Electronic Supporting Information

Mechanochemically assisted hydrolysis in the ADOR process

Daniel N. Rainer^a, Cameron M. Rice^a, Stewart, J. Warrender,^a Sharon E. Ashbrook^a and Russell E. Morris^{a,b,*}

^aSchool of Chemistry, EaStCHEM, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK.

^bDepartment of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.

Figure S1: ¹ H NMR of the OSDA (6R,10S)-6,10-dimethyl-5-azoniaspiro[4.5]decane bromide	_2
Figure S2: ¹³ C NMR of the OSDA (6R,10S)-6,10-dimethyl-5-azoniaspiro[4.5]decane bromide	_2
Figure S3: PXRD patterns of as made materials produced from ball milling UTL in varying concentrations of	
hydrochloric acid	_3
Figure S4: PXRD patterns of reassembled materials produced from ball milling UTL in varying concentrations	of
hydrochloric acid	_3
Figure 5: PXRD patterns of as made materials produced from ball milling UTL in 9 M hydrochloric acid for	
different times	_4
Figure 6: PXRD patterns of reassembled materials produced from ball milling UTL in 9 M hydrochloric acid for	•
different times	_4
Figure S7: PXRD patterns of as made materials produced from ball milling UTL in 12 M hydrochloric acid for	
different times	_5
Figure S8: PXRD patterns of reassembled materials produced from ball milling UTL in 12 M hydrochloric acid j	for
different times	_5
Figure S9: PXRD patterns of as made materials produced from ball milling UTL with different volumes of wate	er.
	_6
Figure S10: PXRD patterns of reassembled materials produced from ball milling UTL with different volumes of	F
water	_6
Figure S11: SEM images of various ball milled and reassembled samples	_7
Figure S12: TEM images with FFT inserts.	_8
Figure 13: ²⁹ Si (9.4 T, 14 kHz) MAS NMR spectrum of calcined UTL, ball milled in 40% H ₂ ¹⁷ O for 30 minutes and	d
dehydrated under vacuum at 120 $^{\circ}$ overnight	_9

Figure S1: ¹H NMR of the OSDA (6R,10S)-6,10-dimethyl-5-azoniaspiro[4.5]decane bromide.

¹H NMR (400 MHz, Chloroform-d) δ 4.46–4.35 (m, 2H, NC<u>H</u>), 4.09–4.01 (m, 2H, NC<u>H</u>₂), 3.37–3.29 (m, 2H, NC<u>H</u>₂), 2.17–2.04 (m, 4H, NCH₂C<u>H</u>₂), 1.94–1.56 (m, 6H, C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂CHN), 1.40 (d, J = 6.5 Hz, 6H, C<u>H</u>₃).

Figure S2: ¹³*C NMR of the OSDA (6R,10S)-6,10-dimethyl-5-azoniaspiro*[4.5]*decane bromide.*

¹³C NMR (126 MHz, Chloroform-*d*) δ 70.28, 63.53, 49.07, 30.43, 26.96, 25.78, 21.97, 17.54.

Figure S3: PXRD patterns of as made materials produced from ball milling UTL in varying concentrations of hydrochloric acid.

Figure S4: PXRD patterns of reassembled materials produced from ball milling UTL in varying concentrations of hydrochloric acid.

Figure 5: PXRD patterns of as made materials produced from ball milling UTL in 9 M hydrochloric acid for different times.

Figure 6: PXRD patterns of reassembled materials produced from ball milling UTL in 9 M hydrochloric acid for different times.

Figure S7: PXRD patterns of as made materials produced from ball milling UTL in 12 M hydrochloric acid for different times.

Figure S8: PXRD patterns of reassembled materials produced from ball milling UTL in 12 M hydrochloric acid for different times.

Figure S9: PXRD patterns of as made materials produced from ball milling UTL with different volumes of water.

Figure S10: PXRD patterns of reassembled materials produced from ball milling UTL with different volumes of water.

a) 25 ml water; b) 5 ml water; c) 0.1 ml water; d) 6 M HCl; e) 9 M HCl; f) 12 M HCl.

Figure S12: TEM images with FFT inserts.

a) 12 M, crystal of a minor IPC-6 phase (d-spacing 10.1 Å); b) 12 M, two overlapping crystals; c) 9 M, lattice fringes corresponding to IPC-2 (d-spacing 11.3 Å); d) 9 M, view along the [101] direction; e) 0.1 ml water, lattice fringes corresponding to IPC-2 (d-spacing 11.2 Å); f) 0.1 ml water, showing a GeO2 nanoparticle impurity.

Figure 13: ²⁹Si (9.4 T, 14 kHz) MAS NMR spectrum of calcined UTL, ball milled in 40% $H_2^{17}O$ for 30 minutes and dehydrated under vacuum at 120 \degree overnight.