was washed with hexanes (2×20 mL) and dried under a reduced pressure. Yield = 107 mg (55 %). X-ray quality crystals of $[{(py)U^{V}(\mu-\eta^{2}:\eta^{2}-Se_{2})U^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})]\cdot 2CH_{2}CI_{2}\cdot solvent were obtained by vapour$ diffusion of hexanes into a solution of $[{(py)U^{V}(\mu-\eta^{2}:\eta^{2}-Se_{2})U^{V}(\mu-O_{2}C_{6}H_{4})(py)}](L^{A})]$ in CH₂Cl₂ at room temperature; residual electron density from highly disordered lattice solvent was removed from the structure using the "solvent mask" feature of Olex2 (84.6 electrons/unit cell), rendering the lattice solvent unidentified. Elemental Analysis: Found: C, 50.77; H, 3.68; N, 7.86. Calc. for C₇₄H₆₂N₁₀O₂Se₂U₂: C, 50.58; H, 3.56; N, 7.97 %. IR (Nujol Mull, v_{max}/cm⁻¹): 1716w, 1627w, 1592s, 1550m, 1481m, 1458s, 1377s, 1352w, 1313w, 1286m, 1274w, 1263w, 1252w, 1244w, 1235w, 1210m, 1167w, 1150w, 1106w, 1088w, 1054m, 1037m, 1019w, 1011m, 978w, 959w, 903w, 894w, 875m, 861w, 840m, 780w, 758w, 743w, 732m, 721w, 701m, 658w, 627w, 617w, 604w, 587w, 531w. ¹H NMR (500 MHz; d₅-pyridine; **298 K; SiMe₄):** δ 62.49 (s, 2H), 39.10 (s, 4H), 37.99 (s, 4H), 37.65 (s, 4H), 33.57 (s, 6H, 2×CH₂CH₃), 31.94 (s, 2H), 22.83, 22.81 (2×s, 4H), 15.18 (s, 6H, 2×CH₂CH₃), 7.46 (br s, 4H), 6.11 (br s, 2H), 3.02 (br s, 4H, tentatively assigned), -2.81 (br s, 2H), -28.55 (s, 4H), -41.70 (s, 4H). ¹³C{¹H} NMR (126 MHz; d₅**pyridine; 298 K; SiMe₄):** δ 236.7 (br s), 235.7 (br s), 217.3 (br s), 201.8 (br s), 177.9 (s), 167.6 (s), 164.1 (br s), 163.9 (br s), 157.0 (s), 154.0 (s), 153.0 (s), 152.0 (s), 151.5 (s), 147.0 (br s), 145.9 (s), 138.5 (s), 137.6 (s), 134.0 (s), 129.9 (s), 129.2 (s), 127.7 (s), 127.3 (s), 126.2 (s), 123.1 (s), 121.7 (s), 119.6 (s), 118.6 (s), 117.7 (s), 116.1 (s), 110.3 (s), 109.3 (s), 108.2 (s), 106.6 (s), 100.9 (br s), 98.5 (br s), 94.7 (br s), 32.2 (s), 31.7 (br s), 23.3 (s), 21.8 (s), 14.7 (s), 10.5 (br s), 2.4 (s), -9.9 (s).

 $[{(py)U^{V}(\mu-F)_{2}U^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})]$ (5): XeF₂ (26.6 mg, 0.157 mmol) was added to $[{(py)U^{V}OU^{V}(\mu-D_{2}C_{6}H_{4})(py)}(L^{A})]$ $O_2C_6H_4)(py)$ (253 mg, 0.157 mmol) dissolved in pyridine (25 mL) in a 100 mL ampoule and the reaction was stirred for 24 hours at room temperature followed by 24 hours at 80 °C. The reaction solution was then brought into the glove box, layered with hexanes (~25 mL) and left at room temperature for recrystallisation. Following several days of hexanes diffusion into the pyridine solution, lime green crystals of needle morphology were obtained; recrystallised [$(py)U^{|v|}(\mu-F)_2U^{|v|}(\mu-F)$ $O_2C_6H_4)(py)$ (L^A)] was isolated by decanting the mother liquors and drying the collected solid under a reduced pressure. Yield = 103 mg (40 %). X-ray quality crystals of $[{(py)U^{|v|}(\mu-F)_2U^{|v|}(\mu-F$ $O_2C_6H_4)(py)$ {(L^A)]·4py·solvent were obtained by vapour diffusion of hexanes into a solution of $[{(py)U^{(\nu)}(\mu-F)_2U^{(\nu)}(\mu-O_2C_6H_4)(py)}(L^A)]$ in pyridine at room temperature; residual electron density from highly disordered lattice solvent was removed from the structure using the "solvent mask" feature of Olex2 (90.6 electrons/unit cell), rendering the lattice solvent unidentified. Elemental Analysis: Found: C, 53.99; H, 3.83; N, 8.64. Calc. for C₇₄H₆₂F₂N₁₀O₂U₂: C, 54.28; H, 3.94; N, 8.56 %. IR (Nujol Mull, vmax/cm⁻¹): 1740w, 1721w, 1616w, 1597m, 1555w, 1481m, 1460s, 1377s, 1312w, 1259w, 1235w, 1214w, 1147w, 1095w, 1056m, 1007w, 990w, 913w, 873w, 840w, 796w, 736m, 702m. ¹H NMR (600 **MHz; d_s-pyridine; 298 K; SiMe₄):** δ 64.89 (s), 41.46 (s), 38.76 (s), 33.19 (s), 29.84 (s), 24.19 (s), 21.20 (br s), 5.00 (br s), -35.75 (br s), -41.64 (s), -55.51 (br s). ¹H NMR (500 MHz; d₅-pyridine; 360 K; SiMe₄): δ 88.91 (s, 2H), 53.03 (s, 2H), 50.40 (broad s, 4H), 33.51 (s, 4H), 32.32 (s, 4H), 27.79 (s, 2H), 24.37 (s, 6H), 20.61 (s, 4H), 16.57 (s, 6H), 8.57, 8.56 (2×s, 4H), 4.07 (s, 4H), -27.19 (s, 4H), -31.82 (s, 4H), -43.00 (br s, 2H). ¹³C{¹H} NMR (126 MHz; d₅-pyridine; 298 K; SiMe₄): 201.3 (br s), 174.4 (br s), 167.5 (s), 162.9 (s), 161.0 (s), 156.9 (s), 153.9 (br s), 153.7 (br s), 153.1 (br s), 153.0 (s), 152.3 (s), 151.6 (s), 145.9 (s), 145.2 (s), 143.5 (br s), 138.5 (s), 137.6 (s), 134.0 (s), 133.7 (s), 132.3 (s), 127.8 (s), 127.7 (s), 127.6 (s), 127.3, 127.3 (2×s), 126.7 (s), 126.4 (s), 125.7 (s), 122.1 (s), 121.7 (s), 120.6 (s), 120.0 (s), 119.6 (s), 118.7 (br s), 118.0 (s), 117.7 (s), 117.2 (s), 116.1 (s), 113.1 (s), 106.7 (s), 106.6 (s), 99.2 (br s), 10.4 (br s).

[{(py)U^{IV}(µ-F)(µ-OBcat)U^{IV}(µ-O₂C₆H₄)(py)}(L^A)] (5A): XeF₂ (23.0 mg, 0.136 mmol) was added to $[(py)U^{V}OU^{V}(\mu-O_2C_6H_4)(py)](L^A)]$ (220 mg, 0.136 mmol) containing approximately 1 equiv. of catBOBcat byproduct dissolved in pyridine (20 mL) in a 100 mL Schlenk flask inside the glove box and the reaction was stirred for 24 hours at room temperature. The reaction solution was then evaporated to dryness under a reduced pressure and the crude product was sonicated in hexanes (30 mL), producing a yellow/brown slurry. The hexanes were then removed under a reduced pressure, providing [{(py)U^{IV}(μ -F)₂U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] as a brown/yellow solid. Yield = 162 mg (68 %). X-ray quality crystals of $[{(py)U^{V}(\mu-F)(\mu-OBcat)U^{V}(\mu-O_2C_6H_4)(py)}(L^A)]$ ·3dme were obtained from a concentrated solution of $[{(py)U^{V}(\mu-F)(\mu-OBcat)U^{V}(\mu-O_2C_6H_4)(py)}]$ in 1,2-dimethoxyethane cooled to -30 °C. Elemental Analysis: Found: C, 54.60; H, 4.07; N, 8.26. Calc. for C₈₀H₆₆BFN₁₀O₅U₂: C, 54.80; H, 3.79; N, 7.99 %. IR (Nujol Mull, v_{max}/cm⁻¹): 1714w, 1600s, 1556s, 1485s, 1459s, 1398w, 1378s, 1355w, 1315w, 1290m, 1275m, 1254w, 1235m, 1212m, 1170w, 1152w, 1097m, 1086w, 1056s, 1037w, 1016m, 1006m, 980w, 965w, 959w, 909m, 896w, 881w, 837m, 790w, 760w. 737s, 723w, 696m, 658w, 652w, 627w, 619w, 607w, 589w. ¹H NMR (600 MHz; d₅-pyridine; 298 K; SiMe₄): δ 102.25 (s), 60.80 (s), 39.82 (br s), 38.13 (s), 36.28, 35.96 (2×br s), 31.49 (s), 31.15 (s), 27.76 (s), 22.90 (br s), 21.39 (br s), 3.55 (s), -38.01 (s). ¹H NMR (500 MHz; d₅-pyridine; 360 K; SiMe₄): δ 81.60 (s, 2H), 52.95 (br s, 2H), 49.54 (s, 2H), 49.20 (s, 2H), 31.65 (s, 2H), 30.66 (s, 2H), 29.99 (s, 4H), 26.36 (s, 1H), 25.82 (s, 1H), 22.33 (s, 6H), 19.59 (s, 2H), 19.33 (s, 2H), 16.81 (s, 6H), 8.56 (br s, 2H), 8.46, 8.45 (2×br s, 2H), 7.00 (br s, 4H), 4.50 (s, 2H), 4.27 (s, 2H), 0.36 (s, 1H), -23.08 (s, 2H), -25.27 (s, 2H), -28.29 (s, 2H), -28.48 (s, 2H), -42.64 (br s, 1H). ¹³C{¹H} NMR (126 MHz; d₅-pyridine; 298 K; SiMe₄): δ 213.0 (br s), 211.9 (br s), 194.4 (br s), 171.3 (br s), 164.4 (br s), 157.0 (s), 152.7 (s), 151.6 (s), 146.0 (br s), 143.5 (br s), 127.6 (s), 126.9 (s), 126.6 (br s), 122.1 (s), 121.7 (s), 120.1 (s), 118.7 (s), 111.3 (s), 110.9 (s), 109.4 (s), 102.7 (br s), 71.0 (br s), 36.4 (br s), 11.0 (br s), 9.4 (br s). ¹⁹F NMR (471 MHz; d₅-pyridine; 300 K; α,α,αtrifluorotoluene): δ 141 (broad s, $\omega_{1/2} \sim 100$ Hz).

 $[{(py)U^{V}(\mu-Cl)_{2}U^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})]$ (6): Pyridine (50 mL) was added to $[{(py)U^{V}OU^{V}(\mu-U)}(\mu-U)^{V$ O₂C₆H₄)(py)}(L^A)] (427 mg, 0.264 mmol) and Me₃SiCl (57.5 mg, 0.529 mmol) in a 100 mL ampoule under an argon atmosphere and the reaction was stirred for 48 hours at 80 °C. The reaction solution was then cannulated into a Schlenk flask and the solvent was removed under a reduced pressure. The crude product was sonicated in toluene (50 mL) and filtered, providing $[{(py)U^{\nu}(\mu-CI)_2U^{\nu$ $O_2C_6H_4)(py)$ (L^A)] as a brown/yellow solid which was washed with hexanes (2×20 mL) and dried under a reduced pressure. Yield = 252 mg (57 %). X-ray quality crystals of $[{(py)U^{iv}(\mu-Cl)_2U^{iv}(\mu O_2C_6H_4)(py)$ {(L^A)]-solvent were obtained from vapour diffusion of hexanes into a solution of [{(py)U^{IV}(μ - $Cl_2U^{V}(\mu-O_2C_6H_4)(py)$ in pyridine at room temperature; residual electron density from highly disordered lattice solvent was removed from the structure using the "solvent mask" feature of Olex2 (393.3 electrons/unit cell), rendering the lattice solvent unidentified. Elemental Analysis: Found: C, 53.35; H, 3.95; N, 8.26. Calc. for C₇₄H₆₂Cl₂N₁₀O₂U₂: C, 53.21; H, 3.86; N, 8.39 %. IR (Nujol Mull, v_{max}/cm⁻ 1): 1713w, 1591s, 1552s, 1481s, 1456s, 1378s, 1353w, 1312w, 1288m, 1273m, 1252w, 1242w, 1210m, 1169w, 1085w, 1055m, 1037m, 1017w, 1005w, 980w, 958w, 895w, 880w, 866w, 841m, 757m, 736s, 696m, 657w, 625w, 613w, 606w, 589w. ¹H NMR (500 MHz; d₅-pyridine; 298 K; SiMe₄): δ 65.90 (s, 2H), 50.54 (broad s, 2H), 41.01 (s, 4H), 39.86 (s, 4H), 33.45 (s, 2H), 32.16 (s, 6H), 24.09 (s, 4H), 18.21 (s, 6H), 8.87 (s, 4H), 8.28 (s, 4H), 5.36 (s, 4H), -12.62 (broad s, 2H), -39.25 (s, 8H).

Synthesis of $[{(py)U^{V}(\mu-Cl)_{2}U^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})]$ (6) from 1 and [PyH]Cl: [PyH]Cl (3.5 mg, 3.03×10⁻² mmol) was added to $[{(py)U^{V}(\mu-OH)_{2}U^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})]$ (24.8 mg, 1.52×10⁻² mmol) dissolved in d₅-pyridine (~0.6 mL) in a J-Young NMR tube, and sonicated for 1 hour. The resulting ¹H NMR spectrum (in d₅-pyridine) is the same as that of complex **6**.

[{(py)U^{IV}(μ -Cl)(μ -OBcat)U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (6A): Pyridine (20 mL) was added to [{(py)U^{IV}OU^{IV}(μ - $O_2C_6H_4)(py)$ (216 mg, 0.134 mmol) containing approximately 1 equiv. of catBOBcat byproduct and Me₃SiCl (29.1 mg, 0.268 mmol) in a 100 mL ampoule under an argon atmosphere and the reaction was stirred for 24 hours at room temperature. The reaction solution was then cannulated into a Schlenk flask and the solvent was removed under a reduced pressure. The crude product was sonicated in hexanes (20 mL) and filtered, providing [{(py)U^{IV}(μ -Cl)(μ -OBcat)U^{IV}(μ -O₂C₆H₄)(py)}(L^A)] as a brown/yellow solid which was washed with hexanes (2×10 mL) and dried under a reduced pressure. Yield = 135 mg (57 %). Elemental Analysis: Found: C, 54.42; H, 3.91; N, 7.86. Calc. for C₈₀H₆₆BClN₁₀O₅U₂: C, 54.29; H, 3.76; N, 7.92 %. IR (Nujol Mull, ν_{max}/cm⁻¹): 1720w, 1623w, 1596s, 1554m, 1484s, 1463s, 1377m, 1352w, 1315w, 1283m, 1275m, 1253m, 1212w, 1098w, 1087w, 1056m, 1039w, 1013w, 1009w, 978w, 961w, 912w, 894w, 874m, 842m, 805w, 760w, 739s, 698m. ¹H NMR (600 MHz; d₅**pyridine; 298 K; SiMe₄):** δ 100.84 (s, 2H), 60.69 (s, 2H), 38.31 (s, 4H), 36.86 (s, 2H), 35.98 (s, 2H), 32.00 (s, 1H), 30.82 (s, 1H), 28.26 (broad s, 6H), 23.38 (s, 2H), 22.23 (s, 2H), 21.62 (broad s, 6H), 9.62 (s, 4H), 6.17 (s, 2H), 5.77 (s, 2H), 3.68 (s, 2H), 3.10 (s, 6H), -31.37 (broad s, 2H), -34.48 (s, 2H), -36.62 (s, 2H), -38.30 (s, 2H).¹³C{¹H} NMR (126 MHz; d₅-pyridine; 298 K; SiMe₄): δ 195.9 (broad s), 176.8 (broad s), 172.1 (broad s), 166.8 (s), 164.7 (s), 157.0 (s), 154.0 (broad s), 153.1 (broad s), 153.0 (broad s), 152.8 (s), 147.6 (broad s), 145.4 (broad s), 145.1 (broad s), 137.7 (s), 129.8 (broad s), 127.6 (broad s), 126.3 (s), 123.1 (s), 122.3 (s), 122.2 (s), 121.7 (s), 120.7 (s), 120.1 (s), 119.6 (s), 118.8 (s), 115.9 (broad s), 111.3 (s), 110.5 (s), 110.3 (s), 109.5 (s), 102.9 (broad s), 71.0 (broad s), 45.8 (broad s), 43.9 (broad s), 35.2 (broad s), 10.8 (broad s). ¹¹B NMR (161 MHz; d₅-pyridine; 300 K; BF₃·OEt₂): δ 435 (broad s, ω_{1/2} ~470 Hz).

[{(py)U^{IV}OU^{IV}(μ -O₂C₆H₄)(py)}(L^A)] + 4Te: [{(py)U^{IV}OU^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (21.2 mg, 1.31×10⁻² mmol) and Te (6.7 mg, 5.25×10⁻²) were mixed together in a J-Young NMR tube with d₅-pyridine (~0.6 mL) and heated to 120 °C for 3 days. No reaction had occurred, as determined by ¹H NMR spectroscopy (in d₅-pyridine).

[{(py)U^{IV}OU^{IV}(μ -O₂C₆H₄)(py)}(L^A)] + P₄: [{(py)U^{IV}OU^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (24.6 mg, 1.52×10⁻² mmol) and P₄ (2.0 mg, 1.61×10⁻²) were mixed together in a J-Young NMR tube with d₅-pyridine (~0.6 mL) and heated to 105 °C for 4 days. No reaction had occurred, as determined by ¹H NMR spectroscopy (in d₅-pyridine). UV irradiation was also attempted, deploying wavelengths of 410, 365 and 254 nm for periods of 16 hours each, however still no reaction occurred.

[{(py)U^{IV}OU^{IV}(μ -O₂C₆H₄)(py)}(L^A)] + Ph₃P=Se: [{(py)U^{IV}OU^{IV}(μ -O₂C₆H₄)(py)}(L^A)] (23.9 mg, 1.48×10⁻² mmol) and Ph₃P=Se (5.1 mg, 1.50×10⁻²) were mixed together in a J-Young NMR tube with d₅-pyridine (~0.6 mL) and heated to temperatures of 80, 100 and 130 °C for time periods of 16 hours at each temperature. No reaction had occurred, as determined by ¹H NMR spectroscopy (in d₅-pyridine).

[{(py)(pinBO)U^{IV}OU^{IV}(OBpin)(py)}(L^A)] + XeF₂: XeF₂ (2.9 mg, 1.71×10^{-2} mmol) was added to [{(py)(pinBO)U^{IV}OU^{IV}(OBpin)(py)}(L^A)] (30.2 mg, 1.68×10^{-2} mmol) dissolved in d₅-pyridine (~0.6 mL) in a J-Young NMR tube, and left at room temperature for 30 minutes. The resulting ¹H NMR spectrum was the same as [UO₂(py)(H₂L^A)] and other unidentifiable diamagnetic species (in d₅-pyridine).

[{(py)(OH)U^VOU^V(OH)(py)}(L^A)] (7) from [{(py)(pinBO)U^VOU^V(OBpin)(py)}(L^A)] and Excess H₂O: A solution of H₂O in pyridine (0.04 mL, 2.78 M) was added to [{(py)(pinBO)U^VOU^V(OBpin)(py)}(L^A)] (18.8 mg, 1.05×10^{-2} mmol) dissolved in d₅-pyridine in an NMR tube, and left to sit at room temperature for 30 minutes. The resulting ¹H and ¹¹B NMR spectra indicated the formation of **7** and 2 equiv. of HOBpin as the reaction byproduct had occurred, and were unchanged after at least 24 hours at room temperature. ¹H NMR (600 MHz; d₅-pyridine; **298 K; SiMe₄**): 48.23 (broad s, 2H), 36.81 (s, 4H), 35.07 (s, 4H), 28.20 (s, 2H), 26.06 (broad s, 4H), 19.79 (s, 4H), 14.99 (broad s, 6H), 10.44 (s, 2H), 6.91 (s, 4H), 6.59 (s, 6H), 5.21 (s, 4H), -31.31 (s, 4H), -34.34 (s, 4H). ¹³C{¹H} NMR (126 MHz; d₅-pyridine; **298 K; SiMe₄**): 217.4 (broad s), 193.3 (s), 178.8 (s), 170.9 (s), 166.0 (broad s), 160.2 (s), 158.7 (s), 158.4 (s), 157.3 (s), 156.6 (s), 154.5 (s), 152.1 (s), 151.0 (s), 142.5 (s), 142.4 (s), 133.3 (s), 132.4 (s), 132.2 (s), 128.6 (s), 126.8 (s), 126.6 (s), 125.4 (s), 122.5 (s), 121.2 (broad s), 110.9 (s), 110.9 (s), 110.8 (s), 110.6 (s), 104.4 (broad s), 98.6 (broad s), 97.5 (broad s), 23.0 (s), 14.4 (s), 9.5 (s), 9.3 (s), 92. (s), 9.0, 9.0 (2 × s), 8.9 (s).

[{(py)ClU^{IV}OU^{IV}Cl(py)}(L^A)] (8) from [{(py)(pinBO)U^{IV}OU^{IV}(OBpin)(py)}(L^A)] and Me₃SiCl: Me₃SiCl (3.8 mg, 3.50×10⁻² mmol) in d₅-pyridine (~0.2 mL) was added to [{(py)(pinBO)U^{IV}OU^{IV}(OBpin)(py)}(L^A)] (31.2 mg, 1.74×10⁻² mmol) dissolved in d₅-pyridine (~0.4 mL) in a J-Young NMR tube, and left at room temperature overnight. The resulting reaction solution appeared to be a mixture of products, given the presence of Me₃SiOBpin and other paramagnetic boron-containing species in the resulting ¹¹B NMR spectrum. A third equiv. of Me₃SiCl was then added (2.0 mg, 1.84×10⁻² mmol) and the reaction solution was left at room temperature for 30 minutes. The resulting ¹¹B NMR spectrum only contained Me₃SiOBpin and the ²⁹Si_INEPT NMR spectrum contained Me₃SiOBpin and (Me₃Si)₂O in an approximate 6:1 ratio, along with unreacted Me₃SiCl (all NMR spectra were recorded in d₅-pyridine). X-ray quality crystals of [{(py)ClU^{IV}OU^{IV}Cl(py)}(L^A)]·solvent (8·solvent) were obtained via vapour diffusion of hexanes into the pyridine reaction mixture at room temperature; residual electron density from highly disordered lattice solvent was removed from the structure using the "solvent mask" feature of Olex2 (81.1 electrons/unit cell), rendering the lattice solvent unidentified.

[{(py)(pinBO)U^{IV}(OBpin)(py)}(L^A)] + 10 equiv. of Me₃SiCl: Me₃SiCl (14.4 mg, 0.133 mmol) in d₅pyridine (~0.2 mL) was added to [{(py)(pinBO)U^{IV}OU^{IV}(OBpin)(py)}(L^A)] (23.7 mg, 1.32×10⁻² mmol) dissolved in d₅-pyridine (~0.4 mL) in a J-Young NMR tube, and left at room temperature overnight. The resulting ¹¹B NMR spectrum contained Me₃SiOBpin and an unknown compound giving rise to a singlet at 7.51 ppm in an approximate 3:1 ratio, and the ²⁹Si_INEPT NMR spectrum contained Me₃SiOBpin and $(Me_3Si)_2O$ in an approximate 1:1 ratio, along with unreacted Me_3SiCI (all NMR spectra were recorded in d₅-pyridine).

1.1.3 Crystallographic Details

General X-ray Experimental Details

The molecular structures of 1.3THF, $2.C_6H_6$, 3.5py, $4.2CH_2Cl_2$, 5.4py, 5A.3dme, 6 and 8 were solved using SHELXT² and least-square refined using SHELXL³ in Olex2.⁴ Hydrogen atoms were treated by constrained refinement, except for H(3) in 1.3THF which was located in the difference map.

A molecule of THF in the asymmetric unit of $[{(py)U^{|v}(\mu-OH)_2U^{|v}(\mu-O_2C_6H_4)(py)}(L^A)]$ ·3THF (1·3THF) was positionally disordered over two positions. As a result, it was split into two parts and refined with an occupancy ratio of 0.73:0.27. In addition, the thermal parameters of the carbon atoms were restrained to be similar to one another through the use of the SIMU command. C(10) was also positionally disordered over two positions, and was split into two parts and refined with a 0.69:0.31 ratio. The thermal parameters of C(10) and C(10A) were restrained to be similar to one another through the use of the SIMU command.

A molecule of lattice benzene in $[{(py)U^{V}(\mu-OMe)_{1.69}(\mu-OH)_{0.31}U^{V}(\mu-O_{2}C_{6}H_{4})(py)}(L^{A})] \cdot C_{6}H_{6}$ (2-**OMe/OH·C**₆**H**₆) was positionally disordered over two positions. As a result, it was split into two parts and refined with an occupancy ratio of 0.58:0.42. In addition, the thermal parameters of the carbon atoms were restrained to be similar to one another through the use of the SIMU command. C(8) was also positionally disordered over two positions, and was split into two parts and refined with a 0.58:0.42 ratio. The thermal parameters of C(8) and C(8A) were restrained to be similar to one another through the use of the SIMU command, and the C(7)-C(8) and C(7)-C(8A) distances were restrained to be similar to one another using the SADI command. The thermal ellipsoids of the carbon atoms of the bridging catecholate ligand (C(69)-C(74)) were restrained using the RIGU command, and the thermal ellipsoids of the carbon atoms of one of the anthracenyl ligand linkers (C(45)-C(58)) were restrained using the RIGU command. Finally, one of the bridging methoxy ligands possesses full occupancy (C(75)) whereas the other only possesses partial occupancy (C(76)). C(76) was refined freely with an occupancy of 0.69, and the remainder of the 0.31 occupancy bound to O(4) is attributed to a hydrogen atom (based on a ¹H NMR spectrum indicating that there is one methoxy and one hydroxy ligand bridging the two U centres). However, the hydrogen atom with 0.31 occupancy could not be located in the difference map.

 $[\{(py)U^{iv}(\mu-\eta^2:\eta^2-S_2)U^{iv}(\mu-O_2C_6H_4)(py)\}(L^A)]\cdot5py$ (**3**·**5py**) was refined as a 2-component twin with component 1 being equal to 78% (BASF = 0.2209(2)) using SADABS. The thermal ellipsoids of the carbon atoms of one of the U-coordinated pyridine ligands (N(10), C(70), C(71), C(72), C(73), C(74)) were restrained using the RIGU command. Furthermore, two of the lattice pyridine molecules (C(886), C(887), C(888)/N(888) and C(997), C(998), C(999)/N(999)) reside on special positions. Therefore, one carbon atom per pyridine molecule (C(888) and C(999)) was assigned as both a carbon atom and a nitrogen atom with 50% occupancy. The positional and thermal parameters of the N/C refined atoms were fixed using the EXYZ and EADP commands, respectively.

The molecule of pyridine coordinated to U(2) in $[{(py)U^{|v|}(\mu-\eta^2:\eta^2-Se_2)U^{|v|}(\mu-O_2C_6H_4)(py)}(L^A)]\cdot 2CH_2Cl_2\cdot solvent ($ **4·2CH_2Cl_2·solvent**; N(10), C(70), C(71), C(72), C(73), C(74)) was positionally disordered over two positions. As a result, it was split into two parts and refined with an occupancy ratio of 0.58:0.42. In addition, the thermal parameters of the carbon and nitrogen atoms were restrained to be similar to one another, respectively, through the use of the SIMU command. In addition, residual lattice electron density (presumably from highly disordered lattice solvent) was modelled using the "solvent mask" feature of Olex2 (84.6 electrons/cell).

A molecule of lattice pyridine in $[{(py)U^{IV}(\mu-F)_2U^{IV}(\mu-O_2C_6H_4)(py)}(L^A)]\cdot 4py$ (**5**·**4py**·**solvent**) was positionally disordered over two positions. As a result, it was split into two parts and refined with an occupancy ratio of 0.59:0.41. In addition, the thermal parameters of the carbon atoms were restrained to be similar to one another through the use of the SIMU command. In addition, residual lattice electron density (presumably from highly disordered lattice solvent) was modelled using the "solvent mask" feature of Olex2 (90.6 electrons/cell).

All three molecules of lattice 1,2-dme in $[{(py)U^{(\nu)}(\mu-F)(\mu-OBcat)U^{(\nu)}(\mu-O_2C_6H_4)(py)}(L^A)]$ ·3dme (5A-3dme) were positionally disordered over two positions. The molecule of 1,2-dme with carbons C(100)-C(103) and oxygens O(10) and O(11) was split into two parts and refined with an occupancy ratio of 0.8:0.2. The thermal parameters of the part with the highest occupancy were refined anisotropically, whereas the thermal parameters of the lower occupancy part were refined using ISOR. Furthermore, the thermal ellipsoids of the carbon atoms were refined to be similar to one another using the SIMU command. The molecule of 1,2-dme with carbons C(200)-C(203) and oxygens O(20) and O(21) was split into two parts and refined with an occupancy ratio of 0.62:0.38. The thermal parameters of atoms O(20) and O(20A), O(21) and O(21A), and C(200) and C(1F) were restrained to be similar to one another through the use of the SIMU command. The molecule of 1,2-dme with carbons C(300)-C(303) and oxygens O(30) and O(31) were split into two parts and refined in a 0.75:0.25 ratio. In addition, the thermal parameters of the carbons C(300), C(301), C(302), C(1B), C(1K) and C(1L), and oxygens O(30), O(30A), O(31) and O(31A) were restrained to be similar to one another using the SIMU command. The C(1B)-O(31A), C(1A)-O(31A), C(1L)-O(30A) and C(1K)-O(30A) bond lengths of one of the disordered molecules of 1,2-dme were restrained to be similar to one another using the SADI command. The C(202)-C(201), C(1E)-C(1C), C(201)-O(20), C(1E)-O(20A), O(20)-C(200), O(20A)-C(1F), C(301)-O(30), C(102)-O(11), O(10)-C(101), C(101)-C(102), C(1A)-O(31A), O(31A)-C(1B), C(1B)-C(1K), C(1K)-O(30A), O(30A)-C(1L), C(1I)-C(1H), C(1J)-O(10A), O(10A)-C(1H), C(1H)-C(1I), C(1I)-O(11A) and O(11A)-C(1G) bond lengths of the disordered molecules of 1,2-dme were restrained to ~1.4 Angstroms using the DANG command. Finally, the thermal parameters of C(1A) and C(303), and O(10) and O(11) were constrained to be equal to each other, respectively, using the EADP command due to unstable refinement in the absence of it.

C(8) in $[{(py)U^{V}(\mu-Cl)_2U^{V}(\mu-O_2C_6H_4)(py)}(L^A)]$ -solvent (**6-solvent**) is positionally disordered over two positions, so it has been split into two parts and refined in a 0.53:0.47 ratio. In addition, a Ucoordinated molecule of pyridine is positionally disordered over two positions, so it has been split into two parts and refined in a 0.84:0.16 ratio; the thermal ellipsoids have been restrained to be similar to one another through the use of the SIMU command. Furthermore, the geometry of N(5), C(59), C(60), C(61), C(62) and C(63) was constrained using AFIX 66. Finally, the lattice solvent exhibited unresolvable disorder and was removed using the "solvent mask" feature of Olex 2 (393.3 electrons per cell).

Residual lattice electron density (presumably from highly disordered lattice solvent) in $[{(py)CIUOUCI(py)}(L^A)]$ ·solvent (8·solvent) was modelled using the "solvent mask" feature of Olex2 (81.1 electrons/cell). In addition, the SIMU command was used on carbon atoms C(31)-C(34) (a pyrrolic ring) because the thermal ellipsoid of C(31) was non-positive definite when refined anisotropically, and the SIMU command was used on carbon atoms C(9) and C(10) due to a failed Hirshfield test.

Experimental Single Crystal X-Ray Diffraction Details

Complex	[{(py)U ^{ιv} (μ-OH) ₂ U ^{ιv} (μ- O ₂ C ₆ H ₄)(py)}(L ^A]]·3THF (1·3THF)	$ \begin{array}{l} [\{(py)U^{IV}(\mu\text{-}OMe)_{1.69}(\mu\text{-}OH)_{0.31}U^{IV}(\mu\text{-}\\ O_2C_6H_4)(py)\}(L^A)]\cdot C_6H_6 \ \textbf{(2\cdot}C_6H_6) \end{array} $	$\label{eq:constraint} \begin{split} & [\{(py)U^{IV}(\mu\!-\!\eta^2;\!\eta^2\!-\!S_2)U^{IV}(\mu\!-\!\\ & O_2C_6H_4)(py)\}(L^A)]\!\cdot\!5py \ (\textbf{3}\!\cdot\!\textbf{5py}) \end{split}$
Name in cif	compound1	compound2	compound3
Local code	p17104_cmono080	P18088	p17131_twin_refinalized_twin1_hklf4
Chemical formula	C ₇₄ H ₆₄ N ₁₀ O ₄ U ₂ , 3(C ₄ H ₈ O)	$C_{75.69}H_{67.06}N_{10}O_4U_2, C_6H_6$	$C_{74}H_{63}N_{10}O_2S_2U_2$, 5(C_5H_5N)
Lattice Solvent	THF	Benzene	Pyridine
M _r	1849.72	1734.84	2060.02
Crystal system, space group	Monoclinic, C2/c	Triclinic, P–1	Triclinic, P–1
Temperature (K)	120.0(1)	173(2)	120.0(1)
a, b, c (Å)	16.9463(3), 24.3235(4), 17.9675(3)	10.6363(6), 14.9997(8), 21.849(1)	13.7332(2), 17.5327(3), 18.0598(3)
α, β, γ (°)	90, 98.758(2), 90	90.546(4), 102.195(5), 94.113(5)	77.619(1), 85.469(1), 88.925(1)
V (Å ³)	7319.8(2)	3397.3(3)	4234.0(1)
Ζ	4	2	2
Radiation type	Μο Κα	Μο Κα	Μο Κα
μ (mm ⁻¹)	4.485	4.822	3.922
Crystal size (mm)	0.191 × 0.058 × 0.034	0.140 × 0.062 × 0.036	0.266 × 0.101 × 0.080
Diffractometer	Xcalibur, Eos	Xcalibur, Eos	Xcalibur, Eos
Absorption correction	Analytical <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887- 897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Analytical <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887- 897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Analytical <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887- 897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T _{min} , T _{max}	0.91925, 1.00000	0.965, 0.988	0.88725, 1.00000
$\theta_{min}, \theta_{max}$	2.791, 26.370	2.862, 25.350	2.808, 29.395
No. of measured, independent and observed [<i>I</i> > 2 σ (<i>I</i>)] reflections	74194, 7484, 6009	66944, 12421, 8941	142230, 58720, 33537
R _{int}	0.0856	0.1173	0.0937
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.0336, 0.0615, 1.034	0.0520, 0.0700, 1.019	0.0385, 0.0511, 0.765
No. of reflections	7484	8941	58720
No. of parameters	510	932	1086
No. of restraints	36	349	21
Δho_{max} , Δho_{min} (e Å-3)	0.959, –0.775	1.601, -0.942	2.757, -1.815

Table S1. Crystallographic data summary for complexes **1·3THF**, **2·C**₆H₆ and **3·5py**. CCDC codes 1984900-1984902.

Complex	$\label{eq:constraint} \begin{split} & [\{(py)U^{ \nu}(\mu\text{-}\eta^2\text{-}\text{Se}_2)U^{ \nu}(\mu\text{-}\\ & O_2C_6H_4)(py)\}(L^A)]\text{-}2CH_2Cl_2\text{-}solvent\\ & (\textbf{4-2CH}_2Cl_2\text{-}solvent) \end{split}$	[{(py)U ^{IV} (μ-F) ₂ U ^{IV} (μ-O ₂ C ₆ H ₄)(py)}(L ^A)]·4py (5·4py.solvent)	[{(py)U ^{IV} (µ-F)(µ-OBcət)U ^{IV} (µ- O₂C ₆ H₄)(py)}(L ^A)]·3dme (5'·3dme)
Name in cif	compound4	compound5	compound5A
Local code	p18107	p18071	po18009_refinalized
Chemical formula	C ₇₄ H ₆₂ N ₁₀ O ₂ Se ₂ U ₂ , 2(CH ₂ Cl ₂)	$C_{74}H_{62}F_2N_{10}O_2U_2$, 4(C_5H_5N)	C ₈₀ H ₆₆ BFN ₁₀ O ₅ U ₂ , 3(C ₄ H ₁₀ O ₂)
Lattice Solvent	CH ₂ Cl ₂ Olex2 "solvent mask" feature was used to remove 84.6 electrons per unit cell	Pyridine Olex 2 "solvent mask" feature was used to remove 90.6 electrons per unit cell	1,2-Dimethoxyethane
M _r	1927.16	1953.79	2023.65
Crystal system, space group	Monoclinic, P21/c	Monoclinic, P21/n	Triclinic, P–1
Temperature (K)	173(2)	173(2)	120.0(1)
a, b, c (Å)	10.9153(2), 19.1212(4), 34.2194(6)	17.5381(4), 26.2280(6), 17.8435(4)	14.6146(3), 16.3896(4), 18.1536(4)
α, β, γ (°)	90, 92.935(2), 90	90, 91.942(2), 90	77.518(2), 78.699(2), 82.007(2)
V (Å ³)	7132.7(2)	8203.1(3)	4141.9(2)
Ζ	4	4	2
Radiation type	Μο Κα	Μο Κα	Μο Κα
μ (mm ⁻¹)	5.760	4.007	3.975
Crystal size (mm)	0.148 × 0.078 × 0.063	0.254 × 0.102 × 0.041	0.612 × 0.154 × 0.066
Diffractometer	Xcalibur, Eos	Xcalibur, Eos	SuperNova, Dual, Cu at zero, Atlas
Absorption correction	Analytical <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887- 897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Analytical <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887- 897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Gaussian <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T _{min} , T _{max}	0.999, 1.000	0.852, 0.967	0.201, 1.000
$\theta_{min}, \theta_{max}$	2.834, 25.350	2.795, 25.350	2.802, 32.951
No. of measured, independent and observed [$l > 2\sigma(l)$] reflections	133959, 13030, 10932	161248, 15008, 10867	105405, 28789, 21060
R _{int}	0.0851	0.1286	0.0478
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.0424, 0.0787, 1.064	0.0449, 0.0784, 1.011	0.0407, 0.0838, 1.045
No. of reflections	13030	15008	28789
No. of parameters	900	1086	1194
No. of restraints	132	138	174
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	1.571, –1.739	1.242, -0.906	1.820, -1.282

Table S2. Crystallographic data summary for complexes 4·2CH2Cl2·solvent, 5·4py·solvent and5A·3dme. CCDC codes 1984903-1984905.

Complex	$[\{(py)U^{iv}(\mu\text{-}Cl)_2U^{iv}(\mu\text{-}O_2C_6H_4)(py)\}(L^A)]\cdot solvent \ \textbf{(6\cdot solvent)}$	[{(py)ClU ^{IV} OU ^{IV} Cl(py)}(L ^A)]·solvent (8-solvent)
Name in cif	compound6	compound8
Local code	p18017_08_mono	p19029
Chemical formula	$C_{74}H_{62}Cl_2N_{10}O_2U_2$	C ₆₈ H ₅₈ Cl ₂ N ₁₀ OU ₂
Lattice Solvent	Olex2 "solvent mask" feature was used to remove 393.3 electrons per unit cell	Olex2 "solvent mask" feature was used to remove 81.1 electrons per unit cell
M _r	1670.29	1578.20
Crystal system, space group	Monoclinic, P21/m	Triclinic, P–1
Temperature (K)	120.0(1)	120.0(1)
a, b, c (Å)	14.0058(3), 21.7361(5), 14.7736(3)	12.2163(5), 13.1548(5), 21.166(1)
α, β, γ (°)	90, 105.395(2), 90	77.753(4), 76.263(4), 72.589(4)
V (Å ³)	4336.2(2)	3116.0(2)
Ζ	2	2
Radiation type	Μο Κα	Μο Κα
μ (mm ⁻¹)	3.833	5.327
Crystal size (mm)	0.346 × 0.138 × 0.095	0.124 × 0.085 × 0.037
Diffractometer	Xcalibur, Eos	Xcalibur, Eos
Absorption correction	Analytical <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Analytical <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T _{min} , T _{max}	0.793, 0.928	0.833, 0.941
$\theta_{min}, \theta_{max}$	2.857, 26.372	2.926, 25.349
No. of measured, independent and observed [$l > 2\sigma(l)$] reflections	47380, 9110, 6549	60766, 11386, 8593
R _{int}	0.0670	0.1020
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.0382, 0.0814, 1.022	0.0590, 0.1241, 1.054
No. of reflections	9110	11386
No. of parameters	471	752
No. of restraints	120	24
Δho_{max} , Δho_{min} (e Å-3)	1.658, –0.925	4.186, -2.058

Table S3. Crystallographic data summary for complexes 6·solvent and 8·solvent. CCDC codes 1984906and 1984907.

Figure S1. Solid-state structure of **8**-solvent. Displacement ellipsoids are drawn at 50 % probability and carbon atoms are drawn wireframe. The solvent mask feature of Olex2 was deployed to remove unresolvable disorder in the lattice solvent (81.1 electrons per unit cell). For clarity, hydrogen atoms are omitted. Selected bond lengths [Å] and bond angles [°]: U(1)–Cl(1), 2.630(3); U(2)–Cl(2), 2.663(2); U(1)–O(1), 2.158(6); U(2)–O(1), 2.103(6); U(1)…U(2), 4.2579(6); U(1)–O(1)–U(2), 175.4(3); Cl(1)–U(1)–O(1), 174.9(2); Cl(2)–U(2)–O(1), 95.1(2).

1.1.4 NMR Spectra

Figure S2. ¹H NMR spectrum of **1** (500 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S3. ${}^{13}C{}^{1}H$ NMR spectrum of 1 (126 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S4. ¹H NMR spectrum of **2** (500 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S5. ¹H NMR spectrum of **2** (500 MHz; d₅-pyridine; 360 K; SiMe₄).

Figure S6. ${}^{13}C{}^{1}H$ NMR spectrum of 2 (126 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S7. ¹H NMR spectrum of **3** (600 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S8. ¹³C{¹H} NMR spectrum of **3** (126 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S9. ¹H NMR spectrum of **4** (500 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S10. ¹³C{¹H} NMR spectrum of 4 (126 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S11. ¹H NMR spectrum of **5** (500 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S12. ¹H NMR spectrum of **5** (500 MHz; d₅-pyridine; 360 K; SiMe₄).

Figure S13. ${}^{13}C{}^{1}H$ NMR spectrum of 5 (126 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S14. ¹H NMR spectrum of **5A** (600 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S15. ¹H NMR spectrum of **5A** (500 MHz; d₅-pyridine; 360 K; SiMe₄).

Figure S16. ¹³C{¹H} NMR spectrum of **5A** (126 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S17. ¹⁹F NMR spectrum of **5A** (471 MHz; d₅-pyridine; 300 K; α,α,α-trifluorotoluene).

Figure S18. ¹H NMR spectrum of **6** (500 MHz; d₅-pyridine; 300 K; SiMe₄) generated *in situ*. Characterisation of **6** was achieved using an *in situ* generated sample due to its insolubility once isolated.

Figure S19. ¹H NMR spectrum of **6A** (600 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S20. ¹³C{¹H} NMR spectrum of **6A** (126 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S21. ¹¹B NMR spectrum of **6A** (161 MHz; d₅-pyridine; 300 K; BF₃(OEt₂)).

Figure S22. ¹H NMR spectrum of [{(py)(pinBO)U^{IV}OU^{IV}(OBpin)(py)}(L^A)] (**B**) + 2 equiv. of H₂O, forming [{(py)HOU^{IV}OU^{IV}OH(py)}(L^A)] (**7**) and 2 equiv. *H*OBpin (500 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S23. ¹¹B NMR spectrum of **B** + 2 equiv. of H_2O , forming HOBpin (161 MHz; d_5 -pyridine; 300 K; $BF_3(OEt_2)$).

Figure S24. ¹³C{¹H} NMR spectrum of **7** (126 MHz; d₅-pyridine; 300 K; SiMe₄). The unknown impurity present in the ¹H NMR spectrum in Figure S22 is still present in this spectrum, however, without the use of standard 2D NMR techniques the ¹³C signals corresponding to the impurity could not be identified.

Figure S25. ¹H NMR spectrum of [{(py)(pinBO)U^{IV}OU^{IV}(OBpin)(py)}(L^A)] (**B**) + 2 equiv. of Me₃SiCl, forming a mixture of **B** and other unidentifiable products (500 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S26. ¹¹B NMR spectrum of **B** + 2 equiv. of Me₃SiCl, forming Me₃SiOBpin and other boroncontaining paramagnetic species (161 MHz; d₅-pyridine; 300 K; BF₃(OEt₂)).

Figure S27. ²⁹Si_INEPT NMR spectrum of **B** + 2 equiv. of Me₃SiCl, forming Me₃SiOBpin and (Me₃Si)₂O. The formation of both Si-containing species indicates that Me₃SiCl reacts at both the boroxido- and bridging oxo ligands, with the far greater quantity of Me₃SiOBpin indicating that the boroxido ligands are the preferred site of reactivity (99 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S28. ¹H NMR spectrum of **B** + 3 equiv. of Me₃SiCl, forming **8**. We were unable to determine if this reaction formed a mixture of products, or if **8** exists as a mixture of isomers in solution with the chloride ligands coordinated in both axial and equatorial positions (500 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S29. ¹¹B NMR spectrum of **B** + 3 equiv. of Me₃SiCl, forming only Me₃SiO*B*pin (161 MHz; d₅-pyridine; 300 K; BF₃(OEt₂)).

Figure S30. ²⁹Si_INEPT NMR spectrum of **B** + 3 equiv. of Me₃SiCl; Me₃SiOBpin, (Me₃Si)₂O and unreacted Me₃SiCl are present in the NMR spectrum (99 MHz; d₅-pyridine; 300 K; SiMe₄).

Figure S31. ¹H NMR spectrum of **B** + 10 equiv. of Me₃SiCl, forming **8** and a mixture of other species (500 MHz; d_5 -pyridine; 300 K; SiMe₄).

Figure S32. ¹¹B NMR spectrum of **B** + 10 equiv. of Me₃SiCl, forming Me₃SiOBpin and an unknown species at 7.5 ppm (161 MHz; d₅-pyridine; 300 K; BF₃(OEt₂)).

Figure S33. ²⁹Si_INEPT NMR spectrum of **B** + 10 equiv. of Me₃SiCl; Me₃SiOBpin and (Me₃Si)₂O are present in the NMR spectrum in a 1:1 ratio alongside unreacted Me₃SiCl (99 MHz; d₅-pyridine; 300 K; SiMe₄).

1.1.5 FTIR Spectra

Figure S34. IR spectrum of 1 in nujol mull.

Figure S35. Expanded view of the IR spectrum of 1 in nujol mull.

Figure S36. IR spectrum of 2 in nujol mull.

Figure S37. Expanded view of the IR spectrum of 2 in nujol mull.

Figure S38. IR spectrum of 3 in nujol mull.

Figure S39. Expanded view of the IR spectrum of 3 in nujol mull.

Figure S40. IR spectrum of 4 in nujol mull.

Figure S41. Expanded view of the IR spectrum of 4 in nujol mull.

Figure S42. Expanded view of the IR spectrum of 4 in nujol mull.

Figure S43. IR spectrum of 5 in nujol mull.

Figure S44. Expanded view of the IR spectrum of 5 in nujol mull.

Figure S45. IR spectrum of 5A in nujol mull.

Figure S46. Expanded view of the IR spectrum of 5A in nujol mull.

Figure S47. IR spectrum of 6 in nujol mull.

Figure S48. Expanded view of the IR spectrum of 6 in nujol mull.

Figure S49. IR spectrum of 6A in nujol mull.

Figure S50. Expanded view of the IR spectrum of 6A in nujol mull.

1.1.6 Computational details

All quantum-chemical calculations were conducted using the Gaussian09 program suite.⁵ Becke's 3-parameter hybrid functional was employed, combined with the non-local correlation functional provided by Perdew/Wang, denoted as B3PW91.⁶ The relativistic energy-consistent small-core pseudopotential of the Stuttgart-Köln ECP library was used in combination with its adapted segmented basis.⁷ For all other atoms, a standard 6-31G** basis set was used.⁸ All stationary points have been identified as minima (number of imaginary frequencies N_{imag} = 0) by frequency calculations. Natural Bonding Orbital (NBO) analyses were also carried out.⁹ The enthalpy energy was computed at T=298 k in the gas phase.

Figure S51. Main geometrical parameters of the optimised structure

Natural Charge

U ₇ = 1.67807	U ₉ = 1.66253	O ₈ = -0.90719	O ₅₀ = -0.70735
O ₅₃ = -0.70744	N ₄₄ = -0.47801	N ₂ = -0.47822	

Natural Electron Configuration

- U₇ [core]7S(0.18)5f(2.72)6d(1.04)7p(0.25)
- U₉ [core]7S(0.18)5f(2.73)6d(1.05)7p(0.26)
- O₈ [core]2S(1.71)2p(5.19)
- O₅₀ [core]2S(1.61)2p(5.09)3p(0.01)
- O₅₃ [core]2S(1.61)2p(5.09)3p(0.01)
- N₄₄ [core]2S(1.31)2p(4.15)3p(0.01)
- N₂ [core]2S(1.31)2p(4.15)3p(0.01)

Wiberg Bond Indexes

U7-08 = 0.9075	U7-U9 = 0.1560	U7-N2 = 0.3217	U7-O53 = 0.8294
U9-O8 = 0.8959	U9-U7 = 0.1560	U9-N44 = 0.3205	U9-O50 = 0.8355

Donation

		Energy (kcal/mol)	
Donor	Acceptor	Alpha	Beta
O ₈	U ₇	198,40 (8% CR + 92% LP)	193,25(9% CR + 91% LP)
O ₈	U ₉	196,46 (8% CR + 92% LP)	190,66(9% CR + 91% LP)

Spin Density

	U1	U2
Complex A	2.126115	2.126821
Complex B	2.126527	2.128697

Figure S52. Frontier orbital diagram of complex **A**. Atom colours: grey, carbon; blue, nitrogen; red, oxygen; green, uranium.

Figure S53. Depiction of the unpaired spin density of complex A.

Computed Atomic Coordinates

151			
U2C74	4N10H62O3		
С	13.234715000	-1.279210000	-2.584204000
Ν	13.679407000	-0.035818000	-2.341360000
С	14.776370000	0.390202000	-2.986206000
С	15.466599000	-0.402612000	-3.896731000
С	15.003911000	-1.692293000	-4.145633000
С	13.867984000	-2.138904000	-3.475597000
U	12.402327000	1.504152000	-0.600020000
0	11.512302000	2.670582000	0.899331000
U	11.572377000	4.529660000	1.884859000
Ν	11.081422000	3.866532000	4.247149000
С	12.075823000	4.160181000	5.166098000
С	11.603078000	3.988768000	6.476115000
С	10.280679000	3.572208000	6.353053000
С	9.993021000	3.508998000	4.970354000
С	13.363117000	4.526384000	4.737820000
Ν	13.681746000	4.606228000	3.469323000
С	15.006669000	5.007195000	3.190651000
С	15.856813000	4.131398000	2.430922000
С	17.225422000	4.517861000	2.203189000
С	17.692761000	5.764778000	2.713775000
С	16.853695000	6.579705000	3.422858000
С	15.508147000	6.198545000	3.667849000
С	15.400415000	2.908113000	1.937802000
С	16.230588000	2.061060000	1.202225000

С	17.612288000	2.417580000	1.010699000
С	18.066591000	3.641960000	1.510337000
С	18.480200000	1.507594000	0.337104000
C	18 004568000	0 310054000	-0 123023000
C	16 634724000	-0.032146000	0.028713000
C	15 752572000	0.032140000	0.020713000
	14 200464000	0.822893000	0.033084000
IN ~	14.380464000	0.495723000	0.732584000
С	14.060527000	-0.5/4035000	1.421002000
С	12.772287000	-1.136942000	1.392307000
Ν	11.807986000	-0.673217000	0.507350000
С	10.743401000	-1.501252000	0.640828000
С	11.008598000	-2.479706000	1.630889000
С	12.296603000	-2.251784000	2.099900000
С	9.464734000	-1.418773000	-0.173797000
С	8.352871000	-0.642527000	0.617463000
C	7.782253000	-1.330116000	1.855086000
C	8 733300000	2 972697000	4 324848000
C	7 595863000	2 845423000	5 368544000
c	7.071261000	1 146609000	5.500544000
	11 402072000	4.140000000	2.976331000
N	11.492073000	6.918949000	3.0369/3000
C	12.306850000	7.918928000	2.66/124000
С	12.270141000	9.175306000	3.262337000
С	11.347002000	9.406529000	4.279305000
С	10.497705000	8.372309000	4.663053000
С	10.604054000	7.143957000	4.018920000
0	13.137007000	5.194220000	0.603517000
С	14.191465000	5.269833000	-0.222345000
С	14.590787000	4.138628000	-0.982245000
0	13,900804000	2.990805000	-0.906860000
N	10 215247000	6 046220000	0 267804000
C	10 698991000	7 041593000	-0 608827000
C	11 428408000	6 658527000	-1 785616000
c	12 002005000	7 695669000	2 614764000
C	12.002005000	7.00500000	-2.014/04000
C	11.781816000	9.054469000	-2.2/8025000
C	11.034/85000	9.3854/5000	-1.180234000
С	10.495636000	8.377218000	-0.337550000
С	12.740672000	7.306945000	-3.740445000
С	12.920752000	5.965476000	-4.091740000
С	12.305144000	4.946992000	-3.280372000
С	11.565320000	5.321092000	-2.158389000
С	12.439701000	3.570939000	-3.672177000
С	13.160918000	3.252898000	-4.801822000
С	13.781883000	4.261582000	-5.585262000
С	13.666302000	5.581329000	-5.245292000
N	11 787145000	2 567272000	-2 919169000
C	10 878269000	1 880172000	-3 567745000
C	10 1905209000	0 0050112000	2 005640000
	10.180529000	0.803811000	-2.995040000
N	10.440589000	0.374936000	-1./01866000
С	9.61/656000	-0.680057000	-1.4899/1000
С	8.821174000	-0.921496000	-2.635666000
С	9.182377000	0.019294000	-3.590327000
N	9.120848000	4.489942000	2.336616000
С	8.329769000	5.138149000	1.399468000
С	6.972431000	4.861751000	1.630766000
С	6.936012000	4.020982000	2.737953000
С	8.273056000	3.828836000	3.158232000
С	8.914657000	5.964442000	0.424592000
С	9.059647000	1,553233000	3.749886000
-	2.00001/000		

С	9.570137000	0.522040000	4.754350000
С	8.961533000	-2.862241000	-0.458717000
С	9.887051000	-3.734089000	-1.304399000
Н	14.820418000	-1.067938000	2.034394000
н	12.840539000	-2.818141000	2.845674000
н	10 345135000	-3 275594000	1 939023000
и и	8 783293000	-3 363113000	0 496594000
11	0.705295000	2 705271000	0.490594000
п 11	1.9/4903000	-2.795271000	-0.952776000
H	10.049103000	-3.301948000	-2.296503000
H	9.45669/000	-4.732239000	-1.440230000
H	10.860720000	-3.854867000	-0.818648000
H	8.070284000	-1.691351000	-2.744764000
Н	8.789026000	0.134088000	-4.592776000
Н	10.631229000	2.150902000	-4.599035000
Н	13.259752000	2.209406000	-5.087923000
Н	14.349276000	3.971046000	-6.465552000
Н	14.135175000	6.355373000	-5.847151000
Н	13.183184000	8.079591000	-4.365699000
н	11 086970000	4 555058000	-1.560011000
н	8 254454000	6 553040000	-0 219575000
и и	6 13/307000	5 237704000	1 057078000
11	6 052710000	2 602911000	2 201421000
н	6.052710000	3.603811000	3.201421000
H	6./66653000	2.305605000	4.894916000
Н	7.944526000	2.188333000	6.1/1/58000
H	8.150091000	1.183165000	3.262535000
H	9.805205000	1.681928000	2.958180000
Н	10.436697000	0.897846000	5.306798000
H	9.882637000	-0.385219000	4.228469000
Н	8.804933000	0.233968000	5.482654000
Н	9.608875000	3.320755000	7.161509000
Н	12.167445000	4.142898000	7.387469000
Н	14.122103000	4.721686000	5.501745000
н	14.853966000	6.858138000	4.231396000
н	17 211686000	7 530143000	3 809829000
и	18 724622000	6 051995000	2 529519000
п п	10.107607000	3 919606000	1 359693000
п	19.107097000	3.919000000 0.065548000	1.339093000
н	16.260600000	-0.963548000	-0.382125000
H 	14.3/6339000	2.607641000	2.125/43000
Н	9.9686/2000	6.304655000	4.285259000
H	9.941136000	8.655181000	0.554244000
H	19.523796000	1.781015000	0.203904000
Н	18.669997000	-0.386891000	-0.625759000
Н	13.005201000	7.690490000	1.869270000
Н	12.211276000	9.825538000	-2.912552000
Н	10.858834000	10.429083000	-0.932712000
Н	9.763876000	8.504745000	5.451101000
Н	12.951338000	9.950836000	2.928059000
н	11.290996000	10.376948000	4.764725000
н	6 293370000	3 932520000	6 719476000
и и	7 866091000	4 704530000	6 481222000
ц	6 639079000	4 802324000	5 217000000
11	0.000000000000000000000000000000000000	4.002324000	0 000000000
п	1.53/03/000	-0.445389000	-0.089026000
H	8./65251000	0.3350/5000	0.889643000
H	7.069772000	-0.664960000	2.353238000
H	7.239437000	-2.246989000	1.604704000
Н	8.561978000	-1.582793000	2.579071000
Н	15.095730000	1.400614000	-2.756302000
Н	16.348276000	-0.011075000	-4.393268000

Н	15.519966000	-2.338391000	-4.850409000
Н	13.469492000	-3.134856000	-3.637739000
Н	12.343101000	-1.577548000	-2.041667000
С	15.714397000	4.244994000	-1.808181000
С	16.430834000	5.435002000	-1.911724000
С	16.028329000	6.548385000	-1.179539000
С	14.917340000	6.458660000	-0.344290000
Н	16.022524000	3.370451000	-2.372472000
Н	17.298416000	5.486700000	-2.563744000
Н	16.574252000	7.484897000	-1.252397000
Н	14.595066000	7.318389000	0.234886000

Figure S54. Geometry optimisation of bent complex A.

183			
U2B2C801	N10H82O7		
U	12.524642000	1.474442000	-0.721164000
U	11.787197000	4.788668000	1.846064000
0	13.672342000	8.499195000	0.694904000
0	14.843847000	-1.789364000	-2.556298000
0	15.258896000	7.015386000	-0.035774000
0	13.189635000	6.146127000	0.887922000
0	12.743318000	-1.870621000	-3.492192000
0	13.283872000	-0.059314000	-1.982165000
0	12.120889000	3.132245000	0.605010000
Ν	14.790756000	2.550731000	-1.539025000
N	10.337371000	0.796188000	-1.622613000
N	11.984246000	2.772439000	-2.901870000
N	11.590702000	-0.372078000	0.628023000
Ν	14.297717000	0.543271000	0.924006000
Ν	13.920210000	4.788462000	3.424211000
N	11.368127000	3.901894000	4.153285000
Ν	9.378479000	4.271393000	2.201541000
N	10.230357000	6.087663000	0.220228000

Ν	11.007017000	6.966391000	3.235715000
С	14.455117000	-4.110873000	-2.136177000
С	16.075171000	-3.373453000	-3.894734000
C	13 953760000	-2 209074000	-5 523179000
C	12 682079000	-4 080228000	-1 151655000
c	12 525249000	2 945977000	4.454055000
	14 746471000	-2.043077000	-4.195159000
C	14.746471000	-3.06/2//000	-3.216502000
С	17.230326000	8.399859000	-0.148845000
С	14.447153000	10.586188000	-0.222582000
С	15.479702000	9.588238000	1.822282000
С	14.853859000	9.285550000	0.459343000
С	7.506805000	-1.052823000	1.869466000
С	8.079109000	-0.283241000	0.681031000
С	15.098074000	3.823093000	-1.238223000
С	16.296817000	4.419016000	-1.615342000
С	17.214138000	3.673075000	-2.345461000
С	16.899305000	2.356001000	-2.668131000
C	15 684500000	1 833774000	-2 243203000
C	7 284603000	3 74900000	5 726009000
C	7 000673000	2 409920000	5 212666000
c	7.999073000	2.498820000	2 205206000
C	8.8/8382000	0.791294000	-3.393306000
C	8.449900000	-0.142634000	-2.46/35/000
С	9.378022000	-0.123628000	-1.393248000
С	10.048944000	1.355912000	-2.860621000
С	10.878547000	2.314333000	-3.451467000
С	9.709007000	-3.157832000	-1.474585000
С	8.739394000	-2.389933000	-0.581239000
С	9.220545000	-0.973980000	-0.145801000
С	11.934643000	-2.034526000	2.172109000
С	10.654002000	-2.167228000	1.654850000
С	10.475851000	-1.136894000	0.695011000
C	12 500603000	-0.924762000	1 521956000
C	13 833041000	-0 485373000	1 595595000
c	12 572202000	4 742425000	1 696911000
C	10 266086000	4.743435000	4.000011000
	10.266086000	0.413664000	4.799900000
Ĉ	9.682060000	1.32/420000	3.723402000
C	9.153490000	2./20418000	4.201616000
С	8.975338000	5.712355000	0.288912000
С	15.471158000	8.478355000	-1.920901000
С	15.733061000	8.320846000	-0.423421000
С	15.697923000	0.711965000	0.892997000
С	16.514467000	-0.268617000	0.371762000
С	17.916092000	-0.070395000	0.267146000
С	18.493251000	1.106201000	0.662823000
С	18.245214000	3.351853000	1.670254000
C	17 694012000	2 145555000	1 224412000
C	16 276188000	1 939585000	1 367113000
C	15 500759000	2 917545000	1 992126000
c	16 050101000	4 110001000	2 455005000
	17,470052000	4.110991000	2.455895000
C	17.470052000	4.341/56000	2.284/63000
C.	18.045201000	5.542108000	2./9825/000
С	17.269846000	6.448740000	3.469645000
С	15.881533000	6.218345000	3.662342000
С	15.276553000	5.083077000	3.170881000
С	12.292734000	4.331603000	5.091391000
С	11.799324000	4.154365000	6.392613000
С	10.536711000	3.587114000	6.245949000
С	10.306555000	3.442193000	4.858840000

С	8.628268000	3.454887000	2.980072000
С	7.305059000	3.387287000	2.485129000
С	7.238601000	4.225697000	1.377825000
C	8 525419000	4 763703000	1 222795000
C	13 637342000	5 858028000	-5 303468000
C	13 915192000	4 544681000	-5 573863000
C	12 201115000	4.544081000	-3.373003000
C	13.391115000	3.499968000	-4.763719000
С	12.622745000	3./8/0/9000	-3.66133/000
С	11.621608000	5.481556000	-2.177996000
С	12.366086000	5.156488000	-3.311611000
С	12.840181000	6.207468000	-4.172943000
С	12.467718000	7.527436000	-3.887256000
С	10.132065000	8.417246000	-0.480459000
С	10.489579000	9.449318000	-1.389537000
С	11.257358000	9.186420000	-2.492539000
C	11 690882000	7 854595000	-2.767933000
C	11 303165000	6 801757000	-1 866638000
C	10 542417000	7 121015000	-0 601776000
C	10.342417000	7.121915000	-0.091//0000
C	10.088087000	6.844140000	4.209048000
C	9.579775000	7.932801000	4.908851000
С	10.039992000	9.208024000	4.595035000
С	10.992497000	9.340389000	3.589450000
С	11.448316000	8.200157000	2.933811000
В	13.997948000	7.154346000	0.527718000
В	13.590529000	-1.190103000	-2.636692000
Н	12.245018000	-4.466882000	-3.532242000
Н	13.273486000	-4.873274000	-4.924759000
Н	11.861891000	-3.823136000	-5.131253000
н	14 500808000	-2 911184000	-6 160104000
ц П	14 582218000	_1 328777000	-5 356/39000
п	12 055550000	1 995759000	-5.550459000
п	16.057460000	-1.885758000	-0.030310000
H	16.857469000	-3.488823000	-3.138453000
Н	16.376202000	-2.570240000	-4.5/0503000
Η	16.017038000	-4.306718000	-4.464588000
Н	13.503535000	-3.906642000	-1.637280000
Н	15.246789000	-4.071266000	-1.382354000
Н	14.423372000	-5.124738000	-2.546751000
Н	8.279418000	-1.332076000	2.591327000
H	6.988074000	-1.965210000	1.558437000
Н	6.772965000	-0.429358000	2.391948000
н	8 455040000	0 690727000	1 011682000
н	7 264802000	-0 066396000	-0.020486000
U U	6 810436000	4 303144000	A 911424000
п 11	0.010430000	4.303144000	4.911424000
н	7.975772000	4.428668000	6.233369000
H	6.504199000	3.4/3126000	6.443656000
Н	13.850658000	10.398502000	-1.116770000
Н	13.841953000	11.186758000	0.463503000
Н	15.327491000	11.176507000	-0.497872000
Н	16.355782000	10.237411000	1.730681000
Н	15.777956000	8.667419000	2.329282000
Н	14.741371000	10.099328000	2.447513000
Н	9.663699000	10.079899000	5.123355000
Н	11.383979000	10.311376000	3,303783000
н	8 838419000	7 771149000	5 684285000
т. П	10 151627000	10 163103000	_1 10170/000
п ш	11 524252000	10.403123000	-1.191/94000
н	10.10650000	9.90ZJI/UUU	-3.1/9441000
Н	12.186589000	8.2/8041000	2.142005000
Н	17.606251000	9.412099000	-0.332169000

H 18.527590000 -0.862739000 -0.156494000 H 19.564457000 1.263083000 0.564797000 H 17.766359000 7.720932000 -0.819278000 H 17.466326000 8.651716000 0.876691000 H 17.466326000 8.417855000 -2.146725000 H 15.970506000 7.668397000 -2.460105000 H 14.366627000 4.387586000 -0.667976000 H 14.366627000 4.387586000 -2.653216000 H 18.161902000 4.106851000 -2.453294000 H 15.48869000 0.807328000 -2.453294000 H 14.442933000 2.73080000 2.135316000 H 19.316209000 5.11173000 -0.029821000 H 19.316209000 5.71173000 2.05277000 H 19.316209000 5.71173000 5.66339000 H 19.316209000 5.71173000 5.66339000 H 19.316209000 5.71173000 5.93523000 H <t< th=""><th>H</th><th>15.858389000</th><th>9.429449000</th><th>-2.299834000</th></t<>	H	15.858389000	9.429449000	-2.299834000
H 19.564457000 1.263083000 0.564797000 H 9.553266000 8.651716000 0.407950000 H 17.766359000 7.720932000 -0.81278000 H 17.466326000 8.110926000 0.876691000 H 14.404524000 8.417855000 -2.460105000 H 15.970506000 7.668397000 -2.460105000 H 14.366627000 4.387586000 -0.667976000 H 16.478595000 5.440669000 -2.653216000 H 17.584287000 1.729391000 -3.229731000 H 15.408069000 2.73080000 2.135316000 H 16.063823000 -1.170877000 -0.029821000 H 19.316209000 3.512983000 1.563675000 H 19.3162396000 6.944245000 4.205277000 H 14.30991900 4.969231000 5.464055000 H 15.282396000 6.944245000 3.253742000 H 10.65643000 -0.49208000 3.36594000 H <td>H</td> <td>18.527590000</td> <td>-0.862739000</td> <td>-0.156494000</td>	H	18.527590000	-0.862739000	-0.156494000
H 9.553266000 8.651716000 -0.407950000 H 17.766359000 7.720932000 -0.819278000 H 17.466326000 8.11026000 0.876691000 H 14.404524000 8.417855000 -2.460105000 H 15.970506000 7.668397000 -2.460105000 H 14.366627000 4.387586000 -1.307825000 H 16.478595000 5.440669000 -1.307825000 H 18.161902000 4.106851000 -2.453294000 H 15.408069000 0.807328000 -2.453294000 H 15.408069000 0.807328000 -2.453294000 H 14.42933000 2.730800000 2.135316000 H 19.316209000 3.512983000 1.563675000 H 19.110837000 5.711173000 2.666339000 H 17.751225000 7.353592000 3.875243000 H 12.315740000 4.395225000 7.313466000 H 10.656443000 -0.49208000 4.30416000 H 10.656443000 -0.49208000 4.330416000 H<	H	19.564457000	1.263083000	0.564797000
H 17.766359000 7.720932000 -0.819278000 H 17.466326000 8.110926000 0.876691000 H 14.404524000 8.417855000 -2.146725000 H 15.970506000 7.668397000 -2.460105000 H 9.755702000 5.835354000 4.425158000 H 14.366627000 4.387586000 -0.667976000 H 16.478595000 5.440669000 -2.453294000 H 17.584287000 1.729391000 -3.229731000 H 16.663823000 -1.170877000 -0.029821000 H 16.663823000 -1.170877000 -0.029821000 H 19.316209000 3.512983000 1.563675000 H 19.316239000 5.711173000 2.666339000 H 17.715125000 7.353592000 3.875243000 H 15.282396000 6.944245000 4.205277000 H 14.309919000 4.969231000 5.337152000 H 14.366000 1.508784000 5.33752000 H<	Н	9.553266000	8.651716000	0.407950000
H 17.466326000 8.110926000 0.876691000 H 14.404524000 8.417855000 -2.146725000 H 15.970506000 7.668397000 -2.460105000 H 14.366627000 4.387586000 -0.667976000 H 14.366627000 4.387586000 -0.667976000 H 16.478595000 5.440669000 -2.453216000 H 17.584287000 1.729391000 -3.229731000 H 15.408069000 0.807328000 -2.45324000 H 14.442933000 2.730800000 2.135316000 H 19.316209000 3.512983000 1.563675000 H 19.316209000 3.512983000 1.563675000 H 19.3152000 7.35352000 3.875243000 H 17.715125000 7.35352000 7.313466000 H 12.31574000 4.39525000 7.31346000 H 12.3574000 1.937497000 5.336594000 H 10.656443000 -0.49208000 4.330416000 H	Н	17.766359000	7.720932000	-0.819278000
H14.4045240008.417855000-2.146725000H15.9705060007.668397000-2.460105000H9.7557020005.8353540004.425158000H14.3666270004.387586000-0.667976000H16.4785950005.440669000-1.307825000H18.1619020004.106851000-2.653216000H17.5842870001.729391000-3.229731000H15.4080690000.8073280002.135316000H14.4429330002.7308000002.135316000H19.3162090003.5129830001.563675000H19.1108370005.7111730002.666339000H17.7151250007.3535920003.875243000H12.3157400004.9692310005.464055000H12.315740004.3952250007.313466000H9.8723540003.2817750007.041976000H10.656443000-0.4920800004.330416000H10.656430001.5069530002.955230000H10.4413660001.5069530002.955230000H8.8512890006.1420440000.40816000H6.4933770002.8096140002.905377000H6.4933770002.809614000-5.948248000H12.7826970008.321544000-4.366592000H12.77208100-7.72667000-4.426515000H13.5759510002.462091000-5.02396000H13.5759510002.462091000-5.02396000H10.666556000 <t< td=""><td>Н</td><td>17.466326000</td><td>8.110926000</td><td>0.876691000</td></t<>	Н	17.466326000	8.110926000	0.876691000
H 15.970506000 7.668397000 -2.460105000 H 9.755702000 5.835354000 4.425158000 H 14.366627000 4.387586000 -0.667976000 H 16.478595000 5.440669000 -1.307825000 H 18.161902000 4.106851000 -2.653216000 H 17.584287000 1.729391000 -3.229731000 H 15.408069000 0.807328000 -2.453294000 H 14.442933000 -1.170877000 -0.029821000 H 19.316209000 3.512983000 1.563675000 H 19.316209000 5.71173000 2.666339000 H 17.715125000 7.353592000 3.875243000 H 15.282396000 6.944245000 4.20527000 H 14.309919000 4.395225000 7.313466000 H 9.872354000 3.281775000 7.041976000 H 9.872354000 3.281775000 7.041976000 H 9.872354000 1.937497000 6.063943000 H 10.65643000 -0.49288000 4.336594000 H	Н	14.404524000	8.417855000	-2.146725000
H9.7557020005.8353540004.425158000H14.366270004.387586000-0.667976000H16.4785950005.440669000-1.307825000H18.1619020004.106851000-2.653216000H17.5842870001.729391000-3.229731000H15.4080690000.807328000-2.453294000H14.4429330002.7308000002.135316000H16.063823000-1.170877000-0.028821000H19.3162090003.5129830001.563675000H19.1108370005.7111730002.666339000H15.2823960006.9442450004.205277000H14.3099190004.9692310005.464055000H12.3157400003.2817750007.041976000H10.656443000-0.4920800004.330416000H10.656443000-0.4920800004.330416000H10.656443000-0.4920800004.330416000H10.413660001.5069530002.95523000H10.413660001.8293480004.744110000H6.3765730004.366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H13.5759510002.462091000-5.02360000H14.521280004.284468000-6.437069000H13.5759510002.462091000-5.02360000H10.646556000-3.357982000-1.76578000H9.951435000 <td>Н</td> <td>15.970506000</td> <td>7.668397000</td> <td>-2.460105000</td>	Н	15.970506000	7.668397000	-2.460105000
H14.3666270004.387586000-0.667976000H16.4785950005.440669000-1.307825000H18.1619020004.106851000-2.653216000H17.5842870001.72939100-3.229731000H15.4080690000.807328000-2.453294000H14.4429330002.7308000002.135316000H19.3162090003.5129830001.563675000H19.1108370005.7111730002.666339000H17.7151250007.3535920003.875243000H15.2823960006.9442450004.205277000H14.3099190004.9692310005.464055000H12.3157400004.395225007.313466000H9.5165190000.1094660005.337152000H10.64643000-0.4920800004.330416000H10.842750000.8987840005.3655230000H10.643700001.9374970006.063943000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H12.7268170002.806140002.905377000H6.3765730004.28468000-6.437069000H12.72720002.25985400-2.3824000H10.5693620002.70266700-4.426515000H10.646556000-3.35798200-2.38246000H10.5693620002.59854	Н	9.755702000	5.835354000	4.425158000
H16.4785950005.440669000-1.307825000H18.1619020004.106851000-2.653216000H17.5842870001.729391000-3.229731000H15.4080690000.80732800-2.453294000H14.4429330002.7308000002.135316000H16.063823000-1.170877000-0.029821000H19.3162090003.5129830001.5666339000H19.1108370005.7111730002.666339000H17.7151250007.3535920003.875243000H15.2823960006.9442450004.205277000H14.3099190004.9692310005.646055000H12.3157400004.395250007.313466000H9.8723540003.2817750007.041976000H9.5165190000.1094660005.537152000H10.656443000-0.492080004.330416000H10.4413660001.506953002.955230000H8.3976770001.9374970006.063943000H8.3976770001.9374970006.063943000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H12.7826970008.321544000-4.5261540000H14.521280004.284468000-6.437069000H12.77208100-2.59854000-2.38246000H10.64655600-3.35798200-0.946937000H10.64655600-3.35798200-2.38246000H10.64655600-	Н	14.366627000	4.387586000	-0.667976000
H18.1619020004.106851000-2.653216000H17.5842870001.729391000-3.229731000H15.4080690000.807328000-2.453294000H14.4429330002.7308000002.135316000H16.063823000-1.170877000-0.029821000H19.3162090003.5129830001.563675000H19.1108370005.7111730002.666339000H15.2823960006.94245004.205277000H14.3099190004.9692310005.464055000H12.3157400004.3952250007.313466000H9.5165190000.1094660005.537152000H10.656443000-0.492080004.330416000H10.6564430001.5069530002.955230000H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H14.0114080006.649230000-5.023960000H14.521280004.28468000-6.437069000H14.521280004.28469100-5.023960000H14.521280002.46291000-5.023960000H14.521280002.46291000-5.023960000H14.521280002.46291000-5.023960000H14.521280002.4629	Н	16.478595000	5.440669000	-1.307825000
H17.5842870001.729391000-3.229731000H15.4080690000.807328000-2.453294000H14.4429330002.7308000002.135316000H16.063823000-1.170877000-0.029821000H19.3162090003.5129830001.563675000H19.1108370005.7111730002.666339000H17.7151250007.3535920003.875243000H15.2823960006.9442450004.205277000H14.3099190004.9692310005.464055000H12.3157400004.3952250007.313466000H9.8723540003.2817750007.041976000H9.5165190000.1094660005.337152000H10.656443000-0.4920800004.330416000H10.6413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H6.3765730004.4366540000.757325000H8.2428890006.14204400-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-6.437699000H14.51540002.702667000-4.326159000H10.5693620002.702667000-4.32692000H10.5693620002.702667000-4.32692000H10.5693620002.702667000-4.32692000H10.5693620002.702667000-4.326923000H10.569362000 <t< td=""><td>Н</td><td>18.161902000</td><td>4.106851000</td><td>-2.653216000</td></t<>	Н	18.161902000	4.106851000	-2.653216000
H15.4080690000.807328000-2.453294000H14.4429330002.7308000002.135316000H16.063823000-1.170877000-0.029821000H19.3162090003.5129830001.566375000H19.1108370005.7111730002.666339000H17.7151250007.3535920003.875243000H15.2823960006.9442450004.205277000H14.3099190004.9692310005.464055000H9.8723540003.2817750007.041976000H9.5165190000.1094660005.537152000H10.656443000-0.4920800004.330416000H10.6564430000.8987840005.336594000H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.436654000-7.9325000H12.7826970008.321544000-4.561540000H14.521280004.284488000-6.437069000H14.521280004.28428900-1.2533000H10.6693620002.702667000-4.426515000H10.5693620002.702667000-4.346692000H10.5693620002.981453000-2.546236000H10.646556000-3.357982000-0.946937000H9.976863000-	Н	17.584287000	1.729391000	-3.229731000
H14.4429330002.7308000002.135316000H16.063823000-1.170877000-0.029821000H19.3162090003.5129830001.563675000H19.1108370005.7111730002.666339000H17.7151250007.3535920003.875243000H15.2823960006.9442450004.205277000H14.3099190004.9692310005.464055000H12.3157400004.3952250007.313466000H9.8723540003.2817750007.041976000H10.656443000-0.4920800004.330416000H10.656443000-0.4920800004.330416000H10.6564430001.5069530002.955230000H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.8374970006.063943000H6.4933770002.8096140002.905377000H6.3765730004.436654000-757325000H8.2428890006.142044000-0.400816000H11.27826970008.321544000-4.561540000H12.7826970008.32154000-5.023960000H10.5693620002.702667000-4.426515000H10.646556000-3.357982000-0.946937000H10.646556000-3.357982000-2.382406000H10.646556000-3.357982000-1.086306000H9.9276863000-2.981653000-1.086306000H9.936756000	Н	15.408069000	0.807328000	-2.453294000
H16.063823000-1.170877000-0.029821000H19.3162090003.5129830001.563675000H19.1108370005.7111730002.666339000H17.7151250007.3535920003.875243000H15.2823960006.942450004.205277000H14.3099190004.9692310005.464055000H12.3157400004.3952250007.313466000H9.8723540003.2817750007.041976000H9.5165190000.1094660005.337152000H10.656443000-0.4920800004.330416000H10.645430001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.376573004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-5.023960000H10.5693620002.702667000-4.426515000H10.5693620002.702667000-4.346692000H10.646556000-3.357982000-2.382406000H10.646556000-3.357982000-2.382406000H9.951435000-2.981563000-1.086306000H9.936756000-2.981653000-1.086306000H9.936756000-2.9816530001.919924000H9.936756000	Н	14.442933000	2.730800000	2.135316000
H19.3162090003.5129830001.563675000H19.1108370005.7111730002.666339000H17.7151250007.3535920003.875243000H15.2823960006.9442450004.205277000H14.3099190004.9692310005.464055000H12.3157400004.3952250007.313466000H9.8723540003.2817750007.041976000H9.5165190000.1094660005.537152000H10.656443000-0.4920800004.330416000H10.6564430001.5069530002.955230000H10.4413660001.5069530002.955230000H8.512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.5127280004.284468000-6.437069000H10.5693620002.702667000-4.346692000H10.646556000-3.357982000-0.946337000H9.276863000-4.120533000-1.769578000H9.276863000-2.981653000-2.382406000H9.951435000-2.981653000-1.086306000H9.936756000-2.981653000-1.086306000H9.936756000	Н	16.063823000	-1.170877000	-0.029821000
H19.1108370005.7111730002.666339000H17.7151250007.3535920003.875243000H15.2823960006.9442450004.205277000H14.3099190004.9692310005.464055000H12.3157400004.3952250007.313466000H9.8723540003.2817750007.041976000H9.5165190000.1094660005.33152000H10.656443000-0.4920800004.330416000H11.0882750000.8987840005.336594000H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H12.7826970008.321544000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.36652000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.346692000H10.646556000-3.357982000-0.946937000H9.276863000-4.120533000-1.769578000H9.951435000-2.98854000-2.382406000H9.951435000-2.9816530000.315223000H9.936756000-2.9816530001.910924000H9.36756000-	Н	19.316209000	3.512983000	1.563675000
H17.7151250007.3535920003.875243000H15.2823960006.9442450004.205277000H14.3099190004.9692310005.464055000H12.3157400004.3952250007.313466000H9.8723540003.2817750007.041976000H9.5165190000.1094660005.537152000H10.656443000-0.4920800004.30416000H10.882750000.8987840005.336594000H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H11.2742230004.686872000-1.529260000H11.2742230004.686872000-1.529260000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.646556000-3.357982000-0.946937000H9.276863000-4.120533000-1.769578000H9.951435000-2.58854000-2.382406000H9.936756000-2.9816530001.910924000H9.936756000-2.942630001.910924000H14.513764000-2.6627660002.233985000	Н	19.110837000	5.711173000	2.666339000
H15.2823960006.9442450004.205277000H14.3099190004.9692310005.464055000H12.3157400004.3952250007.313466000H9.8723540003.2817750007.041976000H9.5165190000.1094660005.537152000H10.656443000-0.4920800004.330416000H11.0882750000.8987840005.336594000H10.4413660001.5069530002.955230000H8.512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H10.5693620002.702667000-4.426515000H10.5693620002.702667000-4.346692000H10.646556000-3.357982000-0.946937000H9.951435000-2.598854000-2.382406000H9.936756000-2.9816530000.315223000H9.936756000-2.9816530001.910924000H12.421579000-2.6627660002.933985000H12.421579000-2.6627660002.233985000	Н	17.715125000	7.353592000	3.875243000
H14.3099190004.9692310005.464055000H12.3157400004.3952250007.313466000H9.8723540003.2817750007.041976000H9.5165190000.1094660005.537152000H10.656443000-0.4920800004.330416000H11.0882750000.8987840005.336594000H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H10.5693620002.702667000-4.426515000H10.5693620002.702677000-4.346692000H10.646556000-3.357982000-0.946937000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H8.531835000-2.9342630001.910924000H12.421579000-2.6627660002.933985000H14.513764000-1.0570340002.233985000	Н	15.282396000	6.944245000	4.205277000
H12.3157400004.3952250007.313466000H9.8723540003.2817750007.041976000H9.5165190000.1094660005.537152000H10.656443000-0.4920800004.330416000H11.0882750000.8987840005.336594000H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.27826970008.321544000-4.561540000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H9.951435000-2.598854000-2.382406000H9.951435000-2.981653000-1.086306000H9.936756000-2.9816530001.086306000H9.936756000-2.9816530001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	14.309919000	4.969231000	5.464055000
H9.8723540003.2817750007.041976000H9.5165190000.1094660005.537152000H10.656443000-0.4920800004.330416000H11.0882750000.8987840005.336594000H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H9.951435000-2.598854000-2.382406000H9.951435000-2.981653000-1.086306000H9.936756000-2.9816530001.086306000H9.936756000-2.9816530001.910924000H12.421579000-2.6627660002.93385000H12.421579000-2.6627660002.93385000	Н	12.315740000	4.395225000	7.313466000
H9.5165190000.1094660005.537152000H10.656443000-0.4920800004.330416000H11.0882750000.8987840005.336594000H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H9.276863000-4.120533000-1.769578000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H9.951435000-2.981653000-1.086306000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	9.872354000	3.281775000	7.041976000
H10.656443000-0.4920800004.330416000H11.0882750000.8987840005.336594000H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.346692000H0.646556000-3.357982000-0.946937000H9.9276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	9.516519000	0.109466000	5.537152000
H11.0882750000.8987840005.336594000H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.346692000H10.646556000-3.357982000-0.946937000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	10.656443000	-0.492080000	4.330416000
H10.4413660001.5069530002.955230000H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H9.951435000-2.9816530000.315223000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	11.088275000	0.898784000	5.336594000
H8.8512890000.8190440003.225326000H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	10.441366000	1.506953000	2.955230000
H8.3976770001.9374970006.063943000H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H9.936756000-2.9942630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	8.851289000	0.819044000	3.225326000
H7.2681400001.8293480004.744110000H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	8.397677000	1.937497000	6.063943000
H6.4933770002.8096140002.905377000H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	7.268140000	1.829348000	4.744110000
H6.3765730004.4366540000.757325000H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H7.572081000-0.768684000-2.546236000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	6.493377000	2.809614000	2.905377000
H8.2428890006.142044000-0.400816000H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H7.572081000-0.768684000-2.546236000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	6.376573000	4.436654000	0.757325000
H11.2742230004.686872000-1.529260000H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H7.572081000-0.768684000-2.546236000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	8.242889000	6.142044000	-0.400816000
H12.7826970008.321544000-4.561540000H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H7.572081000-0.768684000-2.546236000H9.276863000-4.120533000-1.769578000H9.276863000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H9.936756000-2.9816530001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	11.274223000	4.686872000	-1.529260000
H14.0114080006.649230000-5.948248000H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H7.572081000-0.768684000-2.546236000H10.646556000-3.357982000-0.946937000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H8.531835000-2.99342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	12.782697000	8.321544000	-4.561540000
H14.5221280004.284468000-6.437069000H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H7.572081000-0.768684000-2.546236000H10.646556000-3.357982000-0.946937000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H8.531835000-2.99816530000.315223000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	14.011408000	6.649230000	-5.948248000
H13.5759510002.462091000-5.023960000H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H7.572081000-0.768684000-2.546236000H10.646556000-3.357982000-0.946937000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H8.531835000-2.9816530000.315223000H9.936756000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	14.522128000	4.284468000	-6.437069000
H10.5693620002.702667000-4.426515000H8.4247950001.039948000-4.346692000H7.572081000-0.768684000-2.546236000H10.646556000-3.357982000-0.946937000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H8.531835000-2.9816530000.315223000H9.936756000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	13.575951000	2.462091000	-5.023960000
H8.4247950001.039948000-4.346692000H7.572081000-0.768684000-2.546236000H10.646556000-3.357982000-0.946937000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H8.531835000-2.9816530000.315223000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	10.569362000	2.702667000	-4.426515000
H7.572081000-0.768684000-2.546236000H10.646556000-3.357982000-0.946937000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H8.531835000-2.9816530000.315223000H9.936756000-2.6627660001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	8.424795000	1.039948000	-4.346692000
H10.646556000-3.357982000-0.946937000H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H8.531835000-2.9816530000.315223000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	н	7.572081000	-0.768684000	-2.546236000
H9.276863000-4.120533000-1.769578000H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H8.531835000-2.9816530000.315223000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	10.646556000	-3.357982000	-0.946937000
H9.951435000-2.598854000-2.382406000H7.772730000-2.281560000-1.086306000H8.531835000-2.9816530000.315223000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	н	9.276863000	-4.120533000	-1.769578000
H7.772730000-2.281560000-1.086306000H8.531835000-2.9816530000.315223000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	н	9.951435000	-2.598854000	-2.382406000
H8.531835000-2.9816530000.315223000H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	7.772730000	-2.281560000	-1.086306000
H9.936756000-2.9342630001.910924000H12.421579000-2.6627660002.907711000H14.513764000-1.0570340002.233985000	Н	8.531835000	-2.981653000	0.315223000
H 12.421579000 -2.662766000 2.907711000 H 14.513764000 -1.057034000 2.233985000	Н	9.936756000	-2.934263000	1.910924000
Н 14.513764000 -1.057034000 2.233985000	Н	12.421579000	-2.662766000	2.907711000
	Н	14.513764000	-1.057034000	2.233985000

Figure S55. Geometry optimisation of linear complex B.

237			
U2C90	DN6H13207		
U	16.059449000	2.950902000	13.332996000
U	15.617808000	2.973469000	17.625765000
0	15.828711000	2.993048000	15.478361000
0	13.920224000	2.213277000	13.208740000
0	16.484960000	5.176985000	13.445383000
0	17.732257000	1.450678000	13.633410000
0	17.766594000	2.253617000	17.723611000
0	15.193683000	5.197443000	17.515853000
0	13.924476000	1.491651000	17.347009000
Ν	15.779014000	1.329988000	11.136750000
Ν	15.193969000	4.164854000	11.033533000
Ν	17.926547000	3.257080000	11.355998000
Ν	15.939190000	1.351103000	19.808116000
Ν	16.525467000	4.184899000	19.912911000
Ν	13.787221000	3.280604000	19.643815000
С	21.151923000	-1.932040000	19.584066000
С	20.838061000	4.168138000	18.434859000
С	22.754596000	2.614785000	18.011102000
С	21.991689000	4.167334000	16.204204000
С	21.521404000	3.286294000	17.379505000
С	20.508224000	2.250323000	16.808241000
С	18.897940000	-0.776189000	19.432493000
С	20.245683000	-0.829330000	19.076435000
С	20.731577000	0.173436000	18.230671000
С	19.942182000	1.236992000	17.782462000
С	18.567649000	1.280277000	18.149524000
С	18.059962000	0.239941000	18.966988000
С	16.578084000	0.132796000	19.235596000
С	16.838299000	10.320002000	19.383963000
С	11.971537000	6.903682000	17.543889000
С	11.793960000	7.752670000	15.187567000
С	12.413129000	9.316486000	17.041029000
С	12.566502000	7.877542000	16.516553000
С	14.051714000	7.510600000	16.226720000
С	16.965292000	7.785349000	19.399326000
С	16.418233000	8.956360000	18.875465000

С	15.469680000	8.828028000	17.854563000
С	15 018723000	7 588948000	17.390287000
C	15 577176000	6 399907000	17 938267000
C	16 579271000	6 526271000	10 022025000
C	17 240264000	5.326371000 E 314428000	10.302923000
C	17.349364000	5.314428000	19.39891/000
C	8.410942000	0.519970000	18.39/910000
C	13.9253/3000	-2.206/69000	17./13261000
С	13.744625000	-2.912042000	15.308162000
С	11.741326000	-3.020291000	16.801300000
С	13.015032000	-2.218330000	16.476371000
С	12.697693000	-0.762215000	16.023501000
С	10.548146000	1.847871000	18.708499000
С	9.885071000	0.758945000	18.140362000
С	10.615826000	-0.067608000	17.281763000
C	11 975581000	0 126197000	17 015360000
C	12 639590000	1 243871000	17 592028000
C	11 890623000	2 109580000	18 /28111000
C	12 403260000	2.109500000	10.420111000
	12.495260000	3.404521000	18.9158/9000
Ĉ	13./35051000	2.200157000	20.655902000
C	14.581377000	0.9/99/4000	20.25/525000
С	16.738587000	1.900681000	20.928399000
С	17.435838000	3.221682000	20.565658000
С	15.491213000	4.662587000	20.860966000
С	14.073730000	4.586507000	20.272417000
С	10.549239000	-1.926674000	11.224970000
С	10.884741000	4.154264000	12.505856000
С	8.947702000	2.609724000	12.864893000
С	9.697183000	4.115622000	14.717836000
C	10 176345000	3 256176000	13 530177000
C	11 169937000	2 197055000	14 093105000
C	12 805355000	-0.794164000	11 /33521000
C	11 451670000	-0.784184000	11.455521000
C C	10.05670000	-0.83/066000	11.766515000
C	10.956/88000	0.151575000	12.623622000
С	11.744039000	1.202590000	13.104265000
С	13.123167000	1.248629000	12.755939000
С	13.640104000	0.219918000	11.929852000
С	15.126179000	0.109626000	11.687724000
С	14.839997000	10.299980000	11.577162000
С	19.704060000	6.911330000	13.445932000
С	19.855200000	7.747265000	15.809363000
С	19.238824000	9.316818000	13.960752000
С	19.092533000	7.873341000	14.474855000
С	17.608266000	7.491613000	14.750503000
C	14 728016000	7 764720000	11 547488000
C	15 261540000	8 936160000	12 083936000
C	16 109619000	0.930100000	12.005950000
C	16.198818000	0.80/9J1000	13.113320000
C	16.650817000	7.569196000	13.579292000
C	16.103683000	6.3/9459000	13.021228000
С	15.115540000	6.505829000	12.013530000
С	14.357512000	5.292461000	11.531450000
С	23.276332000	0.502122000	12.733416000
С	17.760634000	-2.253411000	13.225394000
С	17.870303000	-2.979905000	15.628510000
С	19.919707000	-3.063136000	14.198727000
С	18.631826000	-2.271111000	14.490195000
С	18.924684000	-0.816938000	14.965779000
С	21.144954000	1.826203000	12.371603000
C	21 794466000	0 734252000	12 949871000
<u> </u>		0.101202000	

С	21.040890000	-0.102837000	13.777925000
С	19.673160000	0.084274000	14.005323000
С	19.023674000	1.206702000	13.421281000
С	19.793950000	2.081578000	12.614286000
С	19.202322000	3.378408000	12.116600000
С	18.002250000	2.179583000	10.341960000
С	17.145162000	0.958669000	10.714254000
С	15.003955000	1.885700000	10.002799000
C	14 297208000	3 202368000	10,360963000
C	16 247931000	4 644333000	10 107956000
C	17 654452000	4 564290000	10.723235000
н	20 580739000	-2 841476000	19 804246000
и П	21 918071000	-2 182078000	18 840646000
и П	21.910071000	-1 625986000	20 505531000
п	21.000992000	-1.025980000	20.303331000
H	21.555406000	4.8/6928000	18.8695/1000
H	20.020741000	4./3//84000	17.978108000
H	20.426306000	3.543768000	19.23/008000
Н	23.4/2046000	3.384957000	18.324703000
H	22.472117000	2.026074000	18.890623000
H	23.252138000	1.955694000	17.287319000
Н	21.138752000	4.676907000	15.739352000
Н	22.701318000	4.928231000	16.554726000
Н	22.483054000	3.553178000	15.438845000
Н	19.670131000	2.804786000	16.370309000
Н	21.000562000	1.708063000	15.988941000
Н	18.477768000	-1.560095000	20.059584000
Н	21.760186000	0.113203000	17.887625000
Н	16.038836000	-0.094362000	18.302915000
Н	16.410315000	-0.721121000	19.915291000
Н	16.123166000	10.701803000	20.126087000
Н	17.824945000	10.275260000	19.859410000
Н	16.888123000	11.046123000	18.563603000
Н	11.988620000	5.882253000	17.147235000
Н	12.556742000	6.930171000	18.470969000
Н	10.931483000	7.171413000	17.772732000
Н	12.206954000	8.439391000	14.437680000
Н	11.868479000	6.731006000	14.794529000
Н	10.732360000	7.989984000	15.336179000
Н	12.899277000	9.431151000	18.016013000
Н	12.853066000	10.036088000	16.337811000
Н	11.347417000	9.555700000	17.155267000
Н	14.411697000	8.171031000	15.425585000
Н	14.077535000	6.487258000	15.834300000
Н	17.736803000	7.849603000	20.164086000
Н	15.081509000	9.728265000	17.386719000
Н	17.951541000	4.909204000	18.571258000
Н	18.058644000	5.635338000	20.182005000
Н	7.790337000	1.170809000	17.766330000
Н	8.139453000	-0.518946000	18.179291000
Н	8.154393000	0.724886000	19.444494000
Н	14.138161000	-3.232314000	18.043195000
Н	14.875286000	-1.713365000	17.479725000
Н	13.439541000	-1.664896000	18.533840000
Н	14.673645000	-2.381571000	15.065890000
Н	13.995945000	-3.947372000	15.573174000
Н	13.111400000	-2.920085000	14.411873000
Н	11.053765000	-3.020558000	15.944965000
Н	12.008472000	-4.061235000	17.028019000
	-		

H	11.226398000	-2.599712000	17.671779000
H	12.100634000	-0.818173000	15.102897000
H	13.643602000	-0.273527000	15.761384000
Н	10.001537000	2.530676000	19.356148000
H	10.103330000	-0.885654000	16.784510000
H	11.755338000	3.907898000	19.564932000
Н	12.678711000	4.076783000	18.064241000
H	14.076281000	2.595478000	21.620005000
Н	12.698695000	1.859913000	20.790107000
Н	14.089533000	0.463846000	19.429717000
Н	14.632440000	0.283820000	21.115490000
Н	16.084010000	2.049411000	21.795140000
Н	17.515433000	1.182097000	21.225131000
H	18.251822000	3.014617000	19.869718000
H	17.871467000	3.659192000	21.483642000
H	15.546886000	4.068817000	21.781338000
H	15.685053000	5.708957000	21.135527000
Н	13.969294000	5.352529000	19.500573000
Н	13.341170000	4.802525000	21.072611000
H	11.120672000	-2.833789000	10.996027000
H	9.771594000	-2.188116000	11.952362000
H	10.048672000	-1.601537000	10.302050000
H	10.180851000	4.878527000	12.074662000
Н	11.698781000	4.706780000	12.988815000
H	11.304542000	3.543399000	11.697560000
H	8.242242000	3.392628000	12.555767000
H	9.239544000	2.036647000	11.978116000
H	8.432404000	1.940476000	13.566640000
H	10.548203000	4.608687000	15.203928000
H	8.997774000	4.889086000	14.374375000
H	9.191546000	3.489720000	15.464176000
H	12.005083000	2.730762000	14.561636000
Н	10.656320000	1.640378000	14.889412000
H	13.232519000	-1.559962000	10.801113000
Н	9.922570000	0.089868000	12.949372000
H	15.647078000	-0.125761000	12.628518000
H	15.303526000	-0.739421000	11.004261000
H	15.560121000	10.688095000	10.843172000
H	13.857910000	10.252870000	11.092584000
Н	14.779469000	11.022378000	12.400085000
H	19.693616000	5.887203000	13.835766000
H	19.125312000	6.938524000	12.514828000
Н	20.743213000	7.190066000	13.226236000
H	19.429969000	8.425881000	16.559720000
Н	19.786118000	6.722768000	16.195848000
H	20.915962000	7.994248000	15.671008000
Н	18.761918000	9.433735000	12.981511000
H	18.785968000	10.028320000	14.663982000
H	20.303651000	9.565438000	13.858876000
H	17.235963000	8.143186000	15.553161000
H	17.588414000	6.465358000	15.135578000
H	13.966430000	7.828221000	10.772769000
H	16.576544000	9.708111000	13.591583000
H	13.739486000	4.885657000	12.346489000
H	13.663273000	5.611767000	10.734346000
Н	23.876315000	1.162754000	13.374620000
Н	23.547990000	-0.532959000	12.969100000
Н	23.559069000	0.698552000	11.691890000

Н	17.562874000	-3.276952000	12.880283000
Н	16.801607000	-1.766144000	13.433507000
Н	18.269368000	-1.702419000	12.424941000
Н	16.931842000	-2.456363000	15.847818000
Н	17.632352000	-4.013658000	15.345621000
Н	18.476927000	-2.994323000	16.542969000
Н	20.582115000	-3.063548000	15.074649000
Н	19.665879000	-4.104566000	13.959303000
Н	20.456891000	-2.635199000	13.345496000
Н	19.491127000	-0.874210000	15.905702000
Н	17.966557000	-0.337233000	15.198243000
Н	21.708150000	2.515733000	11.745644000
Н	21.541098000	-0.923711000	14.282771000
Н	19.955758000	3.884758000	11.488159000
Н	18.995797000	4.047919000	12.965925000
Н	17.685028000	2.578938000	9.371312000
Н	19.041409000	1.839271000	10.231628000
Н	17.617402000	0.436181000	11.549099000
Н	17.111414000	0.268187000	9.850779000
Н	15.677109000	2.042410000	9.151889000
Н	14.234909000	1.168503000	9.682992000
Н	13.470290000	2.989009000	11.042452000
Н	13.875043000	3.643700000	9.438509000
Н	16.209169000	4.054421000	9.184311000
Н	16.061030000	5.692162000	9.834116000
Н	17.746312000	5.329547000	11.497177000
Н	18.402175000	4.778746000	9.936852000

Figure S56. Geometry optimisation of linear [{(($^{Neop,Me}ArO$)₃tacn)U^{IV}}₂(µ-O)].

159			
U2C72H7	807		
С	-1.062200000	1.293246000	0.466800000
С	-1.599017000	0.956378000	1.714950000
С	-0.743216000	0.925131000	2.831268000
С	0.631345000	1.206662000	2.672704000
С	1.117198000	1.531631000	1.409023000
С	0.286943000	1.588843000	0.284569000
С	-3.052002000	0.518111000	1.783453000

С	-3.905292000	1.013531000	2.936408000
С	-4.612748000	0.083176000	3.732232000
С	-5.320970000	0.525832000	4.871672000
C	-5 305280000	1 903094000	5 220343000
C	-4 726788000	2 845252000	1 327277000
C	4.720700000	2.045252000	2 171002000
C C	-4.04/292000	2.399820000	5.171092000
C a	-6.14//19000	-0.462251000	5.6/3851000
С	-5.461/4/000	-1.642224000	6.343594000
С	-4.111130000	-1.628684000	6.732974000
С	-3.550193000	-2.765083000	7.361911000
С	-4.353552000	-3.875989000	7.597913000
С	-5.704183000	-3.911968000	7.228979000
С	-6.228785000	-2.786436000	6.598853000
0	-3.330834000	-0.565143000	6.511519000
U	-2.410603000	1.285215000	5.749016000
0	-1.201381000	0.618132000	4.062874000
С	-2.100088000	-2.743097000	7.751684000
C	-6 553266000	-5 123857000	7 511986000
C	-4 610590000	-1 378415000	3 349050000
C	-3 499253000	3 396027000	2 179304000
C	4 000512000	4 222214000	2.178594000
C C	-4.899513000	4.332214000	4.579217000
C	-3.662393000	5.208546000	4.623699000
С	-2.430682000	4.742163000	5.11/681000
С	-1.296047000	5.587138000	5.070354000
С	-1.441160000	6.891940000	4.604401000
С	-2.667734000	7.394365000	4.155551000
С	-3.756448000	6.524840000	4.159343000
С	-5.951116000	2.382200000	6.506227000
0	-2.300472000	3.497717000	5.594199000
С	0.050054000	5.049716000	5.464501000
С	-2.801109000	8.819942000	3.687227000
С	1.536621000	1.139429000	3.868310000
C	0 835616000	1 961899000	-1 067951000
0	-1 093404000	1 411757000	7 431175000
	-0 785626000	2 457207000	9 272315000
0	0.100157000	2.437207000	10 751649000
0	-0.189137000	0.9/40/2000	10.751046000
C	0./80081000	0.648901000	11.632336000
C	1.605009000	-0.46181/000	11.351160000
C	2.605584000	-0.806/59000	12.2562//000
С	2.820771000	-0.089636000	13.438019000
С	1.984383000	0.994929000	13.694457000
С	0.965048000	1.383596000	12.817733000
С	1.375621000	-1.252611000	10.094687000
С	3.924327000	-0.473352000	14.389192000
С	0.022891000	2.500195000	13.237058000
С	-0.332646000	3.573522000	12.220256000
С	0.678362000	4.269983000	11.523743000
С	0.327782000	5.152127000	10.476069000
C	-1.035821000	5 325740000	10 122156000
C	-2 049066000	4 767113000	10 949105000
C	-1 691250000	3 920634000	12 021605000
C	2 121050000	1 080071000	11 012504000
	2.1219JUUUU 1 412747000	4.0009/1000 E 041077000	
	1.413/4/000	J. 9412//UUU	9.112014000
	2.510933000	5.186094000	9.043592000
C a	2.324552000	3.902399000	8.502280000
C	3.403235000	3.251435000	7.858881000
С	4.619408000	3.915463000	7.732702000
С	4.821550000	5.205486000	8.237864000

С	3.755726000	5.810185000	8.899133000
С	-1.419264000	6.153288000	8.909975000
С	-3.504654000	5.130691000	10.705187000
С	-4.518006000	4.005963000	10.630800000
С	-4.196445000	2.755692000	10.071243000
С	-5.136500000	1.700003000	10.145722000
С	-6.398906000	1.952261000	10.678979000
С	-6.766768000	3.209353000	11.172140000
C	-5 798136000	4 211260000	11,156848000
C	-2 736225000	3 409621000	12 985559000
0	-3 001733000	2 534921000	9 510431000
C	-4 740086000	0 321353000	9 702385000
C	-8 153162000	3 463267000	11 703763000
0	1 153296000	3 261594000	9 611/03/03000
C	2 221652000	1 947450000	7 250052000
C	5.221055000	I.04/430000	7.330932000
	6.142/4/000	5.908492000	8.063877000
H	-6./384/1000	-5.244376000	8.5865/5000
H	0.959716000	6.660844000	9.08/942000
н	1.895765000	6.364733000	10.000000
H	2.065908000	-2.098266000	10.031847000
н	0.351850000	-1.6395/3000	10.052090000
н	1.511006000	-0.63/992000	9.19/204000
H 	-0.902665000	2.026416000	13.5/3305000
H	0.446///000	2.980332000	14.129967000
Н	2.122172000	1.562706000	14.614162000
Н	3.236865000	-1.665175000	12.031577000
Н	4.913467000	-0.260849000	13.965097000
Н	3.847372000	0.075532000	15.332423000
Н	3.899417000	-1.543348000	14.623846000
Н	-5.587786000	-0.367620000	9.742462000
Н	-3.950116000	-0.084426000	10.346525000
Н	-4.334311000	0.305361000	8.687034000
Н	-3.578775000	5.742107000	9.803439000
Н	-3.810389000	5.802266000	11.520005000
Н	-6.036880000	5.186558000	11.580834000
Н	-7.115134000	1.132941000	10.725092000
Н	-8.174255000	4.330798000	12.370541000
Н	-8.866795000	3.659392000	10.893186000
Н	-8.532912000	2.601989000	12.263404000
Н	3.891625000	6.804812000	9.323509000
Н	3.131073000	1.142662000	8.194903000
Н	4.072505000	1.533179000	6.748218000
Н	5.440352000	3.405491000	7.230600000
Н	6.983459000	5.252962000	8.318445000
Н	6.292511000	6.236778000	7.029664000
Н	6.209309000	6.795958000	8.702412000
Н	-3.534732000	0.807368000	0.839913000
Н	-3.059554000	-0.573877000	1.786501000
Н	1.245296000	1.868816000	4.632383000
Н	2.574108000	1.340262000	3.588411000
Н	-5.475362000	4.481622000	5.495042000
Н	-5.549384000	4.716765000	3.780473000
Н	0.398646000	4.303046000	4.740561000
Н	0.036844000	4.545019000	6.435058000
Н	0.798353000	5.846110000	5.501928000
Н	-0.561389000	7.533489000	4.576014000
Н	-2.866225000	9.518019000	4.531667000
Н	-3.701297000	8.959329000	3.080900000

Н	-1.940693000	9.127099000	3.083236000
Н	-4.716034000	6.875888000	3.780203000
Н	1.690990000	1.334146000	-1.342617000
Н	-1.728844000	1.316650000	-0.394739000
Н	0.078559000	1.851275000	-1.849848000
Н	1.181975000	3.002374000	-1.089202000
Н	2.179063000	1.747357000	1.300185000
Н	1.490507000	0.155056000	4.346725000
Н	2.307831000	1.747634000	6.767199000
Н	-6.731567000	0.076790000	6.423640000
Н	-6.901733000	-0.867224000	4.984741000
Н	-1.452473000	-2.640610000	6.872832000
Н	-1.876499000	-1.889258000	8.399626000
Н	-1.820045000	-3.661283000	8.275316000
Н	-3.910963000	-4.744687000	8.083339000
Н	-7.274216000	-2.791411000	6.290693000
Н	-7.526735000	-5.053916000	7.017560000
Н	-6.069656000	-6.044302000	7.165904000
Н	-4.878031000	-1.506633000	2.295306000
Н	-3.622978000	-1.829209000	3.497100000
Н	-5.309531000	-1.962113000	3.943965000
Н	-2.456493000	3.668253000	2.409125000
Н	-3.487155000	2.966314000	1.170654000
Н	-4.074469000	4.306050000	2.160820000
Н	-5.393489000	3.205497000	6.958227000
Н	-6.975417000	2.738735000	6.340842000
Н	-5.998068000	1.601437000	7.264378000
Н	-2.359983000	3.441675000	14.011908000
Н	-3.642865000	4.011095000	12.948901000
Н	-3.037550000	2.378106000	12.771196000
Н	2.214249000	3.836449000	12.973172000
Н	2.594826000	3.268924000	11.352831000
Н	2.705932000	4.982611000	11.722426000
Н	-0.614124000	6.209055000	8.178878000
Н	-2.277226000	5.730709000	8.381308000
Н	-1.685856000	7.181641000	9.183425000

1.1.7 References

1. B.E.Cowie, G. S. Nichol, J. B. Love and P. L. Arnold, Chem. Commun. 2018, 54, 3839.

2. G. M. Sheldrick, Acta Cryst. 2015, A71, 3.

3. G. M. Sheldrick, Acta Cryst. 2015, C71, 3.

4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, H. Puschmann, *J. Appl. Crystallogr.* 2008, **42**, 339.

5. Gaussian 09, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

6. (a) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648; (b) J. P. Perdew and Y. Wang, *Phys. Rev. B*, 1992, **45**, 13244.

7. (a) W. Küchle, M. Dolg, H. Stoll and H. Preuss, *J. Chem. Phys.*, 1994, **100**, 7535; (b) X. Cao and M. Dolg, *J. Mol. Struct. (Theochem.)*, 2004, **673**, 203; (c) X. Cao, M. Dolg and H. Stoll, *J. Chem. Phys.*, 2003, **118**, 487.

8. (a) W. J. Hehre, R. Ditchfield and J. A. Pople, *J. Chem. Phys.*, 1972, **56**, 2257; (b) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213.

9. (a) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899. (b) F. Weinhold, In The Encyclopedia of Computational Chemistry (Eds.: Schleyer, P. v. R.), John Wiley & Sons, Chichester, pp 1792, 1998.