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Model architecture for varying fingerprint size

Table 1 displays the neural network architecture for each Neuraldecipher model. We

applied at least 3 hidden layers and no dropout regularization throughout all of ours

experiments. We tested dropout regularization with varying settings1, but found that

using dropout leads to inferior performance on the validation set, compared to models

without dropout regularization. For hyperparamter tuning, we used the asynchronous

Hyperband implementation of the open-source python library tune.1 Figure 1 shows our

selected logarithmic cosine-hyperbolid loss function (see Equation 1) and the standard

L2-loss.
1E.g., constant dropout probability of 0.1 for all hidden layers, applying dropout on further hidden

layers as the input ECFP is sparse and dropping hidden units in the beginning might degrade the
performance much, or exponentially decaying the dropout probability up 0.
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Table 1: Architecture for each Neuraldecipher model. Each hidden layer consists of the
composition of three operations, namely affine linear transformation, batch-normalization
followed by ReLU activation. Each integer within the hidden layers bracket, indicates
the number of hidden neurons in the hidden layer. The output layer consists of 512
neurons and is activated with Tanh. The last column (elapsed time) states the average
duration of one forward pass of 1M compounds through the network for 10 forward
passes.

ECFP input-size Hidden layers Output-size Elapsed time [s]

1024 [1024, 768, 512] 512 5.46
2048 [1024, 768, 768] 512 7.39
4096 [2048, 1024, 768, 512] 512 10.61
8192 [4096, 2048, 1024, 512] 512 22.68
16384 [8192, 4096, 2048, 1024] 512 52.58
32768 [8192, 4096, 2048, 1024] 512 101.11
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Figure 1: The logarithmic cosine-hyperbolic function and the classical L2 loss function
for regression. The first loss function penalizes stronger for |d| ≥ 0.25.

l(d) = log

(
exp(d) + exp(−d)

2

)
, where d = cdddtrue − cdddpredicted. (1)
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Degeneracy analysis for ECFP6 settings

The number of non-unique ECFPs for the processed dataset for training depends on the

set bond diameter d. For the ECFP6, i.e. generated with bond diameter d = 6 with

increasing fingerprint length k, we computed the number of non-unique ECFP samples

for the bit- and count vectors. The results are shown in Table 2. Given fixed bond

Table 2: Number of non-unique samples within each ECFP6 dataset. As the bond
diameter d is always the same with d = 6, the unfolded ECFPs are in all cases the same,
and when folded into the fixed-vector length still remain "unique". The bond diameter
is the decisive factor for a high number of degeneracy.

ECFP setting # Non-unique Bit-ECFP # Non-unique Count-ECFP

ECFP6,1024 4569 232
ECFP6,2048 4494 232
ECFP6,4096 4481 232
ECFP6,8192 4454 232
ECFP6,16384 4454 232
ECFP6,32768 4445 232

diameter d, the number of non-unique samples does face large changes with increasing

fingerprint length k. However, folding the ECFPs into smaller fingerprint sizes leads to

more information loss, as explained in Section in detail.
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Validity on reconstructed SMILES in all experiments

Table 3: Validity [%] of reconstructed SMILES representation for the validation- (112, 322
unique samples), internal- (478, 536 unique samples) and temporal set (55, 701 unique
samples) for the models trained on cluster and random split. In general, the validity of
reconstructed SMILES is almost perfect with approximately 98− 99%.

ECFP-Count ECFP-Bit
ECFP Cluster split Random split Cluster split Random split

Valid Inter Temp Valid Inter Temp Valid Inter Temp Valid Inter Temp

ECFP6,1024 98.81 97.32 97.09 98.13 97.27 97.06 98.27 96.98 96.91 97.66 96.62 96.38
ECFP6,2048 98.99 97.44 97.21 98.36 97.24 97.03 98.58 97.02 96.88 98.11 97.05 96.93
ECFP4,4096 99.11 97.79 97.70 99.01 97.60 97.39 98.85 97.23 97.10 98.79 97.28 97.09
ECFP6,4096 99.05 97.53 97.16 98.89 97.40 97.14 98.75 97.03 96.84 98.55 97.06 96.88
ECFP8,4096 98.98 97.28 97.01 98.74 97.28 97.10 98.68 97.08 96.92 98.44 97.08 96.83
ECFP10,4096 98.89 97.16 96.95 98.64 97.19 97.02 98.64 96.83 96.74 98.39 97.00 96.79
ECFP6,8192 99.31 97.93 97.76 99.31 97.98 97.79 99.19 97.76 97.82 99.12 97.73 97.62
ECFP6,16384 99.45 98.33 98.17 99.41 98.12 98.06 99.38 98.15 97.96 99.41 98.17 98.09
ECFP6,32768 99.55 98.39 98.23 99.51 98.33 98.26 99.38 98.19 98.12 99.42 98.17 98.12

Analysis CDDD-space vs. ECFP-space
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Figure 2: Dependency between Euclidean (L2) distance and (1 – Tanimoto similarity)
as well as Cosine similarity and Tanimoto similarity.

The ECFP6,4096-count cluster-split model reports a reconstruction accuracy of 41.02%

and mean Tanimoto similarity of 72.58% on the validation dataset (112, 332 samples). To

illustrate the dependency between CDDD- and ECFP-space for the predicted deduced

molecular structures, we computed the Euclidean distance and the Cosine similarity

between predicted and true from the validation set. The dependency between Cosine

similarity and Euclidean distance against Tanimoto similarity is shown in Figure 2. Since
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we formulated the reverse-engineering task as machine learning problem of predicting a

close sample, if not the correct sample, during training we aim to obtain a model fθ, that

minimizes the empirical loss function on the training set. Since the empirical loss function

contains the deviance d, see Equation (1), the Euclidean distance is implicitly minimized

as well. Figure 2a displays the positive correlation (pearson correlation coefficient of

0.7295) between L2-distance and (1−Tanimoto similarity). As the Euclidean distance

increases, the (1−Tanimoto similarity) increases. Interpreting the Euclidean distance

and its magnitude in a high-dimensional space is difficult and not straightforward. The

Cosine similarity benefits from its property being bounded within −1 and 1. Figure 2b

shows the positive correlation (pearson correlation coefficient of 0.6970) between Cosine

similarity and Tanimoto similarity. The red lines in Figure 2a and 2b display the linear

functions, when regressing the y-axis on the x-axis, indicating the positive trend as well

for both plots.

Analysis of hash collision

The classical ECFP is an unfolded fingerprint with no pre-defined size and its length

depends on the input molecular structure. Since the ECFP algorithm iteratively uses

a hash function that maps a list of atom environments (represented as integers) to a

new atom environment i ∈ 232 and concatenates the result with the earlier list, the

components of the final fingerprint can be large integers due to the target space of the

hash function. To obtain folded binary or count-vectors from the unfolded fingerprint, the

integer entries act as identifier for presence/counts and non-presence in the corresponding

binary/count fingerprint. For example, consider a structure where the ECFP algorithm

returns an unfolded fingerprint [10, 10, 80, 999, 999999]. This leads to an unfolded binary

ECFP of length 99999, where the entries {10, 80, 999, 999999} are populated with 1

and 0 elsewhere. The unfolded count fingerprint would have the component-value of

2 for the 10-th position, 1 in position {80, 999, 999999} and 0 elsewhere. Now the

“unfolded” binary/count-fingerprints are still variable in length, namely determined by
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the maximum value of the unfolded ECFP, i.e. in the earlier example 999999. Since

machine learning algorithms mostly require a fixed length feature input, the unfolded

binary/count fingerprints are folded into fixed length k. The folding operation is usually

applied with the modulo operation, by modulo-diving the "on"-positions/keys with k.

Applying that, the folded bit/count fingerprint has length k. Assume we set k = 10 such

that our bit/count fingerprints have fixed length of 10. Since the unfolded fingerprint is

[10, 10, 80, 999, 999999], indicating i-th’s entries being "on", we now obtain the entries

[0, 0, 0, 9, 9, 9] being "on". For the binary ECFP this would mean that entries {0, 9}

are populated with 1 and 0 elsewhere. The count ECFP would be populated with the

entry 3 in the components {0, 9}. Folding the fingerprint has led to a fixed fingerprint

where only 2 unique keys {0, 9} are on, whereas the original unfolded fingerprint had 4

unique keys {10, 80, 999, 9999}. Therefore, some information is lost. Here, we define the

collision degree c as the difference of the number original unique keys and number of

new unique keys, i.e. c = 4− 2 = 2. Note that a collision degree of c = 0 means, that

no information is lost after folding ECFP. Increasing k reduces the chance of collision

and therefore the information loss.

For our ECFP6 configurations, we computed the unfolded ECFP6 vectors for all

compounds in our processed dataset, obtained the number of unique keys and subtracted

these values with the number of unique keys for the folded ECFP6 vectors. Figure 3a

shows the results for increasing size k. As the fingerprint size k increases, the collision

degree of larger than 1 decreases (or in other words, the collision degree of c = 0

increases).

Since our studies also include the analyses on the Neuraldecipher performance on a

fixed fingerprint length k = 4096 but varying bond diameter d ∈ {4, 6, 8, 10}, we also

computed the collision degrees for each of the five ECFP datasets with varying bond

diameters. The results are shown in Figure 3b.

Figure 3a illustrates that the collision degree of c = 0, i.e. no information loss due to the

folding operation, is highest for the ECFP6 that was folded into length 32768, followed
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Figure 3: Hash collision analysis for varying fingerprint length k and bond diameter d.

by 16384. The larger the fingerprint size, the smaller the average collision degree µc is

for each setting. A higher average collision degree µc corresponds to more information

loss.

When fixing the fingerprint length to k = 4096 and increasing the bond diameter d, we

observe that the information loss also increases (see increasing average mean collision

µc for increasing bond diamter d in Figure 3b). Since the unfolded ECFPd′ with higher

bond diameter d′ > d is a superset of the unfolded ECFPd, the number of unique keys

for the ECFPd′ has at least the value of the number of unique keys for the ECFPd.

Since the two ECFPs are folded onto the same fixed length of k = 4096, it is natural

that the ECFP with higher bond diameter suffers from more information loss. This

information loss is shown in the higher number of counts for collisions degrees larger

than 1, i.e. counts for c ≥ 1.
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Comparison Neuraldecipher trained on ECFP6,4096-count

vectors random split
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Figure 4: Comparison between the Neuraldecipher and Baseline model wrt. the Tanimoto
similarity when trained on random split.
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Figure 5: Histogram plot for the Tanimoto similarity between true SMILES representa-
tions and retrieved SMILES representation from the average training (blue), baseline
model (red) and our reconstruction (green) on the validation set (112K samples) from
the random split.
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