Electronic supplementary information for:

Guowei Zhang[†], Ning Xue[†], Wen Gu[‡], Xingzhou Yang[§], Aifeng Lv[‡], Yonghao Zheng[§], and Lei Zhang[†]*

[†] Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

[‡] College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P. R. China

[§] School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China

Table of contents

1.	Materials and methods	
2.	Synthesis and characterization of compounds	S2
3.	CV and UV spectra of compounds	S4
4.	X-ray crystallographic data for 2a, 5a and 5b	
5.	Computational study	S6
6.	Photo-induced dissociation of the dimer	
7.	Surface areas and porosities of compound 5a	S10
8.	OFET fabrication and characterization	S11
9.	References	S14
10.	¹ H NMR, ¹³ C NMR and HRMS spectra of compounds	
11.	Supplementary data of DFT calculations	

1. Materials and methods

Unless otherwise noted, all materials were purchased from commercial suppliers. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer, usually in CDCl₃ with TMS as an internal standard, and the chemical shifts (δ) were reported in parts per million (ppm). High resolution mass spectra (HRMS) measurements were carried out on Ion Spec 9.4 Tesla Fourier Transform Mass Spectrometer.

2. Synthesis and characterization of compounds

Compound 12^[1], 11^[2], 7a^[2] and tetrabrominated NDI^[3]were synthesized according the literatures. Compound 10

To a flame-dried flask was added **12** (1.00 g, 2.98 mmol), **11** (0.97 g, 2.98 mmol), and sodium iodide (3.00 g, 20.27 mmol) in anhydrous DMF (40 mL). The mixture was stirred at 110 °C for 48 hours. The mixture was cooled to room temperature and acetone (20 mL) was added. The mixture was then filtered and the crude solid was washed by water and acetone to afford yellow solid (1.01 g, yield: 70%). ¹H NMR (400 MHz, CDCl₃) δ 9.10 (s, 2H), 8.63 (s, 2H). The ¹³C NMR spectra cannot be obtained due to the low solubility in common organic solvents. HR-MALDI-TOF (m/z):

calcd. for $C_{18}H_4Br_2F_4O_2$: 485.8510, found 485.8520.

Compound 9

To a solution of triisopropylsilylacetylene (1 mL, 4.83 mmol) in dry Et₂O (28 mL), 1.24 mL of 2.5 M *n*-BuLi (2.99 mmol) was added dropwise at 0 °C under nitrogen. The solution was stirred at 0 °C for 1 h before the addition of compound **10** (0.35 g, 0.72 mmol) with THF (28 mL). The mixture was warmed to room temperature and stirred overnight. A solution of SnCl₂·2H₂O (5 g) in 10% HCl (28 mL) was added to the solution at room temperature and poured into water (100 mL), extracted with dichloromethane and dried over Na₂SO₄. The crude product was purified by silica chromatographic column (eluent: hexane) to provide a red solid **9** (0.51 g, 87%). ¹H NMR (400 MHz, CDCl₃) δ 9.48 (s, 2H), 8.96 (s, 2H), 1.31 – 1.29 (m, 42H). ¹³C NMR (101 MHz, CDCl₃) δ 131.28, 130.89, 129.21, 123.76, 119.36, 118.64, 117.46, 107.81, 17.79, 10.47. HR-MALDI-TOF

(m/z): calcd. for $C_{40}H_{46}Br_2F_4Si_2$: 816.1441, found 816.1451.

Compound 8

A mixture of tris(dibenzylideneacetone)dipalladium(0) (67.5 mg, 0.07 mmol), *rac*-BINAP (91.5 mg, 0.14 mmol), and anhydrous toluene (12 mL) was stirred at 110 °C for 0.5 h under nitrogen atmosphere. The mixture was cooled to room temperature and added with benzophenone imine (0.34 mL, 1.83 mmol), sodium *tert*-butoxide (0.18 g, 1.83 mmol), and **9** (0.5 g, 0.61 mmol). The mixture was stirred at 110 °C overnight and toluene was evaporated. The crude product was purified by silica gel column to afford a dark red solid (315 mg, 52%). ¹H NMR (400 MHz, $C_2D_4Cl_2$) δ 9.22 (s, 2H), 7.78 – 7.59 (m, 4H), 7.38 (s, 2H), 7.37 – 7.20 (m, 16H), 1.16 – 1.14 (m, 42H). ¹³C NMR (101 MHz, $C_2D_4Cl_2$) δ 168.02, 147.22, 131.61, 129.16, 128.74, 127.82, 118.89, 118.17, 116.32, 112.53, 105.80, 102.67, 18.60, 11.13. HR-MALDI-TOF (m/z): calcd. for $C_{64}H_{66}F_4N_2Si_2$: 1018.4677, found 1018.4713 (M+H+Na).

Compound 7b

1 mL 37% hydrochloric acid was added to a solution of **8** (100 mg, 0.1 mmol) in THF (10 mL). The mixture was stirred for 5 h at room temperature and THF was evaporated. The dark purple solid was washed with hexane and used in the next step without further purification (68 mg, 80%). The ¹H NMR and ¹³C NMR spectra cannot be obtained due to the low stability.

General Procedure for the Synthesis of 1a and 1b

A mixture of compound tetrabrominated NDI (0.4 mmol), sodium *tert*-butoxide (1.3 mmol), and a corresponding **7a** or **7b** (0.48 mmol) in toluene (40 mL) was heated at 70 °C for 3 h under nitrogen atmosphere. The reaction mixture was cooled to room temperature, poured into methanol (100 mL), and stirred for 0.5 h. After filtration, the crude product was purified by silica gel column (DCM/PE = 1/1 to 1/0, v/v) to afford the corresponding desired product.

1a: a dark blue solid (358 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 13.39 (s, 2H), 8.97 (s, 2H), 7.96 (s, 2H), 7.82 (dd, J = 6.9, 3.7 Hz, 2H), 7.40 (dd, J = 6.9, 3.7 Hz, 2H), 4.25 (t, J = 7.2 Hz, 4H), 1.82 – 1.70 (m, 4H), 1.40 – 1.30 (m, 62H), 0.90 (t, J = 6.8 Hz, 6H). ¹³C NMR spectra cannot be obtained due to poor solubility in organic solvents. HR-MALDI-TOF (m/z): calcd. for C₇₀H₈₆Br₂N₄O₄Si₂: 1260.4559, found 1260.4558.

1b: a dark blue solid (424 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 13.47 (s, 2H), 9.28 (s, 2H), 7.99 (s, 2H), 4.24 (t, J = 8.0 Hz, 4H), 1.85 – 1.67 (m, 4H), 1.48 – 1.18 (m, 62H), 0.90 (t, J = 7.2 Hz, 6H). ¹³C NMR spectra cannot be obtained due to the poor solubility in organic solvents. HR-MALDI-TOF (m/z): calcd. for C₇₀H₈₂Br₂F₄N₄O₄Si₂: 1332.4183, found 1332.4180.

General Procedure for the Synthesis of 2a and 2b

A mixture of corresponding **1a** or **1b** (0.25 mmol), isopropanol (262 mmol), and sodium *tert*butoxide (4.4 mmol) in toluene (50 mL) was heated at 90 °C under nitrogen atmosphere. The reaction was quenched when the starting compound completely disappeared (TLC monitoring). The reaction mixture was diluted with dichloromethane (DCM, 50 mL) and washed with water (50 mL \times 3). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvents were removed in vacuo and crude product was purified by column chromatography (DCM/PE=1/1, v/v) to afford the corresponding desired product.

2a: a dark blue solid (126 mg, 46%). ¹H NMR (400 MHz, CDCl₃), δ 12.85 (s, 2H), 8.99 (s, 2H), 8.20 (s, 2H), 7.95 (s, 2H), 7.89 (dd, *J* = 6.4, 3.2 Hz, 2H), 7.41 (dd, *J* = 6.4, 3.2 Hz, 2H), 4.24 (t, *J* = 8.0 Hz, 4H), 1.76 – 1.70 (m, 4H), 1.37 – 1.36 (m, 42H), 1.28 – 1.22 (m, 20H), 0.88 (t, *J* = 6.5 Hz, 6H). ¹³C NMR (101MHz, CDCl₃), δ 164.53, 161.63, 137.73, 131.01, 130.47, 128.88, 127.09,

124.82, 124.36, 122.80, 121.79, 115.40, 108.76, 105.14, 102.70, 97.24, 39.23, 30.82, 28.25, 26.92, 26.12, 21.65, 17.99, 13.09, 10.74. HR-MALDI-TOF (m/z): calcd. for $C_{70}H_{88}N_4O_4Si_2$: 1104.6349, found 1104.6348.

2b: a dark blue solid (112 mg, 38%). ¹H NMR (400 MHz, CDCl₃), δ 12.68 (s, 2H), 9.13 (s, 2H), 8.21 (s, 2H), 7.77 (s, 2H), 4.21 (t, J = 7.2 Hz, 4H), 1.78 – 1.64 (m, 4H), 1.37 – 1.35 (m, 42H), 1.28 – 1.25 (m, 20H), 0.83 (t, J = 6.5 Hz, 6H). ¹³C NMR (101MHz, CDCl₃), δ 164.66, 161.56, 137.65, 131.35, 129.05, 127.86, 125.25, 122.85, 122.11, 118.03, 115.69, 108.55, 106.52, 101.71, 97.74, 30.82, 28.45, 26.90, 26.10, 21.64, 17.90, 13.09, 10.63. HR-MALDI-TOF (m/z): calcd. for C₇₀H₈₄F₄N₄O₄Si₂: 1176.5972, found 1176.5976.

General Procedure for the synthesis of dimers

A corresponding 1 or 2 (0.08 mmol) and MnO_2 (68 mmol) were stirred in 10 mL CHCl₃ at room temperature for 10 min. After filtration, the crude material was purified by flash chromatography (DCM/PE = 1:1, v/v) as eluent to give the corresponding desired product.

5a: a yellow solid (92 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 8.84 (s, 4H), 7.81 (dd, J = 6.4, 3.3 Hz, 4H), 7.41 (dd, J = 6.6, 3.1 Hz, 4H), 6.57 (s, 4H), 4.34 – 4.08 (m, 8H), 1.88 – 1.71 (m, 8H), 1.50 – 1.25 (m, 124H), 0.95 – 0.91 (m, 12H).¹³C NMR (101MHz, CDCl₃), δ 161.35, 159.25, 158.56, 139.32, 136.14, 135.66, 132.08, 129.79, 128.15, 126.33, 121.28, 105.73, 102.11, 52.03, 46.00, 36.35, 31.88, 29.65, 29.32, 26.48, 22.65, 19.25, 14.10, 11.75. HR-MALDI-TOF (m/z): calcd. for C₁₄₀H₁₆₈Br₄N₈O₈Si₄: 2516.8806, found 1258.4418.

5b: a reddish yellow solid (89 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 4H), 6.57 (s, 2H), 4.31 – 4.09 (m, 8H), 1.89 – 1.72 (m, 8H), 1.51 – 1.17(m, 124H), 0.95 – 0.90 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 161.30, 158.50, 139.04, 137.66, 136.03, 130.32, 126.34, 121.37, 107.51, 101.01, 51.91, 46.06, 36.33, 31.89, 30.71, 29.32, 26.48, 24.60, 22.21, 19.14, 14.07, 11.65. HR-MALDI-TOF (m/z): calcd. for C₁₄₀H₁₆₀Br₄F₈N₈O₈Si₄: 2660.8052, found 1330.4037.

6a: a yellow solid (77 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 4H), 8.70 (s, 4H), 7.78 (dd, J = 6.4, 3.2 Hz, 4H), 7.37 (dd, J = 6.6, 3.1 Hz, 4H), 6.59 (s, 2H), 4.30 – 4.02 (m, 8H), 1.82 – 1.70 (m, 8H), 1.51 – 1.43 (m, 84H), 1.35 – 1.30 (m, 40H), 0.90 (t, J = 6.5 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 162.88, 159.33, 158.89, 139.70, 136.62, 132.07, 131.62, 129.88, 128.14, 127.60, 125.68, 121.39, 105.62, 102.17, 52.12, 45.25, 36.35, 31.89, 29.64, 26.58, 22.67, 19.29, 14.09, 11.78. HR-MALDI-TOF (m/z): calcd. for C₁₄₀H₁₇₂N₈O₈Si₄: 2205.2386, found 1102.6194.

6b: a reddish yellow (76 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 9.05 (s, 4H), 8.74 (s, 4H), 6.59 (s, 4H), 4.21 – 4.14 (m, 8H), 1.78 – 1.71 (m, 8H), 1.45 – 1.39 (m, 124H), 0.90 (t, *J* = 6.5 Hz, 12H). ¹³C NMR (400 MHz,) δ 162.28, 158.92, 158.34, 139.40, 138.17, 131.69, 130.42, 126.94, 123.09, 121.66, 121.27, 119.84, 119.39, 105.23, 101.33, 101.07, 51.98, 41.14, 31.90, 29.37, 28.10, 22.67, 19.11, 14.12, 11.69. HR-MALDI-TOF (m/z): calcd. for C₁₄₀H₁₆₄F₈N₈O₈Si₄: 2349.1632, found 1174.5821.

3. CV and UV spectra of compounds

Cyclic voltammetry (CV) was recorded on a CHI620E electrochemical work station using glassy carbon discs as the working electrode, Pt wire as the counter electrode, and Ag/Ag⁺ electrode as the reference electrode. The experiments were performed in nitrogen-purged DCM with tetrabutylammonium hexafluorophosphate (TBAPF₆, 0.1 M) as the supporting electrolyte with a scan of 100 mV/s. UV-vis absorption spectra were measured with Hitachi (model U-3010) UV-Vis spectrophotometer (chloroform solution, ~10⁻⁵ M).

Figure S1. UV/Vis absorption of 5a, 5b, 6a, 6b, TIPS-Anthra and TIPS-F-Anthra in chloroform ($\sim 10^{-5}$ M).

4. X-ray crystallographic data of 2a, 5a and 5b

The measurement was made with Synchrotron Radiation ($\lambda = 0.82653$ Å). All calculations were performed using the SHELXL-97 and the crystal structure crystallographic software package. **Table S1**. Crystal data and structure refinement for **2a**, **5a** and **5b**.

		,	
Identification code	2a	5a	5b
Empirical formula	$C_{70}H_{88}N_4O_4Si_2$	$C_{140}H_{168}Br_4N_8O_8Si_4$	$C_{140}H_{160}Br_4F_8N_8O_8Si_4$
Formula weight	1104.63	2516.88	2660.80
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	P-1	P-1	C2/c
Radiation type	CuK\a	CuK∖a	CuK\a
Radiation wavelength(Å)	1.54184	1.54184	1.54178
T(K)	223.15	169.99(13)	169.99(13)
a(Å)	12.4231(4)	18.8621(3)	26.370(2)
b(Å)	13.9327(5)	25.0420(3)	26.4347(10)
c(Å)	21.1782(7)	34.0452(6)	24.2245(19)
α(deg)	96.811(3)	74.2830(3)	90
β(deg)	101.236(3)	77.959(2)	120.504(8)
γ(deg)	108.670(3)	68.381(2)	90
V(Å ³)	3341.0(2)	14284.1(4)	14549(2)
Z	2	4	4
$ ho_{ m calc}~(m g~ m cm^{-3})$	1.145	1.259	1.302
θ, range(°)	1.573-27.484	4.238-151.442	5.128-155.69
R(int)	3.47%	5.61%	8.63%
μ(mm ⁻¹)	0.104	2.152	2.222
F(000)	1242	5696	5952

Crystal size (mm ³)	0.463 ×0.439× 0.035	$0.04 \times 0.04 \times 0.02$	$0.32 \times 0.15 \times 0.1$		
Index ranges	$-16 \le h \le 6$,	$-22 \le h \le 23,$	$-32 \le h \le 32$,		
	$-18 \le k \le 18,$	$-28 \le k \le 31,$	$-33 \le k \le 31,$		
	$-27 \le l \le 27$	$-39 \le l \le 42$	$-30 \le l \le 27$		
Reflections collected	43305	56672	83208		
Independent reflections	15290	56672	14763		
Absorption correction	Semi-empirical from equivalents				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	15290 / 489 / 918	14763/504/851			
Goodness-of-fit on F ²	1.026	1.945	2.092		
Final R indices	R1 = 0.0818,	R1 = 0.1103,	R1 = 0.1345,		
[I>2sigma(I)]	wR2 = 0.2200	wR2 = 0.2929	wR2 = 0.3470		
R indices (all data)	R1 = 0.1201, R1 = 0.1389, R1 = 0.1				
	wR2 = 0.2446	wR2 = 0.3159	wR2 = 0.3635		
Largest diff. peak and hole	0.997 and -0.514	2.61 and -1.36	0.99 and -0.83		
(e.Å ⁻³)					

5. Computational study

The density functional theory (DFT) calculations were performed with the Gaussian 09 Rev. E.01 employing the B3LYP/6-31g(d,p) level. Considering the alkyl chains on the imide positions and triisopropylsilane on the acetylene positions have negligible effect on the final structural and electronic properties of these compounds, we chose methyl substituents instead of octyl on the imide positions and hydrogen substituents instead of triisopropylsilane on the acetylene positions for better view of their structures. The dimerization mechanism has been computationally analyzed by using the density functional theory within the M06-2X functional, and, since the studied systems are quite large, the economical basis set 6-31G(d) was used (denoted as M06-2X/6-31G(d)). Frequency calculations were performed at the M06-2X/6-31G(d) level for all stationary points to differentiate them as minima or saddle points. The energies reported in this paper are at the M06-2X/6-31G(d) level of theory unless otherwise stated. Where frequency calculations were performed, unscaled zero-point vibrational energies (ZPVE) at M06-2X/6-31G(d) were added to the calculated relative energies. Time-dependent DFT (TD-DFT) calculations were performed at the $(U)\omega B97XD/6-311G(d,p)$ level of theory under vacuum. Natural orbital occupation number (NOON)) calculations were done by spin unrestricted UCAM-B3LYP/6-31G(d,p) method based and the diradical character (y_0) was calculated according to Yamaguchi's scheme: $y_0 = 1 - (2T/(1+T^2))$, and T = (nHOMO - nLUMO)/2 (nHOMO is the occupation number of the HOMO, *n*LUMO is the occupation number of the LUMO).

Figure S2. Calculated HOMO and LUMO of 5a, 5b, 6a and 6b at B3LYP/6-31g(d) level.

Figure S3. Calculated dipoles of compounds.

Name		(U)M06-2X/6-31G(d)					
	E (Hartrees)	E (Hartrees) ZPVE(Hartrees)					
4a	-1977.978736	-1977.511553	-1977.578688				
Complex	-3956.028327	-3955.091365	-3955.192331				
T1	-3955.978825	-3955.057637	-3955.143809				
M1	-3956.070230	-3955.115308	-3955.217983				
Τ2	-3956.068667	-3955.105618	-3955.212557				
M2	-3956.060580	-3955.118047	-3955.222142				
Т3	-3956.060442	-3955.115621	-3955.218462				
Dimer	-3956.051013	-3955.126853	-3955.227543				

Table S2. Calculated absolute energies (E) and Gibbs free energies (G) at 298 K in Hartrees and zeropoint vibrational energies (ZPVE) in kcal/mol of the transition states, local minima, and products at (U)M06-2X/6-31G(d).

Figure S4. Calculated stick spectrum (U ω B97XD/6-311G(d,p)) of 3b along with the experimental spectrum of 5b after 15s of irradiation.

Figure S5. Computational absorption spectrum obtained from TD-ωB97XD/6-31G(d) of Compound **5a**, **5b**, **6a** and **6b**.

6. Photo-induced dissociation of the dimer

In order to prove the presence of intermediates, we used ¹H NMR and UV-Vis absorption spectra to detected the photodegradation process of **5b** under nitrogen atmosphere. Toluene was refluxed over sodium, and freshly distilled prior to use. In order to find the source of hydrogen in the photo-induced dissociation process of the dimer, we used toluene- d_8 and D₂O (10/1, v/v) as solvents to detect the photolysis process. The NMR tube needs to be constantly shaken during the irradiation so that the D₂O can be dissolved in toluene- d_8 .

Figure S6. Photodissociation of 0.02 mM **5b** in degassed toluene at ambient temperature (A) and possible photo-induced dissociation mechanism of the dimer (B).

Figure S7. ¹H NMR spectrum of **5b** in toluene- d_8 (~2 mM) with the increase of the irradiation time under nitrogen atmosphere.

Figure S8. ¹H NMR spectrums of **5b** in toluene- d_8 and D₂O after 8 hours of irradiation (red) and in toluene- d_8 after 4 hours of irradiation (blue) under nitrogen atmosphere.

Figure S9. ESR spectrum of **5b** in degassed toluene after 10 min of irradiation at room temperature (A) and calculated spin density maps of the singlet diradicals of **3b** (B).

7. Surface areas and porosities of compound 5a.

The surface areas and porosities of **5a** was characterized by nitrogen adsorption and desorption analysis at 77.35 K with an auto-sorb computer-controlled surface analyzer (Micromeritics, ASAP 2460). The sample was degassed at 100 °C (8h) before analyzed.

Figure S10. BET-plot of compound 5a.

8. OFET fabrication and characterization

Thin-film devices fabrication: The SiO₂/Si wafers were cleaned with deionized water, piranha solution(H₂SO₄/H₂O₂=7:3), deionized water, isopropyl alcohol, and finally were blown with high purity nitrogen gas. Treatment of the SiO₂/Si wafers with 12-cyclohexyldodecylphosphonic acid (CDPA). Al(NO₃)₃·9H₂O (0.0375 g) was dissolved in ethanol (1 mL) and stirred for 4 hours under a nitrogen atmosphere, resulting a concentration of Al(NO₃)₃ in ethanol (37.5 mg/mL), which was spin-coated onto the cleaned SiO₂/Si substrate at 5000 rpm for 40 seconds. Then, the substrate was baked at 300 °C for half an hour to dehydrate the substrate completely. The bottom-gate top-contact (BGTC) devices based on thin film were fabricated with the "shadow mask" method. Firstly, films of the semiconductors were spin-coated from toluene solution (10 mg/mL, 4000 r/min) onto AlOx/SiO₂/Si substrate modified with CDPA. Secondly, silver, as the source/drain electrodes with width/length of 1000/105, were thermal evaporated (0.1 Å/s, 50 nm) on the semiconductor films through a shadow mask.

Single-crystal devices fabrication: The SiO₂/Si wafers were cleaned with deionized water, piranha solution ($H_2SO_4/H_2O_2=7:3$), deionized water, isopropyl alcohol, and finally were blown with high purity nitrogen gas. Treatment of the SiO₂/Si wafers with octadecyltrichlorosilane (OTS) was conducted by the vapor-deposition method. The clean wafers were dried under vacuum at 90 °C for 2 h to eliminate the moisture. When the temperature is decreased to room temperature, a small drop of OTS was dropped onto the wafers. Subsequently, this system was heated to 120 °C for 2 h under vacuum, after which the vacuum is maintained at approximately room temperature. The bottom-gate top-contact (BGTC) devices based on the micro/nanometer-sized single crystals were fabricated with the "gold strips" method.^[4]

Devices characterization: All electrical characteristics of the devices were measured at room temperature using a semiconductor parameter analyzer (Keithley 4200 SCS) in nitrogen atmosphere. The mobilities of the devices were calculated in the saturation regime. The equation is listed as follows:

$I_{DS} = (W/2L)C_{i\mu}(V_{GS}-V_T)^2$

where W/L is the channel width/length, C_i is the insulator capacitance per unit area (10 nF/cm²),

and V_{GS} and V_T are the gate voltage and threshold voltage, respectively. This equation defines the important characteristics of electron mobility (μ), on/off ratio ($I_{on/off}$), and threshold voltage (V_T), which could be deduced by the equation from the plot of current–voltage.

Thin film: X-ray diffraction (XRD) was measured on a D/max2500 with a CuK α source ($\kappa = 1.541$ Å). Atomic force microscopy (AFM) measurements were carried out with a Nanoscope IIIa instrument (Digital Instruments).

Figure S11. AFM images (5 μ m×5 μ m scan area) and RMS values of CDPA-modified thin films of: (A) **5a**, (B) **5b**, (C) **6a** and (D) **6b**.

Figure S12. XRD images of (A) 5a, (B) 5b, (C) 6a and (D) 6b thin films.

Figure S13. Representative transfer (A), (B), (C) and (D) and output curves (E), (F), (G) and (H) of OFET devices based on thin film of **5a**, **5b**, **6a** and **6b**, respectively.

Figure S14. Optical microscopy image (A), (C), (E) and (G), and XRD image (B), (D), (F) and (H) of **5a**, **5b**, **6a** and **6b**, respectively.

Figure S15. Representative transfer (A), (B), (C) and (D) and output curves (E), (F), (G) and (H) of OFET devices based on single-crystalline microribbons of 5a (W/L=1/13), 5b (W/L=1/8), 6a (W/L=1/6) and 6b (W/L=1/5), respectively.

Figure S16. Plots showing dependence of mobilities on gate voltages of OFET devices based on single-crystalline microribbons of **5a** (A) and **5b** (B).

9. References

[1] C. R. Swartz, S. R. Parkin, J. E. Bullock, J. E. Anthony, A. C. Mayer, G. G. Malliaras, *Org. Lett*, **2005**, *7*, 3163.

[2] D. Xia, X. Guo, L. Chen, M. Baumgarten, A. Keerthi, K. Müllen, *Angew. Chem. Int. Ed*, **2016**, *55*, 941.

[3] X. Gao, W. Qiu, X. Yang, Y. Liu, Y. Wang, H. Zhang, T. Qi, Y. Liu, K. Lu, C. Du, z. Shuai, G. Yu, D. Zhu, *Org. Lett*, **2007**, *9*, 3917.

[4] Q. Tang, Y. Tong, H. Li, Y. Zhu, Q. Li, W. Hu, Y. Liu, and D. Zhu, *Adv. Mater*, 2008, 20, 1511.

10. ¹H NMR, ¹³C NMR and HRMS spectra of compounds

Figure S18. HR-MALDI-TOF spectra of 10.

Figure S20. ¹³C NMR spectrum of 9 in CDCl₃ (100 MHz, 298 K).

e S26. HR-MALDI-TOF spectra of 1a.

Figure S28. HR-MALDI-TOF spectra of 1b.

Figure S30. ¹³C NMR spectrum of **2a** in CDCl₃ (100 MHz, 298 K).

Figure S38. ¹H NMR spectrum of 5b in CDCl₃ (400 MHz, 298 K).

Figure S40. HR-MALDI-TOF spectra of 5b.

Figure S42. ¹³C NMR spectrum of 6a in CDCl₃ (100 MHz, 298 K).

Figure S44. ¹H NMR spectrum of 6b in CDCl₃ (400 MHz, 298 K).

Figure S46. HR-MALDI-TOF spectra of 6b.

11. Supplementary data of DFT calculations

Table S3. Selected wavelengths, oscillator strengths and comparison of major electronic transitions of the compounds.

Name	Transitio	Energy	Wavelength	f	Electronic Configuration
	n	(eV)	(nm)		
5a	$S_0 \mathop{\rightarrow} S_1$	2.5154	492.89	0.0006	HOMO-1 \rightarrow LUMO+1 (3%)
					HOMO \rightarrow LUMO (75%)
					HOMO \rightarrow LUMO+1 (18%)
	$S_0 \mathop{\rightarrow} S_2$	2.6256	472.22	0.0041	HOMO-1 \rightarrow LUMO (30%)
					HOMO-1 \rightarrow LUMO+1 (16%)
					HOMO \rightarrow LUMO (9%)
					HOMO \rightarrow LUMO+1 (41%)
	$S_0 \mathop{\rightarrow} S_3$	2.7188	456.02	0.0061	HOMO-9 \rightarrow LUMO (18%)
					HOMO-8 \rightarrow LUMO+1 (25%)
					HOMO-8 \rightarrow LUMO+1 (11%)
					HOMO-2 \rightarrow LUMO (13%)
					HOMO-2 \rightarrow LUMO+1 (9%)
	$S_0 \mathop{\rightarrow} S_4$	2.7289	454.34	0.0107	HOMO-9 \rightarrow LUMO (16%)
					HOMO-8 \rightarrow LUMO (15%)
					HOMO-6 \rightarrow LUMO (25%)
					HOMO-6 \rightarrow LUMO+1 (8%)
					HOMO-2 \rightarrow LUMO+1 (10%)
	$S_0 \to S_5$	2.8153	440.40	0.0067	HOMO-1 \rightarrow LUMO (34%)
					$HOMO-1 \rightarrow LUMO+1 (16\%)$
					$HOMO \rightarrow LUMO (9\%)$
					HOMO \rightarrow LUMO+1 (32%)
					HOMO \rightarrow LUMO+3 (4%)
	$S_0 \to S_6$	2.9057	426.69	0.0034	HOMO-1 \rightarrow LUMO (30%)
					$HOMO-1 \rightarrow LUMO+1 (54\%)$
					HOMO-1 \rightarrow LUMO+2 (7%)
					$HOMO \rightarrow LUMO (3\%)$
	$S_0 \mathop{\rightarrow} S_8$	2.9192	424.71	0.1450	HOMO-4 \rightarrow LUMO (35%)
					$HOMO-3 \rightarrow LUMO+1 (34\%)$
					$HOMO-11 \rightarrow LUMO (27\%)$
					HOMO-11 → LUMO+1 (21%)
	$S_0 \rightarrow S_0$	2,9966	413.75	0.0101	HOMO-10 \rightarrow LUMO (7%)
	~0 ~9				$HOMO-10 \rightarrow LUMO+1 (4\%)$
					HOMO-4 \rightarrow LUMO+1 (8%)
					HOMO-4 \rightarrow LUMO+1 (9%)
	$S_0 \mathop{\rightarrow} S_{10}$	2.9996	413.33	0.0688	HOMO-10 \rightarrow LUMO+1 (29%)
					HOMO-10 \rightarrow LUMO (21%)

					HOMO-4 \rightarrow LUMO (9%)
					HOMO-3 \rightarrow LUMO+1 (12%)
	$S_0 \rightarrow S_{11}$	3.0833	402.10	0.9837	HOMO-13 \rightarrow LUMO (3%)
					HOMO-13 \rightarrow LUMO+1 (28%)
					HOMO-12 \rightarrow LUMO (20%)
					HOMO-9 \rightarrow LUMO (3%)
					HOMO-8 \rightarrow LUMO (18%)
					HOMO-6 \rightarrow LUMO (3%)
					HOMO-3 \rightarrow LUMO+5 (2%)
					HOMO-2 \rightarrow LUMO (14%)
					$HOMO-1 \rightarrow LUMO+1 (5\%)$
					HOMO-1 \rightarrow LUMO+2 (19%)
	$S_0 \to S_{12}$	3.3734	367.53	0.0094	HOMO-1 \rightarrow LUMO+3 (5%)
					HOMO \rightarrow LUMO+2 (11%)
					HOMO \rightarrow LUMO+3 (48%)
					$HOMO-13 \rightarrow LUMO (31\%)$
	$S_0 \rightarrow S_{10}$	3 3803	366 79	0.0089	HOMO-12 \rightarrow LUMO+1 (19%)
	50 7513	5.5605	500.77	0.0007	$HOMO-8 \rightarrow LUMO+1 (14\%)$
					$HOMO-2 \rightarrow LUMO+1 (13\%)$
	$S_0 \to S_{14}$	3.3919	365.53	0.2684	HOMO-1 \rightarrow LUMO+2 (45%)
					HOMO-1 \rightarrow LUMO+3 (5%)
					HOMO \rightarrow LUMO+1 (3%)
					HOMO \rightarrow LUMO+2 (10%)
					HOMO \rightarrow LUMO+3 (25%)
					HOMO \rightarrow LUMO+6 (3%)
5b	$S_0 \mathop{\rightarrow} S_1$	2.5807	480.43	0.0013	HOMO-1 \rightarrow LUMO+1 (3%)
					HOMO \rightarrow LUMO (71%)
					HOMO \rightarrow LUMO+1 (21%)
	$S_0 \mathop{\rightarrow} S_2$	2.5943	477.89	0.0078	HOMO-4 \rightarrow LUMO (18%)
					HOMO-4 \rightarrow LUMO+1 (11%)
					$HOMO-8 \rightarrow LUMO (19\%)$
					$HOMO-8 \rightarrow LUMO+1 (31\%)$
	$S_0 \to S_3$	2.6091	475.20	0.0091	$HOMO-8 \rightarrow LUMO (10\%)$
					HOMO-6 \rightarrow LUMO (31%)
					$HOMO-6 \rightarrow LUMO+1 (18\%)$
					HOMO-4 \rightarrow LUMO+1 (11%)
	$S_0 \mathop{\rightarrow} S_4$	2.6790	462.80	0.0072	HOMO-1 \rightarrow LUMO (23%)
					$HOMO-1 \rightarrow LUMO+1 (16\%)$
					HOMO \rightarrow LUMO (12%)
					HOMO \rightarrow LUMO+1 (42%)
	$S_0 \rightarrow S_5$	2.8267	438.62	0.0066	HOMO-1 \rightarrow LUMO (31%)

					HOMO-1 \rightarrow LUMO+1 (23%)
					HOMO \rightarrow LUMO (9%)
					HOMO \rightarrow LUMO+1 (23%)
	$S_0 \rightarrow S_7$	3.1219	422.14	0.0014	HOMO-2 \rightarrow LUMO (32%)
					HOMO-3 \rightarrow LUMO+1 (27%)
					HOMO-10 \rightarrow LUMO (10%)
	$S_0 \mathop{\rightarrow} S_8$	2.9440	421.14	0.1279	HOMO-10 \rightarrow LUMO (8%)
					HOMO-10 \rightarrow LUMO+1 (4%)
					HOMO-9 \rightarrow LUMO (7%)
					$HOMO-9 \rightarrow LUMO+1 (11\%)$
					HOMO-3 \rightarrow LUMO (26%)
					HOMO-2 \rightarrow LUMO+1 (27%)
	$S_0 \rightarrow S_{10}$	3.0933	400.17	0.1313	$HOMO-10 \rightarrow LUMO (24\%)$
					$HOMO-10 \rightarrow LUMO+1 (14\%)$
					HOMO-9 \rightarrow LUMO (5%)
					HOMO-9 \rightarrow LUMO+1 (8%)
					HOMO-3 \rightarrow LUMO (20%)
					$HOMO-2 \rightarrow LUMO+1 (17\%)$
	$S_0 \to S_{11}$	3.1337	395.65	0.9772	$HOMO-13 \rightarrow LUMO (6\%)$
					$HOMO-13 \rightarrow LUMO+1 (10\%)$
					HOMO-12→ LUMO+1 (19%)
					HOMO-11 \rightarrow LUMO (9%)
					HOMO-8→ LUMO (9%)
					HOMO-6→ LUMO (23%)
					HOMO-4→ LUMO (10%)
					HOMO-2→ LUMO+5 (2%)
					$HOMO \rightarrow LUMO+3 (54\%)$
	$S_0 \rightarrow S_{12}$	3.4165	362.90	0.0616	HOMO-6 \rightarrow LUMO+2 (15%)
	3 ₀ - 3 ₁₃				HOMO-1→ LUMO+1 (7%)
					HOMO-1→ LUMO+3 (9%)
					HOMO-1→ LUMO (4%)
					HOMO-1→ LUMO+1 (8%)
	$S_0 \rightarrow S_{14}$	3 4363	360 74	0 1749	HOMO-1→ LUMO+2 (59%)
	50 514	51.1505	2001,1	0.17.19	HOMO \rightarrow LUMO+1 (3%)
					HOMO \rightarrow LUMO+2 (9%)
					$HOMO \rightarrow LUMO+3 (11\%)$
					$HOMO-1 \rightarrow LUMO+1 (5\%)$
	$S_0 \rightarrow S_1$	2.5092	489.12	0.0005	HOMO \rightarrow LUMO (79%)
6a					$HOMO \rightarrow LUMO+1 (12\%)$
	$S_0 \rightarrow S_2$	2.6274	471.88	0.0047	HOMO-1 \rightarrow LUMO (30%)
	50 7 52	$a_0 \rightarrow b_2$ 2.02/4	т/1.00	0.0047	$HOMO-1 \rightarrow LUMO+1 (11\%)$

					HOMO \rightarrow LUMO (6%)
					HOMO \rightarrow LUMO+1 (48%)
	$S_0 \rightarrow S_3$	2.6298	471.46	0.0032	HOMO-9 \rightarrow LUMO (2%)
					HOMO-8 \rightarrow LUMO+1 (14%)
					HOMO-8 \rightarrow LUMO+1 (28%)
					HOMO-2 \rightarrow LUMO (16%)
	$S_0 \mathop{\rightarrow} S_4$	2.6439	468.95	0.0041	HOMO-9 \rightarrow LUMO (16%)
					HOMO-8 \rightarrow LUMO (4%)
					HOMO-7 \rightarrow LUMO (22%)
					HOMO-7 \rightarrow LUMO+1 (30%)
					HOMO-2 \rightarrow LUMO+1 (14%)
	$\mathrm{S}_0 \to \mathrm{S}_5$	2.7806	445.89	0.0086	HOMO-1 \rightarrow LUMO (42%)
					HOMO-1 \rightarrow LUMO+1 (12%)
					$HOMO \rightarrow LUMO (6\%)$
					HOMO \rightarrow LUMO+1 (31%)
					HOMO \rightarrow LUMO+3 (4%)
	$S_0 \to S_6$	2.9057	426.69	0.0034	HOMO-1 \rightarrow LUMO (21%)
					HOMO-1 \rightarrow LUMO+1 (61%)
					$HOMO-1 \rightarrow LUMO+2 (5\%)$
					$HOMO \rightarrow LUMO (4\%)$
					HOMO \rightarrow LUMO+2 (3%)
					HOMO-4→ LUMO (51%)
	$S_0 \rightarrow S_8$	2.9535	419.79	0.303	HOMO-4→ LUMO+1 (3%)
					HOMO-3→ LUMO+1 (40%)
				0.0135	HOMO \rightarrow LUMO+3 (34%)
	$S_0 \to S_9$	3.0954	400.54		HOMO \rightarrow LUMO+2 (28%)
					HOMO-1→ LUMO+3 (14%)
					HOMO-1 \rightarrow LUMO+2 (51%)
	$S_0 \rightarrow S_{10}$	3.1154	397.98	0 3076	HOMO \rightarrow LUMO+1 (3%)
				0.3070	HOMO \rightarrow LUMO+2 (5%)
					HOMO \rightarrow LUMO+3 (29%)
					HOMO-11→ LUMO+1 (24%)
					HOMO-10→ LUMO (31%)
	$S_0 \rightarrow S_{11}$	3.2282	384.07	0.6925	HOMO-8→ LUMO (13%)
	~0 ~11				HOMO-4→ LUMO+7 (2%)
					HOMO-3→ LUMO+6 (2%)
					HOMO-2→ LUMO (18%)
	$S_0 \rightarrow S_{14}$				HOMO-11→ LUMO (27%)
		3.4959	354.66	0.0152	HOMO-10→ LUMO+1 (25%)
					HOMO-2→ LUMO+1 (18%)
6b	$S_0 \mathop{\rightarrow} S_1$	2.6540	467.15	0.0033	HOMO-1 \rightarrow LUMO+1 (12%)

					HOMO \rightarrow LUMO (35%)
					HOMO \rightarrow LUMO+1 (34%)
	$S_0 \mathop{\rightarrow} S_2$	2.6611	465.91	0.0023	HOMO-4 \rightarrow LUMO (2%)
					HOMO-4 \rightarrow LUMO+1 (28%)
					HOMO-6 \rightarrow LUMO (44%)
					HOMO-8 \rightarrow LUMO+1 10%)
	$S_0 \mathop{\rightarrow} S_3$	2.6810	462.45	0.0005	HOMO-1 \rightarrow LUMO+1 (5%)
					HOMO \rightarrow LUMO (70%)
					HOMO \rightarrow LUMO+1 (19%)
	$S_0 \mathop{\rightarrow} S_4$	2.6925	460.47	0.0066	HOMO-1 \rightarrow LUMO (22%)
					HOMO-1 \rightarrow LUMO+1 (13%)
					HOMO \rightarrow LUMO (12%)
					HOMO \rightarrow LUMO+1 (46%)
	$S_0 \mathop{\rightarrow} S_5$	2.8472	435.46	0.0054	HOMO-1 \rightarrow LUMO (32%)
					HOMO-1 \rightarrow LUMO+1 (23%)
					HOMO \rightarrow LUMO (8%)
					HOMO \rightarrow LUMO+1 (19%)
	$S_0 \mathop{\rightarrow} S_7$	2.9778	416.35	0.0018	HOMO-3 \rightarrow LUMO+1 (40%)
					HOMO-2 \rightarrow LUMO+1 (27%)
					HOMO-2 \rightarrow LUMO (3%)
			414.30		HOMO-3→ LUMO (49%)
	$S_0 \mathop{\rightarrow} S_8$	2.9925		0.3796	HOMO-2→ LUMO+1 (43%)
					HOMO \rightarrow LUMO+1 (2%)
					HOMO-12 \rightarrow LUMO (3%)
	$S_0 \rightarrow S_{10}$		388.1	0.1711	HOMO-1→ LUMO (3%)
		3.1946			HOMO-1→ LUMO+1 (8%)
				0.1711	HOMO-1 \rightarrow LUMO+2 (50%)
					HOMO \rightarrow LUMO+2 (9%)
					HOMO \rightarrow LUMO+3 (12%)
					HOMO-11→ LUMO+1 (27%)
					HOMO-10→ LUMO (25%)
	$S_0 \mathop{\rightarrow} S_{11}$	3.2813	377.85	0.6365	HOMO-8→ LUMO (9%)
					HOMO-3→ LUMO+6 (5%)
					HOMO-2→ LUMO (16%)
					HOMO-13→ LUMO (30%)
	$S_0 \rightarrow S_{14}$	3 6004	344 36	0.0069	HOMO-10→ LUMO+1 (24%)
		S ₁₄ 3.6004	JTT.JU		HOMO-8→ LUMO+6 (23%)
					HOMO-4 \rightarrow LUMO+1 (5%)

С	-0.52388900	2.03639200	-0.71538600
С	-0.52388400	2.03658500	0.71480200
С	-1.26499900	2.96727200	-1.42750100
С	-2.05668800	3.95207400	-0.72125400
С	-2.05668600	3.95226500	0.72016400
С	-1.26499200	2.96765600	1.42667100
С	-2.82312800	4.90282700	-1.40161700
С	-3.59237300	5.85613900	-0.72162100
С	-3.59237200	5.85633000	0.72002900
С	-2.82312600	4.90319800	1.40027600
С	-1.26115800	2.96074900	-2.85388500
С	-1.25875700	2.95902500	-4.06452400
С	-1.26114700	2.96151800	2.85305700
С	-1.25874700	2.96010600	4.06369800
С	-4.38090800	6.82951700	-1.40908300
С	-5.12473400	7.74692200	-0.71392700
С	-5.12473400	7.74711000	0.71183600
С	-4.38090700	6.82988900	1.40723400
С	8.82858200	0.59028000	0.71862100
С	8.82856700	0.58995600	-0.71890300
С	7.63473100	0.61824400	-1.42615700
С	6.40042300	0.79053000	-0.71793500
С	6.40043600	0.79082700	0.71762100
С	7.63476200	0.61886400	1.42588900
С	5.19373500	0.98362400	-1.42051900
С	3.96669100	0.99644300	-0.71974800
С	3.96670100	0.99670300	0.71938500
С	5.19375500	0.98417900	1.42014500
С	7.57704800	0.40480700	-2.91337200
Ν	6.39881900	0.80738500	-3.54299400
С	5.23320100	1.22966600	-2.88963700
С	5.23322900	1.23080200	2.88916500
Ν	6.39888600	0.80886500	3.54267400
С	7.57712700	0.40608600	2.91320000
0	8.48981100	-0.08326200	-3.55738500
0	4.33937600	1.75143900	-3.53037700
0	4.33941400	1.75284700	3.52969700
0	8.48994600	-0.08162000	3.55741000
С	6.36283400	0.84143500	-5.01079700
С	6.36294100	0.84356700	5.01046300

Table S4. Cartesian coordinates of the ground state optimized geometry for compound **5a**. The calculated absolute energy value for this molecule is -36535556.93 kJ/mol

Ν	2.78496200	0.98529500	-1.41675300
С	1.68303300	0.98883900	-0.72050500
С	1.68304400	0.98905600	0.72017700
Ν	2.78498300	0.98575800	1.41641000
С	-8.80928500	-1.28995100	-0.71844000
С	-8.80926300	-1.28976000	0.71901300
С	-7.61816000	-1.20132000	1.42616600
С	-6.39439100	-0.96489800	0.71798500
С	-6.39441200	-0.96509400	-0.71757900
С	-7.61820500	-1.20170200	-1.42565600
С	-5.19909300	-0.70966300	1.42082900
С	-3.97542700	-0.62319200	0.71973900
С	-3.97544700	-0.62339100	-0.71949600
С	-5.19913400	-0.71005600	-1.42052800
С	-7.55012700	-1.41465200	2.91287100
Ν	-6.39083000	-0.96183500	3.54337000
С	-5.24924700	-0.47599700	2.89183500
С	-5.24932700	-0.47680600	-2.89160000
Ν	-6.39094300	-0.96279500	-3.54296500
С	-7.55022900	-1.41541900	-2.91230700
0	-8.43937500	-1.94534600	3.55605400
0	-4.38116000	0.08349700	3.53609500
0	-4.38128500	0.08256000	-3.53603300
0	-8.43952600	-1.94623300	-3.55532300
С	-6.35430200	-0.93763300	5.01144100
С	-6.35447300	-0.93896600	-5.01104300
Ν	-2.79383400	-0.57321300	1.41610900
С	-1.69547200	-0.48055100	0.72073900
С	-1.69549100	-0.48074600	-0.72059500
Ν	-2.79387200	-0.57360200	-1.41591000
С	0.51025200	-1.53322800	0.71539700
С	0.51023100	-1.53342600	-0.71503000
С	1.25112200	-2.46504200	1.42639000
С	2.04083000	-3.45255200	0.72113700
С	2.04081000	-3.45275000	-0.72028900
С	1.25108100	-2.46543400	-1.42578900
С	2.80479000	-4.40545200	1.40122300
С	3.57255900	-5.36035200	0.72146000
С	3.57254000	-5.36054900	-0.72013200
С	2.80475100	-4.40583600	-1.40013500
С	1.24825500	-2.45818000	2.85342900
С	1.24801000	-2.45709100	4.06432800
С	1.24817000	-2.45896100	-2.85283000
С	1.24787600	-2.45820900	-4.06373000

С	4.35944700	-6.33482900	1.40903400
С	5.10208600	-7.25309400	0.71373400
С	5.10206700	-7.25328800	-0.71193000
С	4.35940900	-6.33521300	-1.40746000
С	0.33428300	0.98440100	-1.40320500
С	0.33430600	0.98479000	1.40289900
С	-0.34672800	-0.47993400	-1.40319900
С	-0.34669000	-0.47955100	1.40330500
Н	-2.82209800	4.89813900	-2.48723200
Н	-2.82209600	4.89879800	2.48589200
Н	-1.26206300	2.93830200	-5.13083400
Н	-1.26194700	2.93953000	5.13001200
Н	-4.37853800	6.82637900	-2.49627100
Н	-5.72087300	8.48242800	-1.24706700
Н	-5.72087300	8.48275700	1.24478300
Н	-4.37853700	6.82703800	2.49442300
Н	6.26396700	1.87429000	-5.35372200
Н	7.28657300	0.40060100	-5.37697400
Н	5.49893800	0.27637400	-5.36722900
Н	5.49909000	0.27861000	5.36716900
Н	7.28671800	0.40295600	5.37681000
Н	6.26401700	1.87656900	5.35292900
Н	-5.45222700	-1.44394600	5.36094700
Н	-6.32768200	0.09653400	5.36402900
Н	-7.24449900	-1.44450500	5.37517500
Н	-6.32785700	0.09511000	-5.36389700
Н	-5.45241600	-1.44537700	-5.36045400
Н	-7.24468900	-1.44592300	-5.37461200
Н	2.80277500	-4.40248700	2.48690200
Н	2.80270900	-4.40316700	-2.48581500
Н	1.24392700	-2.44079200	5.13084800
Н	1.24376500	-2.44218200	-5.13025300
Н	4.35761000	-6.33167200	2.49619700
Н	5.69780200	-7.98889300	1.24678800
Н	5.69777000	-7.98923300	-1.24479900
Н	4.35754400	-6.33235300	-2.49462500
Н	0.48843500	1.25406500	-2.44736400
Н	0.48847200	1.25474300	2.44698100
Н	-0.50297900	-0.75032300	-2.44677300
Н	-0.50290900	-0.74966100	2.44695500
Br	10.50038600	0.57503200	1.60699700
Br	10.50035400	0.57428700	-1.60730400
Br	-10.47829000	-1.39058800	1.60681100
Br	-10.47834000	-1.39102300	-1.60615700

Cartesian coordinates and calculated energy for 5b.

Table S5. Cartesian coordinates of the ground state optimized geometry for compound **5b**. The calculated absolute energy value for this molecule is -38572280.08 kJ/mol

С	0.72443000	1.90913600	0.71554900	
С	0.72443900	1.90934100	-0.71496100	
С	1.55545800	2.75968700	1.42874700	
С	2.43855500	3.66180100	0.72079200	
С	2.43856900	3.66200200	-0.71967900	
С	1.55548200	2.76009100	-1.42790500	
С	3.29013400	4.53313700	1.40699700	
С	4.14098100	5.40586600	0.72120300	
С	4.14099500	5.40606600	-0.71957200	
С	3.29016100	4.53352800	-1.40562500	
С	1.55558600	2.75403500	2.85451400	
С	1.56012500	2.75448100	4.06495800	
С	1.55563700	2.75483900	-2.85367300	
С	1.56018800	2.75561900	-4.06411700	
С	5.01545000	6.30139000	1.40052100	
С	5.84117600	7.14750100	0.71260000	
С	5.84119000	7.14769700	-0.71045400	
С	5.01547800	6.30177700	-1.39862400	
С	-8.72274400	1.56219300	-0.71895300	
С	-8.72275600	1.56196200	0.71931400	
С	-7.53493100	1.43901900	1.42619100	
С	-6.28845200	1.45560700	0.71815900	
С	-6.28844100	1.45584100	-0.71778900	
С	-7.53490700	1.43948200	-1.42584900	
С	-5.06784600	1.49826300	1.42141400	
С	-3.84788700	1.36673800	0.71981400	
С	-3.84787800	1.36696600	-0.71943100	
С	-5.06782400	1.49872000	-1.42100900	
С	-7.50529600	1.21867700	2.91314200	
Ν	-6.28583100	1.46870500	3.54396900	
С	-5.07667400	1.74243000	2.89213900	
С	-5.07662400	1.74336400	-2.89165400	
Ν	-6.28576500	1.46983500	-3.54359600	
С	-7.50524600	1.21962500	-2.91287200	
0	-8.47235400	0.84842400	3.55581500	
0	-4.12347200	2.14398800	3.53409000	
0	-4.12341400	2.14514300	-3.53345400	
0	-8.47229800	0.84959900	-3.55568600	
С	-6.24680900	1.49416400	5.01214000	

С	-6.24671700	1.49576900	-5.01175800
Ν	-2.67486100	1.21975100	1.41612000
С	-1.57940600	1.10223900	0.71995800
С	-1.57939800	1.10245400	-0.71963100
Ν	-2.67484400	1.22018500	-1.41576900
С	8.63425400	-2.18454400	0.71892000
С	8.63425500	-2.18435100	-0.71950200
С	7.45643300	-1.98701700	-1.42656800
С	6.25934100	-1.63982200	-0.71812300
С	6.25933700	-1.64002100	0.71768100
С	7.45642900	-1.98740600	1.42603600
С	5.09345600	-1.27482500	-1.42111800
С	3.88320600	-1.07394700	-0.71971800
С	3.88320200	-1.07415100	0.71941700
С	5.09344700	-1.27522300	1.42077000
С	7.36930100	-2.19120900	-2.91367100
Ν	6.25522800	-1.63482000	-3.54404000
С	5.16529300	-1.04476400	-2.89215500
С	5.16527100	-1.04557500	2.89187200
Ν	6.25521200	-1.63579700	3.54359900
С	7.36929500	-2.19199900	2.91308400
0	8.20695400	-2.79855400	-3.55768100
0	4.35287200	-0.40424300	-3.53390600
0	4.35283700	-0.40524800	3.53380000
0	8.20695500	-2.79950400	3.55693300
С	6.22252600	-1.60544400	-5.01241200
С	6.22249800	-1.60682500	5.01197900
Ν	2.71164400	-0.91191600	-1.41587400
С	1.62753300	-0.71432000	-0.72021200
С	1.62752900	-0.71452600	0.71999900
Ν	2.71163500	-0.91232100	1.41561100
С	-0.67627000	-1.53161700	-0.71557000
С	-0.67627100	-1.53182500	0.71511500
С	-1.50670200	-2.38355000	-1.42765800
С	-2.38727900	-3.28933400	-0.72073800
С	-2.38728100	-3.28954200	0.71976700
С	-1.50670500	-2.38396500	1.42695300
С	-3.23487800	-4.16466400	-1.40666100
С	-4.08229700	-5.04111700	-0.72104200
С	-4.08230000	-5.04132300	0.71956100
С	-3.23488300	-4.16506800	1.40543500
С	-1.50688500	-2.37839900	-2.85413500
С	-1.51215600	-2.38017200	-4.06482500
С	-1.50689100	-2.37922500	2.85343200

С	-1.51214900	-2.38134400	4.06412100
С	-4.95205300	-5.94087500	-1.40047800
С	-5.77354500	-6.79127200	-0.71255300
С	-5.77354900	-6.79147500	0.71056200
С	-4.95206000	-5.94127600	1.39873500
С	-0.23850400	0.95259000	1.40363500
С	-0.23849200	0.95300400	-1.40334000
С	0.28561400	-0.57421700	1.40336400
С	0.28561800	-0.57380600	-1.40353600
Н	3.29269000	4.53304200	2.49036700
Н	3.29273900	4.53373500	-2.48899400
Н	1.56882000	2.73856800	5.13154600
Н	1.56870700	2.73999600	-5.13071000
Н	-6.01508700	2.50466000	5.35745200
Н	-7.22011200	1.17590400	5.37690600
Н	-5.46407300	0.82067900	5.36762800
Н	-5.46388200	0.82250200	-5.36743700
Н	-7.21997100	1.17749900	-5.37664400
Н	-6.01512400	2.50640500	-5.35675000
Н	5.26811900	-2.00433300	-5.36138200
Н	6.31606900	-0.57509000	-5.36522100
Н	7.04882000	-2.21086900	-5.37622100
Н	6.31591800	-0.57655600	5.36506600
Н	5.26813600	-2.00592100	5.36084000
Н	7.04885800	-2.21225700	5.37562700
Н	-3.23643800	-4.16666300	-2.49006400
Н	-3.23644800	-4.16737800	2.48883700
Н	-1.51322800	-2.36994000	-5.13165700
Н	-1.51316200	-2.37142300	5.13095700
Н	-0.36278300	1.23769200	2.44766000
Н	-0.36276300	1.23842500	-2.44727900
Н	0.41216900	-0.86043000	2.44675500
Н	0.41216500	-0.85970500	-2.44701400
Br	-10.38255100	1.75823900	-1.60646800
Br	-10.38257400	1.75773000	1.60687000
Br	10.28671000	-2.43666300	-1.60628500
Br	10.28670900	-2.43708500	1.60563600
F	-6.59063000	-7.63790600	1.34425200
F	-4.96196800	-5.95196200	2.74207400
F	-6.59062200	-7.63752500	-1.34648700
F	-4.96195400	-5.95117700	-2.74382100
F	6.66339200	7.98956600	1.34670100
F	6.66342000	7.98993400	-1.34430700
F	5.02624400	6.31264300	-2.74204700

The calculate	d absolute energy value fo	or this molecule	is -10150908.72 kJ/mol
C	0.76563500	1.82157500	0.71538900
С	0.76555100	1.82180600	-0.71506800
С	1.62079300	2.64962400	1.42706500
С	2.52906500	3.52785600	0.72091300
С	2.52892300	3.52812700	-0.72032000
С	1.62054600	2.65013200	-1.42661800
С	3.40636700	4.37761000	1.40123700
С	4.28509000	5.23103700	0.72122000
С	4.28494300	5.23131400	-0.72033500
С	3.40608300	4.37814700	-1.40049800
С	1.61916200	2.64111400	2.85354900
С	1.62012600	2.63614700	4.06421300
С	1.61862400	2.64211900	-2.85310200
С	1.61932600	2.63757500	-4.06377100
С	5.18422600	6.10320100	1.40871400
С	6.03150700	6.92600000	0.71349200
С	6.03136500	6.92626900	-0.71230600
С	5.18394500	6.10373800	-1.40767300
С	-8.68919300	1.56271500	-0.70398000
С	-8.68916500	1.56272400	0.70466300
С	-7.50057400	1.56490700	1.40415100
С	-6.24972000	1.55982300	0.71856700
С	-6.24975100	1.55986000	-0.71796900
С	-7.50062700	1.56491900	-1.40350800
С	-5.03797000	1.54422100	1.43487300
С	-3.82315500	1.39489400	0.72400600
С	-3.82318400	1.39498800	-0.72353300
С	-5.03803200	1.54435600	-1.43432200
С	-7.55749200	1.54193700	2.88859400
Ν	-6.33029200	1.58824900	3.54648000
С	-5.06977100	1.71049900	2.92245300
С	-5.06989500	1.71077200	-2.92188600
Ν	-6.33042200	1.58847100	-3.54587800
С	-7.55758900	1.54192000	-2.88795200
0	-8.61842700	1.49839000	3.49739600
0	-4.09685200	1.95011700	3.61295800
0	-4.09701100	1.95057600	-3.61237600
0	-8.61853500	1.49820900	-3.49672200

Cartesian coordinates and calculated energy for 6a.

F

Table S6. Cartesian coordinates of the ground state optimized geometry for compound 6a.

С	-6.32809300	1.65984200	5.01234200
С	-6.32829600	1.66013700	-5.01173800
Ν	-2.65035800	1.22296200	1.41494600
С	-1.55871600	1.07240900	0.72002800
С	-1.55874400	1.07254300	-0.71968100
Ν	-2.65041600	1.22319800	-1.41456100
С	8.52347300	-2.60252900	0.70402700
С	8.52361200	-2.60195600	-0.70431200
С	7.39318200	-2.23421500	-1.40361500
С	6.20113300	-1.85424100	-0.71839600
С	6.20101300	-1.85476700	0.71825300
С	7.39292100	-2.23530900	1.40340400
С	5.04315200	-1.49668300	-1.43530300
С	3.84382900	-1.25404100	-0.72393800
С	3.84373700	-1.25444200	0.72384600
С	5.04294400	-1.49762000	1.43522000
С	7.44158300	-2.27388000	-2.88788700
Ν	6.28626700	-1.85952100	-3.54663500
С	5.12117900	-1.36055800	-2.92466500
С	5.12078900	-1.36245600	2.92468100
Ν	6.28561200	-1.86222800	3.54650600
С	7.44102500	-2.27617100	2.88765700
0	8.43976100	-2.63763100	-3.49565900
0	4.26236600	-0.84991100	-3.61927000
0	4.26204900	-0.85197100	3.61948700
0	8.43903600	-2.64054000	3.49532900
С	6.30344200	-1.80021900	-5.01305100
С	6.30252500	-1.80395400	5.01296900
Ν	2.67467600	-1.05458100	-1.41422200
С	1.59574700	-0.82851000	-0.72015700
С	1.59568000	-0.82875600	0.72002600
Ν	2.67453000	-1.05520900	1.41411500
С	-0.72804700	-1.58170700	-0.71560900
С	-0.72813700	-1.58186800	0.71504100
С	-1.58236900	-2.41104400	-1.42662200
С	-2.48956200	-3.29130500	-0.72119300
С	-2.48968900	-3.29142600	0.72001100
С	-1.58259200	-2.41133000	1.42575700
С	-3.36489400	-4.14313300	-1.40141400
С	-4.24255900	-4.99802200	-0.72164500
С	-4.24271100	-4.99811700	0.71985500
С	-3.36516900	-4.14334400	1.39992600
С	-1.58003300	-2.40369000	-2.85357500
С	-1.58074100	-2.40074800	-4.06442300

С	-1.58044400	-2.40427700	2.85270400
С	-1.58131800	-2.40155000	4.06355200
С	-5.14004300	-5.87168400	-1.40926700
С	-5.98627400	-6.69560000	-0.71405600
С	-5.98643300	-6.69568300	0.71167900
С	-5.14035200	-5.87185400	1.40717400
С	-0.22227600	0.89089400	1.40378800
С	-0.22236100	0.89122200	-1.40357700
С	0.25888700	-0.64990600	1.40376200
С	0.25900000	-0.64949800	-1.40397200
Н	3.40475200	4.37373400	2.48687700
Н	3.40424300	4.37467500	-2.48613800
Н	1.62160800	2.61086800	5.13044700
Н	1.62062400	2.61259500	-5.13001400
Н	5.18141900	6.10052800	2.49590400
Н	6.71078700	7.58562400	1.24649200
Н	6.71054600	7.58609000	-1.24518900
Н	5.18092600	6.10147300	-2.49486300
Н	-9.61773800	1.55083500	-1.26422900
Н	-9.61768900	1.55088600	1.26494900
Н	-6.03650500	2.66084800	5.34216200
Н	-7.33404900	1.42912600	5.35529600
Н	-5.60533800	0.94398300	5.40732400
Н	-5.60515400	0.94469600	-5.40675500
Н	-7.33413600	1.42889800	-5.35468400
Н	-6.03727600	2.66132200	-5.34152800
Н	9.40320900	-2.89949600	1.26444500
Н	9.40346600	-2.89844100	-1.26480000
Н	5.40302500	-2.27672800	-5.40439200
Н	6.31622300	-0.75974300	-5.34905800
Н	7.19782200	-2.31686200	-5.35347800
Н	6.31476500	-0.76370900	5.34969000
Н	5.40227000	-2.28115700	5.40385800
Н	7.19707300	-2.32045600	5.35316300
Н	-3.36247300	-4.14059900	-2.48709700
Н	-3.36296200	-4.14097800	2.48561000
Н	-1.57576800	-2.38066000	-5.13084600
Н	-1.57649000	-2.38164800	5.12997900
Н	-5.13718700	-5.86924100	-2.49645100
Н	-6.66460500	-7.35612100	-1.24707100
Н	-6.66489000	-7.35626000	1.24446600
Н	-5.13773500	-5.86953900	2.49435900
Н	-0.33994300	1.17894500	2.44773900
Н	-0.34018100	1.17951000	-2.44743600

Н	0.37794300	-0.93914200	2.44717300
Н	0.37820400	-0.93842300	-2.44746900

Cartesian coordinates and calculated energy for 6b.

Table S7. Cartesian coordinates of the ground state optimized geometry for compound **6b**.The calculated absolute energy value for this molecule is -12187638.65 kJ/mol

С	1.16232500	-1.53551900	-0.71559700	
С	1.16238400	-1.53572300	0.71506800	
С	2.19282800	-2.12912800	-1.42838400	
С	3.28648100	-2.76055200	-0.72076500	
С	3.28653800	-2.76075900	0.71972000	
С	2.19294200	-2.12953600	1.42760500	
С	4.34192700	-3.36914700	-1.40678800	
С	5.39764300	-3.97860800	-0.72119400	
С	5.39769900	-3.97881500	0.71963600	
С	4.34203600	-3.36955000	1.40548600	
С	2.19401100	-2.11879400	-2.85423600	
С	2.20138800	-2.11178200	-4.06468800	
С	2.19423800	-2.11960500	2.85346100	
С	2.20172800	-2.11293400	4.06391400	
С	6.48262000	-4.60283800	-1.40042600	
С	7.50756400	-5.19206300	-0.71250000	
С	7.50761900	-5.19226700	0.71043300	
С	6.48272800	-4.60324000	1.39860700	
С	-8.03358500	-3.70546000	0.70428300	
С	-8.03366000	-3.70524300	-0.70458100	
С	-6.88777400	-3.39063300	-1.40400500	
С	-5.68303600	-3.05218400	-0.71872100	
С	-5.68295900	-3.05241300	0.71837000	
С	-6.88762300	-3.39107100	1.40368000	
С	-4.51935600	-2.71622500	-1.43596000	
С	-3.38417500	-2.25908500	-0.72398000	
С	-3.38410100	-2.25931200	0.72363200	
С	-4.51920100	-2.71668600	1.43558800	
С	-6.94918700	-3.38704800	-2.88853500	
Ν	-5.75468700	-3.10381300	-3.54750300	
С	-4.50887300	-2.87638400	-2.92558100	
С	-4.50855000	-2.87733500	2.92515500	
Ν	-5.75429700	-3.10493700	3.54714500	
С	-6.94887600	-3.38793700	2.88821900	
0	-7.98302400	-3.63100900	-3.49581300	
0	-3.50927500	-2.83290100	-3.61835400	
0	-3.50887400	-2.83406500	3.61782900	

0	-7.98265200	-3.63206500	3.49553300
С	-5.73435500	-3.17181600	-5.01388200
С	-5.73380300	-3.17340100	5.01350000
Ν	-2.29278800	-1.79531000	-1.41410300
С	-1.27341200	-1.37653900	-0.71944400
С	-1.27334700	-1.37674900	0.71916100
Ν	-2.29265300	-1.79573400	1.41379100
С	7.70028800	4.48595100	-0.70404600
С	7.70034900	4.48574900	0.70466100
С	6.67313700	3.88810300	1.40393300
С	5.58874300	3.26357900	0.71877100
С	5.58868400	3.26378000	-0.71832000
С	6.67301700	3.88850100	-1.40339900
С	4.53538800	2.66548000	1.43609300
С	3.41989400	2.16284000	0.72401100
С	3.41983600	2.16304300	-0.72369100
С	4.53527300	2.66587700	-1.43572300
С	6.71266100	3.93684600	2.88832700
Ν	5.67193600	3.28622600	3.54769800
С	4.63949800	2.55202400	2.92654800
С	4.63927200	2.55282100	-2.92621400
Ν	5.67162800	3.28723600	-3.54724800
С	6.71240700	3.93767400	-2.88778200
0	7.61089300	4.50412900	3.49529200
0	3.90674700	1.87231100	3.62093900
0	3.90643500	1.87333600	-3.62073700
0	7.61057600	4.50514600	-3.49466400
С	5.70191900	3.23235200	5.01443100
С	5.70147200	3.23379600	-5.01399900
Ν	2.32624500	1.70297100	1.41371400
С	1.32913400	1.23323000	0.71960500
С	1.32907700	1.23343200	-0.71937900
Ν	2.32613300	1.70336800	-1.41343600
С	-1.10940800	1.40299100	0.71560800
С	-1.10946200	1.40320000	-0.71513900
С	-2.13885800	1.99914200	1.42766700
С	-3.23165300	2.63316200	0.72073400
С	-3.23170300	2.63337500	-0.71975300
С	-2.13896100	1.99956100	-1.42695100
С	-4.28525500	3.24503700	1.40657400
С	-5.33956900	3.85728000	0.72109800
С	-5.33961800	3.85749300	-0.71961100
С	-4.28535200	3.24545300	-1.40534000
С	-2.13850400	1.99222100	2.85404700

С	-2.14451100	1.98987900	4.06469000
С	-2.13871200	1.99305400	-2.85333200
С	-2.14480300	1.99104500	-4.06397500
С	-6.42255100	4.48470600	1.40037200
С	-7.44578300	5.07708100	0.71247400
С	-7.44583100	5.07729200	-0.71048400
С	-6.42264500	4.48512100	-1.39862600
С	-0.02220300	-0.87282500	-1.40396200
С	-0.02208600	-0.87321900	1.40371500
С	0.07414700	0.73930000	-1.40366900
С	0.07425900	0.73890400	1.40385900
Н	4.34395900	-3.36862200	-2.49017000
Н	4.34415400	-3.36933300	2.48886900
Н	2.20538700	-2.08770800	-5.13117700
Н	2.20603100	-2.08915100	5.13040800
Н	-5.16146400	-4.04292200	-5.34302100
Н	-6.76435300	-3.24675500	-5.35458900
Н	-5.25523600	-2.27525700	-5.41105700
Н	-5.25465000	-2.27696100	5.41090600
Н	-6.76376200	-3.24845700	5.35429700
Н	-5.16086500	-4.04460300	5.34230100
Н	4.72206500	3.51032900	5.40633900
Н	5.93225400	2.21761400	5.35026600
Н	6.46860100	3.92470400	5.35427600
Н	5.93178400	2.21915800	-5.35015600
Н	4.72157900	3.51188000	-5.40573400
Н	6.46811400	3.92625500	-5.35371200
Н	-4.28702500	3.24594800	2.48997300
Н	-4.28719800	3.24668100	-2.48873800
Н	-2.14300100	1.97459500	5.13143700
Н	-2.14328700	1.97582000	-5.13072300
Н	-0.06581900	-1.18056800	-2.44803200
Н	-0.06561800	-1.18125300	2.44770400
Н	0.11952700	1.04847000	-2.44719100
Н	0.11972400	1.04778700	2.44746200
F	-8.46439300	5.66653400	-1.34430800
F	-6.43569000	4.49272600	-2.74214100
F	-8.46430100	5.66613500	1.34654200
F	-6.43550700	4.49191400	2.74388900
F	8.52823800	-5.77801100	-1.34661600
F	8.52834300	-5.77839700	1.34430200
F	6.49618800	-4.61091000	2.74213400
F	6.49597800	-4.61012400	-2.74395600
Н	-8.93145200	-3.94274100	1.26439900

Н	-8.93158500	-3.94235600	-1.26467500	
Н	8.49822600	4.96073600	1.26496400	
Н	8.49811500	4.96109900	-1.26428200	

С	-6.93256200	-0.71257200	-0.25871000	
С	-6.93257000	0.71253300	-0.25869000	
С	-5.76540200	1.40400800	-0.13951200	
С	-4.50456300	0.72437700	-0.02013300	
С	-4.50455900	-0.72438500	-0.02013200	
С	-5.76538600	-1.40403300	-0.13953800	
С	-3.32735000	1.43706500	0.09839900	
С	-2.07213200	0.73334300	0.10247100	
С	-2.07212900	-0.73333600	0.10247700	
С	-3.32734200	-1.43706300	0.09841100	
С	-5.82679900	2.89081100	-0.16597600	
Ν	-4.61772100	3.54572400	-0.00070900	
С	-3.37993200	2.92635600	0.25100000	
С	-3.37991800	-2.92635000	0.25104800	
Ν	-4.61766800	-3.54573800	-0.00080400	
С	-5.82675700	-2.89083800	-0.16605200	
0	-6.87541700	3.48724700	-0.31213400	
0	-2.44161600	3.61404500	0.57798200	
0	-2.44163000	-3.61401300	0.57816000	
0	-6.87536200	-3.48728800	-0.31224400	
Ν	-0.93968400	1.41596100	0.05945600	
С	0.21403800	0.72277600	0.04800600	
С	0.21404000	-0.72277400	0.04800500	
Ν	-0.93968200	-1.41595800	0.05945900	
С	1.42860900	1.41542600	0.01953800	
С	2.64358900	0.72773300	0.00154000	
С	2.64359100	-0.72773000	0.00154000	
С	1.42861100	-1.41542400	0.01953500	
С	3.88732800	1.42454400	-0.01662200	
С	5.10580700	0.72511000	-0.03344000	
С	5.10580900	-0.72509400	-0.03343700	
С	3.88733500	-1.42453400	-0.01662400	
С	6.34939600	1.40465300	-0.04976500	
С	7.54809400	0.72482700	-0.06477300	
С	7.54809500	-0.72480800	-0.06476800	
С	6.34939900	-1.40463600	-0.04975800	
С	3.88436100	2.85237900	-0.01600400	
С	3.87262900	4.06004500	-0.01534800	

 Table S8. Cartesian coordinates of the ground state optimized geometry for compound 4a.

С	3.88438500	-2.85236900	-0.01601900
С	3.87275800	-4.06003800	-0.01510900
С	8.81322600	1.41191200	-0.08070100
С	9.97962800	0.71959600	-0.09530800
С	9.97962900	-0.71957500	-0.09530200
С	8.81322800	-1.41189200	-0.08068900
С	-4.61827600	5.00617900	0.06823000
С	-4.61820700	-5.00619400	0.06811900
Н	-7.85730200	-1.27070800	-0.36239400
Н	-7.85731800	1.27066100	-0.36234700
Н	1.40166200	2.49958000	0.02085500
Н	1.40166300	-2.49957700	0.02085300
Н	6.34554100	2.49060600	-0.04961100
Н	6.34554300	-2.49058900	-0.04959900
Н	3.85700600	5.12733300	-0.01322600
Н	3.85728900	-5.12732900	-0.01310400
Н	8.80670000	2.49839900	-0.08056200
Н	10.92827600	1.24702300	-0.10734100
Н	10.92827700	-1.24700000	-0.10732800
Н	8.80670300	-2.49837800	-0.08054100
Н	-3.82428800	5.39258200	-0.57130700
Н	-5.59248800	5.35397000	-0.26512200
Н	-4.42670800	5.33196100	1.09309000
Н	-5.59236900	-5.35399900	-0.26536900
Н	-3.82412600	-5.39257100	-0.57131700
Н	-4.42677400	-5.33199000	1.09300000

Table S9. Cartesian coordinates of the ground state optimized geometry for compound Complex.

C	0.50350600	-2.10468700	1.29542300
С	-0.69958700	-1.39346300	1.36980800
С	-0.67229300	0.03433700	1.58534700
С	0.55355100	0.69487200	1.72197300
С	1.75405500	-0.01492300	1.66854100
С	1.72926300	-1.45333600	1.44983600
С	0.69936600	1.39349000	-1.36976700
С	-0.50385700	2.10437900	-1.29515700
С	0.67241200	-0.03426600	-1.58551100
С	-1.72949000	1.45272700	-1.44966500
Н	-0.45975400	3.17341900	-1.11869900
С	-0.55320800	-0.69510100	-1.72229600
С	-1.75392700	0.01439800	-1.66876600
Н	-0.54361500	-1.76977200	-1.87196900

Н	0.45910200	-3.17375800	1.11923100
Н	0.54422000	1.76957600	1.87142200
С	3.00775700	0.64908600	1.81962800
С	2.96360800	-2.16670000	1.38650200
С	4.19056700	-1.50448500	1.56840200
С	4.21170000	-0.07193800	1.79169800
С	-3.00743200	-0.64985100	-1.82002400
С	-2.96399500	2.16569500	-1.38592600
С	-4.19080400	1.50342100	-1.56878000
С	-4.21156200	0.07094500	-1.79243900
С	2.98686300	1.34724300	-1.30682700
С	-2.98704200	-1.34667000	1.30693900
С	2.95726700	-0.10326700	-1.52632100
С	-2.95712200	0.10381200	1.52638400
С	4.19290000	-0.83961100	-1.59281600
С	4.25800300	2.00513700	-1.14216500
С	5.42735300	-2.19750300	1.51075200
Н	5.41430600	-3.26889400	1.32816900
С	5.46188200	0.57632100	1.95892200
Н	5.46916300	1.65118800	2.12374500
С	-4.25823800	-2.00433900	1.14231800
С	-4.19256900	0.84037100	1.59296700
С	-5.42770200	2.19623400	-1.51159700
Н	-5.41508200	3.26760100	-1.32882500
С	-5.46152500	-0.57753500	-1.96019000
Н	-5.46855200	-1.65239400	-2.12506700
С	-6.65154400	0.11484200	-1.91074800
С	-6.63372100	1.54592300	-1.67264700
С	5.38899600	-0.17447100	-1.40703900
С	5.41924600	1.25570100	-1.17049300
С	6.63355200	-1.54737900	1.67097000
С	6.65174000	-0.11627400	1.90902600
С	-5.41934000	-1.25464000	1.17020700
С	-5.38876500	0.17552900	1.40654600
С	6.63908300	-0.88566600	-1.43717600
С	6.69885900	1.87208200	-0.94642300
С	7.82823200	-0.24214100	-1.28144400
Н	8.74181700	-0.82664400	-1.30153300
С	7.89116700	-2.24171900	1.57281400
Н	7.87647400	-3.30714200	1.36279400
С	7.92184600	0.54468500	2.05899100
Н	7.92766100	1.61936300	2.22476000
С	9.06408200	-1.57253400	1.70909800
Н	10.00660200	-2.10395500	1.62274000

С	-6.69901900	-1.87081700	0.94610200
С	-6.63862700	0.88707400	1.43592800
С	-7.85609000	-1.15681900	1.02321700
Н	-8.79412700	-1.66900100	0.83647700
С	-7.89148500	2.24005200	-1.57514400
Н	-7.87709200	3.30547300	-1.36512100
С	-7.92144500	-0.54637600	-2.06120100
Н	-7.92698400	-1.62105800	-2.22694600
С	-9.08054200	0.15374200	-1.96574200
Н	-10.03487700	-0.35265100	-2.07322400
С	7.85607900	1.15840400	-1.02403400
Н	8.79402500	1.67075200	-0.83728000
С	9.08076300	-0.15565700	1.96300700
Н	10.03524300	0.35054400	2.07012900
С	-7.82792300	0.24382000	1.28000900
Н	-8.74135200	0.82858000	1.29952000
С	-9.06422200	1.57062900	-1.71194100
Н	-10.00687300	2.10189800	-1.62605300
С	-6.79160300	-3.29894500	0.55201900
С	-6.66408700	2.36764500	1.57275600
С	6.79123700	3.30010300	-0.55194800
С	6.66495800	-2.36620800	-1.57432500
Ν	5.59830400	4.00135200	-0.55625800
Ν	-5.43476300	2.97834100	1.73719500
Ν	-5.59868500	-4.00024400	0.55598300
Ν	5.43559400	-2.97733200	-1.73630500
С	4.34214000	3.48519100	-0.93488900
С	-4.19707300	2.31808400	1.85391500
С	4.19755900	-2.31758100	-1.85222200
С	-4.34269700	-3.48445900	0.93580600
0	-7.84951100	-3.81425200	0.24007800
0	-3.42093300	-4.25724000	1.05630900
0	-3.22482900	2.97138200	2.14979600
0	3.41987700	4.25764500	-1.05385600
0	7.84906300	3.81543000	-0.23976200
0	7.70421100	-2.99837900	-1.53229600
0	3.22510600	-2.97162300	-2.14577200
0	-7.70307300	3.00013800	1.52904500
С	-5.62587800	-5.42855000	0.25156100
Н	-4.90414300	-5.64348700	-0.53849300
Н	-5.34528000	-6.00245300	1.13669000
Н	-6.63369800	-5.68112100	-0.06735800
С	-5.38783600	4.42981700	1.89799200
Н	-5.06581400	4.68241100	2.91044600

Н	-4.66409500	4.83815200	1.19062100	
Н	-6.38546600	4.81693600	1.70731200	
С	5.62524900	5.42959800	-0.25150100	
Н	5.34133700	6.00333600	-1.13565400	
Н	4.90587500	5.64388600	0.54090800	
Н	6.63385800	5.68290700	0.06431800	
С	5.38834900	-4.42931500	-1.89271900	
Н	4.66291900	-4.83375400	-1.18491500	
Н	5.06801200	-4.68536400	-2.90483200	
Н	6.38541500	-4.81634200	-1.69887300	
Ν	-1.80879000	0.74949400	1.64912300	
Ν	-1.86777400	-2.04741800	1.22403700	
Ν	1.80912400	-0.74914400	-1.64933100	
Ν	1.86746900	2.04771600	-1.22399700	
С	3.02721200	2.06992400	1.95906100	
С	2.94418200	-3.57389300	1.14826000	
С	-3.02664400	-2.07070500	-1.95929200	
С	-2.94503000	3.57251800	-1.14571300	
С	-3.01945300	-3.27681600	-2.03001300	
Н	-2.98862000	-4.34344700	-2.07068200	
С	-2.91790500	4.76418000	-0.94851100	
Н	-2.87623800	5.81703600	-0.77662900	
С	3.02015900	3.27602600	2.02992900	
Н	2.98934400	4.34265500	2.07075600	
С	2.91645300	-4.76596500	0.95353000	
Н	2.87418900	-5.81918800	0.78403900	

Table S10. Cartesian coordinates of the ground state optimized geometry for T1

C	-0.13104000	-1.78711600	0.54707500
С	-1.38159800	-1.21426800	0.94323100
С	-1.36014100	0.16811300	1.40366600
С	-0.10431100	0.77629800	1.64653400
С	1.11290800	0.05299200	1.61194600
С	1.08330000	-1.32900500	1.15081300
С	1.41301100	1.32902600	-1.32869600
С	0.20393600	2.05158300	-1.30965800
С	1.37178800	-0.11878800	-1.51003400
С	-1.04641300	1.44348800	-1.53582900
Н	0.24230300	3.12969000	-1.16945600
С	0.09120300	-0.78375500	-1.53785000
С	-1.10920700	-0.00332200	-1.71899200
Н	0.07676500	-1.79863400	-1.92724000
Н	-0.14983900	-2.81945600	0.19970100

Н	-0.08116700	1.82105800	1.94917300
С	2.33976900	0.61397800	1.94361200
С	2.22937500	-2.08352000	1.17240100
С	3.47725800	-1.55080900	1.61443100
С	3.54211800	-0.14720000	1.94326300
С	-2.33416000	-0.58446500	-1.95878700
С	-2.21479200	2.19158500	-1.57520200
С	-3.48248800	1.59708800	-1.79025100
С	-3.54577600	0.17167000	-1.99984000
С	3.86101200	1.25531500	-1.17173300
С	-3.82945900	-1.21067600	0.99902600
С	3.82665300	-0.17145500	-1.37885500
С	-3.81853300	0.19544900	1.32329300
С	5.01927200	-0.88723600	-1.33855900
С	5.08788900	1.88673100	-0.96203300
С	4.63570800	-2.31804900	1.66070000
Н	4.57987300	-3.37895400	1.42214800
С	4.78344700	0.41722100	2.23903300
Н	4.84560100	1.48241300	2.45354200
С	-5.04514400	-1.86739000	0.84529900
С	-5.03437800	0.87427000	1.41202900
С	-4.66361900	2.34057900	-1.78338500
Н	-4.61177200	3.41740200	-1.63405500
С	-4.78924500	-0.43072000	-2.16481500
Н	-4.84469500	-1.50986600	-2.29485500
С	-5.97891500	0.31193600	-2.13431100
С	-5.91360400	1.73258200	-1.94734300
С	6.25050300	-0.25726000	-1.10408600
С	6.28621800	1.16477400	-0.91968300
С	5.87847100	-1.75732000	1.99444800
С	5.95599400	-0.35155400	2.26516800
С	-6.26907500	-1.19181500	0.97120400
С	-6.26068100	0.21717700	1.23605600
С	7.46981300	-0.99040200	-1.01760700
С	7.54492000	1.79498300	-0.68479900
С	8.65590200	-0.35397500	-0.78235700
Н	9.57518900	-0.92650000	-0.70388400
С	7.07055900	-2.53605700	2.05718600
Н	7.00283700	-3.60358400	1.86168900
С	7.22956500	0.21957400	2.55761600
Н	7.28802500	1.29012400	2.73687800
С	8.27164800	-1.95589400	2.35714400
Н	9.17294600	-2.55991600	2.40380300
С	-7.52159100	-1.85673900	0.82796000

С	-7.50700100	0.90563300	1.31612300
С	-8.69718200	-1.16592000	0.92762600
Н	-9.64544500	-1.68383000	0.81844100
С	-7.13028700	2.47800900	-1.92100200
Н	-7.07465300	3.55577900	-1.78949200
С	-7.25789700	-0.30490900	-2.25841800
Н	-7.30288800	-1.38548000	-2.36809000
С	-8.40278500	0.44001300	-2.21956500
Н	-9.37109900	-0.04464300	-2.30023700
С	8.69451100	1.05998500	-0.62034500
Н	9.64595600	1.55019600	-0.43665400
С	8.35321400	-0.55702400	2.60241800
Н	9.31733600	-0.10846500	2.82236500
С	-8.68914700	0.23638400	1.16665100
Н	-9.63090200	0.77368400	1.22595900
С	-8.33732100	1.85271100	-2.05518300
Н	-9.25675300	2.43000100	-2.02912400
С	7.41709900	-2.52174400	-1.17192100
С	7.57728500	3.32381400	-0.50251600
С	-7.49077900	2.42539800	1.56441900
С	-7.52069500	-3.37311900	0.55928100
С	-2.42273000	-2.10774400	-2.16705400
С	-2.49181500	-3.29590200	-2.32950200
Н	-2.55335500	-4.35428500	-2.47420700
С	-2.13560700	3.71653400	-1.37554700
С	-2.07384300	4.90599400	-1.21981700
Н	-2.01882500	5.96553600	-1.08109600
С	2.18337500	-3.54644300	0.69350700
С	2.14749500	-4.68752300	0.31996900
Н	2.11553300	-5.70397000	-0.01276900
С	2.40897000	2.09939200	2.34405600
С	2.46294600	3.25801500	2.65640300
Н	2.51102700	4.29008900	2.93463300
Ν	-6.24601300	-4.09807500	0.45669200
Ν	-6.20903800	3.12976300	1.71243900
Ν	6.12862400	-3.19078400	-1.40239100
Ν	6.32867300	4.09643800	-0.57265600
Ν	2.56068900	-0.81227700	-1.54650200
Ν	2.63551400	1.96585200	-1.16670400
Ν	-2.57984200	-1.85965800	0.76738200
Ν	-2.56809400	0.84244400	1.53024800
С	-5.04972700	-3.37136500	0.51418300
С	-5.03233000	2.38550700	1.70827100
С	4.98616600	-2.41630800	-1.51867500

O-8.60741500-3.993747000.42725100O-8.570997003.066358001.64103300O-4.000731003.060122001.96178100O-4.014725004.045200000.272078000	
O -8.57099700 3.06635800 1.64103300 O -4.00073100 3.06012200 1.96178100 O -4.01472500 4.04520000 0.27207800	
O -4.00073100 3.06012200 1.96178100	
0 4 01 472 500 4 0 4 5 2 9 0 0 0 0 2 7 2 0 2 9 0 0	
0 -4.014/2500 -4.04528000 0.2/29/800	
O 3.94862400 -3.07999200 -1.77674700	
O 8.47324300 -3.20230000 -1.10139900	
O 4.09623600 4.14206600 -0.73063700	
O 8.66894300 3.91395000 -0.29372900	
C -6.17039600 4.59162700 1.86196700	
Н -5.86045100 4.84047100 2.85540100	
Н -5.47765000 5.00393200 1.15840000	
Н -7.14496200 4.99455600 1.68094100	
C -6.22697000 -5.55921500 0.29666400	
Н -5.89598400 -5.80560500 -0.69057400	
Н -5.55894300 -5.98792300 1.01419300	
Н -7.21212400 -5.94766500 0.44989100	
C 6.05397900 -4.65511700 -1.50753900	
Н 5.37012300 -5.03087700 -0.77538800	
Н 5.71384600 -4.92561500 -2.48531200	
Н 7.02363400 -5.07473400 -1.33845400	
C 6.34790100 5.56153800 -0.45428500	
Н 5.83945900 5.99365200 -1.29074500	
Н 5.85700500 5.85271700 0.45077700	
Н 7.36123500 5.90468000 -0.43672500	

Table S11. Cartesian coordinates of the ground state optimized geometry for M1

С	-0.08278300	1.28707700	0.81784700
С	1.16801700	0.66497600	1.36389200
С	1.24969900	-0.77141700	1.28747000
С	0.02732800	-1.51700900	0.82511300
С	-1.23415000	-0.89368200	1.36292200
С	-1.31752200	0.53576800	1.28455900
С	-1.24970700	-0.77126100	-1.28751600
С	-0.02731800	-1.51690300	-0.82526400
С	-1.16801800	0.66513800	-1.36381500
С	1.23416500	-0.89350100	-1.36299300
Н	-0.12340800	-2.56210600	-1.12011900
С	0.08276800	1.28718500	-0.81770000
С	1.31750300	0.53594600	-1.28451400
Н	0.13162600	2.33371600	-1.11914900
Н	-0.13165200	2.33357100	1.11942200
Н	0.12342300	-2.56224800	1.11984200

C	-2.34258400	-1.65001400	1.66357000
С	-2.52240400	1.17186700	1.48550600
С	-3.71463300	0.41134700	1.78875400
С	-3.62151800	-1.01607600	1.88870500
С	2.52235500	1.17210200	-1.48543900
С	2.34263700	-1.64977200	-1.66366400
С	3.62155200	-1.01577300	-1.88875700
С	3.71460900	0.41164900	-1.78874500
С	-3.50789200	-0.64029300	-1.53272200
С	3.40955500	0.78337700	1.70109000
С	-3.40954700	0.78359500	-1.70100400
С	3.50787800	-0.64050000	1.53270800
С	-4.57633700	1.57195500	-1.72735300
С	-4.76758100	-1.24773200	-1.35201600
С	-4.95772400	1.02644600	1.93482700
Н	-5.02623400	2.10852900	1.85295700
С	-4.77760700	-1.76082000	2.11457800
Н	-4.70544400	-2.84394100	2.17502500
С	4.57636600	1.57170900	1.72747600
С	4.76754800	-1.24795000	1.35192400
С	4.77767800	-1.76045500	-2.11464000
Н	4.70556800	-2.84357700	-2.17512000
С	4.95766900	1.02681300	-1.93478800
Н	5.02613000	2.10889600	-1.85287100
С	6.11755400	0.28265600	-2.17848200
С	6.02620200	-1.14552400	-2.26071700
С	-5.80418100	0.97661900	-1.42337000
С	-5.90260600	-0.43649800	-1.23701400
С	-6.11757100	0.28222800	2.17851700
С	-6.02615400	-1.14595200	2.26071000
С	5.80419300	0.97636900	1.42342300
С	5.90258500	-0.43673600	1.23695300
С	-6.97020100	1.77553300	-1.22850000
С	-7.17213300	-0.99397000	-0.90010900
С	-8.17158200	1.20364400	-0.90714900
Н	-9.02744900	1.85143000	-0.74688400
С	-7.39394300	0.90265400	2.34363600
Н	-7.45685000	1.98636300	2.28091900
С	-7.21971800	-1.90081200	2.47546500
Н	-7.14983200	-2.98534200	2.50796600
С	-8.51057600	0.14734300	2.56285800
Н	-9.47686000	0.62692400	2.68691700
С	6.97023100	1.77526500	1.22858900
С	7.17208800	-0.99421800	0.89996800

С	8.17159100	1.20336800	0.90717000
Н	9.02747200	1.85114400	0.74694200
С	7.21980800	-1.90032100	-2.47546100
Н	7.14996900	-2.98485300	-2.50800200
С	7.39390100	0.90314800	-2.34355600
Н	7.45675600	1.98685700	-2.28080400
С	8.51057300	0.14789500	-2.56277600
Н	9.47683800	0.62752500	-2.68680100
С	-8.27674400	-0.19951300	-0.75276200
Н	-9.21644900	-0.66695600	-0.47758800
С	-8.42389200	-1.27454900	2.61868900
Н	-9.32608500	-1.85923400	2.76735300
С	8.27671800	-0.19978200	0.75267000
Н	9.21641000	-0.66722500	0.47744800
С	8.42395700	-1.27400000	-2.61864300
Н	9.32618000	-1.85863900	-2.76730200
Ν	-2.19076900	1.41034900	-1.63937000
Ν	-2.37561800	-1.40262300	-1.40150400
Ν	2.19078000	1.41015200	1.63950800
Ν	2.37559900	-1.40280300	1.40141200
С	-6.89359900	3.25889100	-1.30322200
С	-7.31617800	-2.45081700	-0.63901000
С	7.31607200	-2.45105000	0.63874800
С	6.89367000	3.25861800	1.30343100
С	2.63551500	2.58258700	-1.26641200
С	2.27341500	-3.07945300	-1.62710100
С	2.22449500	-4.28465900	-1.58155100
Н	2.17011000	-5.34932500	-1.52653400
С	2.73417900	3.76340600	-1.03412900
Н	2.80175900	4.80779000	-0.82317100
С	-2.27330100	-3.07968900	1.62696400
С	-2.22435400	-4.28489300	1.58137700
Н	-2.16989700	-5.34955600	1.52638700
С	-2.63561800	2.58236100	1.26655700
С	-2.73433500	3.76318800	1.03434100
Н	-2.80198100	4.80757200	0.82340400
Ν	-6.14791500	-3.19536100	-0.71405100
Ν	-5.66070700	3.78700700	-1.66158700
Ν	5.66080500	3.78673600	1.66188900
Ν	6.14775700	-3.19553100	0.71358700
С	4.90929500	-2.73082600	1.19473300
С	4.52000500	3.03899300	2.00401900
С	-4.51993900	3.03925700	-2.00379900
С	-4.90936200	-2.73061300	-1.19492300

0	4.04600500	-3.53640400	1.45130900
Ο	8.38623800	-2.95686100	0.36204100
0	7.85498900	3.96462500	1.06729800
0	3.57604700	3.60442200	2.50477000
Ο	-3.57597800	3.60469000	-2.50453900
Ο	-7.85489500	3.96490900	-1.06703500
Ο	-4.04598600	-3.53617600	-1.45127100
0	-8.38638000	-2.95659400	-0.36237500
С	-6.22129000	-4.63152500	-0.45887300
Н	-6.15367800	-5.18835200	-1.39646900
Н	-5.37925500	-4.91715500	0.17384600
Н	-7.17074400	-4.83463700	0.03049700
С	-5.55047800	5.23078100	-1.85635100
Н	-4.67034000	5.59721200	-1.32612000
Н	-5.42958100	5.45659600	-2.91811800
Н	-6.45700100	5.68901100	-1.46977100
С	5.55061100	5.23049500	1.85678500
Н	4.67062600	5.59704800	1.32638000
Н	5.42946200	5.45618700	2.91854700
Н	6.45725200	5.68871500	1.47047000
С	6.22111600	-4.63166200	0.45823400
Н	6.15437000	-5.18861900	1.39582100
Н	5.37859500	-4.91730300	-0.17381800
Н	7.17020400	-4.83462300	-0.03191600

Table S12. Cartesian coordinates of the ground state optimized geometry for T2

C	-0.02126500	-1.51071700	0.81805600
С	-1.29858500	-0.87965700	1.31350400
С	-1.35934100	0.55237300	1.27269000
С	-0.10322000	1.29681500	0.85613200
С	1.12621200	0.64862900	1.42342700
С	1.18577900	-0.78955800	1.34958500
С	1.36022200	0.60602500	-1.21973600
С	0.10387700	1.32969100	-0.77263500
С	1.30640400	-0.82436300	-1.30150500
С	-1.12069400	0.69877300	-1.36676800
Н	0.14338000	2.38177300	-1.05452700
С	0.02986600	-1.47798600	-0.82860200
С	-1.18058400	-0.74101000	-1.33410400
Н	-0.03257800	-2.51753800	-1.15069000
Н	0.04533600	-2.56142500	1.10015600
Н	-0.14710200	2.33716700	1.17855400
С	3.43461900	-0.70079300	1.65455000

С	3.36460200	0.72880300	1.78616100
С	-3.35498800	0.79296000	-1.74780200
С	-3.43016100	-0.63807000	-1.63948300
С	2.43731100	-1.55440600	-1.58728600
С	2.55380500	1.26776900	-1.40380000
С	-2.55957100	1.20029600	1.46396100
С	-2.42454800	-1.62576500	1.57439100
С	3.75975300	0.53736900	-1.72248700
С	-3.69409500	-0.97839400	1.81583800
С	3.69926300	-0.89090600	-1.82800000
С	-3.76446800	0.45199200	1.74618100
С	4.86791600	-1.60503900	-2.09351000
С	4.98489500	1.18374000	-1.88727400
Н	5.02839800	2.26631500	-1.79567600
С	4.68039200	-1.33650200	1.48564800
С	4.54678400	1.49451900	1.77838800
С	-4.86072800	-1.70929200	2.03803900
Н	-4.80681200	-2.79435000	2.07500700
С	-4.99761800	1.08346000	1.90744400
Н	-5.04930400	2.16763500	1.84427300
С	-4.53423300	1.56310500	-1.74085300
С	-4.67971500	-1.27102200	-1.48839700
С	-5.82452000	-0.48392700	-1.32141700
С	-5.75054100	0.93630200	-1.45146100
С	6.09542100	-0.95754400	-2.27391600
С	6.15487100	0.47164200	-2.16993400
С	5.82199300	-0.54900800	1.30207100
С	5.75620700	0.86916000	1.45674100
С	-6.09727400	-1.07728000	2.21007900
С	-6.16681200	0.35366900	2.14719700
С	7.29984700	-1.67861400	-2.54476200
Н	7.25784400	-2.76314100	-2.59475100
С	7.41213900	1.12661200	-2.35379600
Н	7.45162100	2.20954900	-2.26400400
С	8.48217900	-1.01904300	-2.71306900
Н	9.39148800	-1.57802700	-2.90932000
С	7.05536900	-1.13771200	0.89526600
С	6.92851000	1.63918000	1.19892400
С	8.16571500	-0.36917000	0.67267100
Н	9.07370000	-0.85510900	0.33196600
С	-7.30093300	-1.81595100	2.43046700
Н	-7.24918300	-2.90133600	2.45059400
С	-7.43306400	0.99216000	2.32524300
Н	-7.47989100	2.07710800	2.27006600

С	-8.49303600	-1.17200600	2.59124900
Н	-9.40190500	-1.74420000	2.74708300
С	-6.92401900	1.70755100	-1.20239300
С	-7.07420700	-1.07447400	-0.96686300
С	-8.18756400	-0.30418200	-0.76575700
Н	-9.11003800	-0.79362000	-0.47215300
С	8.53841700	0.40392800	-2.62290100
Н	9.48924400	0.90940300	-2.76185800
С	8.10065200	1.03635000	0.82764000
Н	8.96016000	1.66266600	0.61313300
С	-8.55904500	0.25236900	2.54606700
Н	-9.51691000	0.74577500	2.68000300
С	-8.10977400	1.10490700	-0.87948500
Н	-8.97086500	1.73181800	-0.67237800
Н	4.82125300	-2.68874900	-2.16386400
С	-6.85644200	3.19129700	-1.19645500
С	-7.17654800	-2.53782000	-0.72054000
С	7.13191400	-2.59389900	0.60711600
С	6.88001100	3.12452700	1.23566200
Ν	-5.63319400	3.75546000	-1.52479700
Ν	5.66887500	3.68486600	1.61955200
Ν	5.99082500	-3.33551800	0.87254700
Ν	-6.00364800	-3.26231900	-0.87916100
Ν	2.15815500	1.37751000	1.71095600
Ν	2.29216900	-1.44391000	1.50861600
Ν	-2.14830400	1.43663500	-1.64498100
Ν	-2.28968800	-1.38786800	-1.50730000
С	-2.37950400	-3.05463100	1.48854100
С	-2.34897800	-4.25784000	1.39444000
Н	-2.30750900	-5.32022000	1.29784700
С	-2.65466800	2.61437500	1.25810000
С	-2.74294000	3.79740100	1.03213300
Н	-2.80448500	4.84309800	0.82503400
С	2.40898400	-2.98484000	-1.52556500
С	2.40099700	-4.18920500	-1.44306300
Н	2.38216700	-5.25285300	-1.35439300
С	2.63793400	2.67676600	-1.16220700
С	2.71014800	3.85562300	-0.91048400
Н	2.75329100	4.89790200	-0.68320200
С	4.52379100	2.96971800	2.01320200
С	4.79037500	-2.82842800	1.40860600
С	-4.49593600	3.04290900	-1.95167800
С	-4.79827700	-2.76083600	-1.40396100
0	-3.56938800	3.62752300	-2.46120100

0	-7.81407700	3.88756000	-0.91768400
Ο	-8.21934000	-3.06616000	-0.38611800
Ο	-3.94202800	-3.53925600	-1.75122500
Ο	3.92968600	-3.58819400	1.78395500
Ο	8.13728400	-3.11641400	0.16441100
Ο	7.84364000	3.80723400	0.94542100
Ο	3.60293400	3.56647700	2.52054300
С	5.58968800	5.13522800	1.77406200
Н	4.70025500	5.50169900	1.25998900
Н	5.50541400	5.39451900	2.83159800
Н	6.49128800	5.56554500	1.34629500
С	6.07180600	-4.77807200	0.65197000
Н	7.09048200	-5.10424800	0.85319800
Н	5.36223500	-5.26524100	1.31593100
Н	5.82121100	-5.01129500	-0.38737900
С	-6.04379600	-4.70753800	-0.67203200
Н	-5.17220300	-4.99975500	-0.08421700
Н	-6.96766400	-4.94356200	-0.15000900
Н	-6.00683500	-5.23007600	-1.63059100
С	-5.59346000	5.21424600	-1.59298200
Н	-4.55445800	5.51929200	-1.68795800
Н	-6.16181700	5.57076400	-2.45579400
Н	-6.04632500	5.61815500	-0.68768100

 Table S13. Cartesian coordinates of the ground state optimized geometry for M2

С	0.05436400	-1.51554100	1.20223100	
С	-1.12391000	-0.88715800	1.90088500	
С	-1.19469600	0.54216500	1.86363600	
С	-0.01409900	1.29060500	1.27704200	
С	1.28089000	0.63762700	1.66598000	
С	1.33102300	-0.79803800	1.55038000	
С	1.12534000	0.59182200	-0.97868700	
С	-0.04183300	1.33627700	-0.34793300	
С	1.02614100	-0.83562900	-1.07861200	
С	-1.33575500	0.73424200	-0.81116900	
Н	-0.02060600	2.38810900	-0.63368700	
С	-0.17346000	-1.47095800	-0.41425500	
С	-1.42282700	-0.70724000	-0.77752900	
Н	-0.30655800	-2.50446300	-0.73516500	
Н	0.16610000	-2.56790000	1.46466800	
Н	-0.01191800	2.32683800	1.61571200	
С	3.60237800	-0.70321400	1.54367400	
С	3.54760500	0.71757500	1.75350500	

С	-3.52022600	0.86296700	-1.43015800
С	-3.62617800	-0.57038600	-1.33588000
С	2.08666900	-1.58662600	-1.52868600
С	2.30119900	1.22931200	-1.30610900
С	-2.34207400	1.19142400	2.25751900
С	-2.16835300	-1.63394900	2.39098100
С	3.44384200	0.47411600	-1.76993100
С	-3.35571200	-0.98169500	2.89287400
С	3.33122100	-0.94997200	-1.89637400
С	-3.45061000	0.44623600	2.80846700
С	4.44482900	-1.68923700	-2.29151800
С	4.66313800	1.09036300	-2.04794500
Н	4.74734400	2.16911200	-1.94131100
С	4.81923200	-1.32248000	1.19485600
С	4.72464900	1.48636900	1.66632000
С	-4.42572200	-1.70691800	3.41193100
Н	-4.35306800	-2.78956800	3.46553600
С	-4.61198200	1.08085900	3.24428800
Н	-4.68015500	2.16315800	3.17501700
С	-4.64168000	1.63356000	-1.79319700
С	-4.86055000	-1.20294900	-1.56908300
С	-5.94456500	-0.43910300	-2.02261400
С	-5.83371700	0.97995400	-2.14040000
С	5.66760200	-1.07227200	-2.57815600
С	5.77917700	0.35198900	-2.45644600
С	5.94423900	-0.52452600	0.95707500
С	5.89717400	0.88207300	1.20096800
С	-5.58888700	-1.07184800	3.85663700
С	-5.68477200	0.35555600	3.77018700
С	6.81841600	-1.82070600	-2.97371500
Н	6.73775000	-2.90288200	-3.03993200
С	7.02992800	0.97469900	-2.75393200
Н	7.10772900	2.05502900	-2.65827000
С	7.99959200	-1.19230700	-3.24304700
Н	8.87048300	-1.77365100	-3.52808200
С	7.14660200	-1.08966500	0.43648900
С	7.04875500	1.66753100	0.89675800
С	8.24019400	-0.30807900	0.17959700
Н	9.12722000	-0.77735000	-0.23279900
С	-6.69284600	-1.80506100	4.39255100
Н	-6.61315500	-2.88701100	4.45556600
С	-6.88063300	0.99441300	4.22358500
Н	-6.94655800	2.07707000	4.15612300
С	-7.81794700	-1.16037800	4.81482900

Н	-8.65117700	-1.72540200	5.22108200
С	-6.95969400	1.71156500	-2.61720700
С	-7.17165500	-1.06353100	-2.39014800
С	-8.23123800	-0.32703700	-2.85036200
Н	-9.14024600	-0.84796600	-3.13186300
С	8.10440400	0.22612600	-3.14096600
Н	9.05160600	0.70801300	-3.36393600
С	8.18774900	1.08810000	0.40553100
Н	9.03259300	1.72599200	0.16736900
С	-7.91341400	0.26092900	4.72881400
Н	-8.81776100	0.75470800	5.07066900
С	-8.12422100	1.07728100	-2.96318500
Н	-8.94953900	1.67715000	-3.33199000
Н	4.36079000	-2.77000700	-2.37480600
С	-6.89217600	3.18783100	-2.77837400
С	-7.32494600	-2.54167400	-2.31389200
С	7.22322100	-2.53708400	0.10367400
С	7.01826300	3.14702100	1.04494700
Ν	-5.70322000	3.78658000	-2.38595100
Ν	5.84347900	3.68330100	1.55388000
Ν	6.06426000	-3.26829900	0.32035000
Ν	-6.23575100	-3.24070900	-1.81391700
Ν	2.34000600	1.36239500	1.84395900
Ν	2.45166000	-1.44782700	1.52709300
Ν	-2.32745500	1.48764800	-1.16099900
Ν	-2.52330200	-1.33535600	-1.04120400
С	-2.11059100	-3.06419100	2.35798500
С	-2.05881500	-4.26937200	2.32736600
Н	-2.01644800	-5.33484900	2.28447100
С	-2.48335300	2.59426600	2.01511700
С	-2.60974900	3.75809700	1.72099900
Н	-2.73007500	4.77373000	1.41535900
С	2.01779100	-3.01682200	-1.51313400
С	1.97206400	-4.22265800	-1.48204400
Н	1.92180000	-5.28797800	-1.43669700
С	2.44909400	2.63335100	-1.06657600
С	2.58395100	3.80747900	-0.81931100
Н	2.68524400	4.84544700	-0.59103700
С	4.72908200	2.94465500	1.99138600
С	4.91637300	-2.80280100	0.98945400
С	-4.61128700	3.13340500	-1.78648900
С	-5.06078000	-2.66399700	-1.29994700
0	-3.72764900	3.80580200	-1.30755600
0	-7.82438500	3.83070400	-3.21880200

0	-8.34692200	-3.09998900	-2.66043900	
0	-4.29428400	-3.35659800	-0.67334700	
0	4.09011900	-3.60473800	1.35553800	
0	8.23260700	-3.04612800	-0.34337800	
0	7.96712900	3.84341400	0.73958400	
0	3.85499200	3.51004800	2.60618800	
С	5.78808600	5.12009600	1.81267800	
Н	4.85278700	5.51813100	1.41735700	
Н	5.81286000	5.30825400	2.88843600	
Н	6.64453000	5.58019100	1.32680100	
С	6.07603900	-4.69731400	0.01937500	
Н	6.13084900	-5.28017900	0.94184000	
Н	5.14848300	-4.95290200	-0.49578700	
Н	6.94289900	-4.89992700	-0.60491100	
С	-6.36580900	-4.68496100	-1.62883300	
Н	-5.45312500	-5.16965400	-1.97552900	
Н	-6.50271100	-4.91768200	-0.57010000	
Н	-7.22778100	-5.01624000	-2.20211400	
С	-5.60821100	5.24371200	-2.45601500	
Н	-5.67031600	5.67387300	-1.45356700	
Н	-4.64702900	5.51678900	-2.89180500	
Н	-6.43147600	5.60014500	-3.06965800	

Table S14. Cartesian coordinates of the ground state optimized geometry for T3

C	-0.13744500	-1.54058600	-0.22011800	
С	1.07821800	-1.01547800	-0.94951600	
С	1.16912300	0.40935900	-1.08585800	
С	-0.01858400	1.23900800	-0.62102200	
С	-1.29890200	0.55712400	-1.00410800	
С	-1.37249800	-0.86446700	-0.76364600	
С	-1.22954400	0.82230100	1.66491700	
С	-0.03879000	1.47199500	0.98897100	
С	-1.15212000	-0.58033000	1.94204500	
С	1.24797600	0.90600700	1.51571000	
С	0.04539300	-1.30614900	1.38392300	
С	1.31016800	-0.52823100	1.64081500	
С	-3.55445000	-0.84468900	-1.42345400	
С	-3.49442300	0.58341100	-1.60204100	
С	3.51100300	1.02316700	1.63397400	
С	3.58131200	-0.41207300	1.66943600	
С	-2.19640200	-1.23801000	2.54749000	
С	-2.38622000	1.51990900	1.92597800	
С	2.35045700	0.99342700	-1.48693300	

С	2.15413500	-1.82217000	-1.23739200
С	-3.49860700	0.87103400	2.58018900
С	3.40282400	-1.24532300	-1.68098600
С	-3.39395100	-0.51855000	2.91663800
С	3.50536700	0.18019300	-1.79745100
С	-4.46428700	-1.14912100	3.54770100
Н	-4.38313700	-2.20301900	3.79908900
С	-4.67173100	1.56047200	2.87997300
Н	-4.74698800	2.61262200	2.61890000
С	-4.75855600	-1.53387500	-1.65579000
С	-4.65385200	1.30860400	-1.94372600
С	4.52808500	-2.03222100	-1.92057700
Н	4.45155600	-3.11162800	-1.81604900
С	4.72610900	0.74909100	-2.15907900
Н	4.80358000	1.83066800	-2.23976200
С	4.67913600	1.78101800	1.42359800
С	4.81136200	-1.06669800	1.45573300
С	5.93170400	-0.30686600	1.09895100
С	5.86245700	1.11973900	1.08131400
С	-5.63944600	-0.45771200	3.85617600
С	-5.74685700	0.92942000	3.51225600
С	-5.91840200	-0.80299400	-1.94954500
С	-5.86673900	0.61808300	-2.09412500
С	5.75206300	-1.46389300	-2.28944500
С	5.85207200	-0.03979800	-2.41948200
С	-6.74487500	-1.09474600	4.50098800
Н	-6.65713700	-2.14649800	4.75985100
С	-6.95508200	1.62591600	3.82606500
Н	-7.02905300	2.67784700	3.56351000
С	-7.88253400	-0.39762400	4.78283700
Н	-8.71684900	-0.89019600	5.27223700
С	-7.17688600	-1.46011300	-2.08076900
С	-7.07482600	1.31098200	-2.39823100
С	-8.31835400	-0.75708000	-2.36175000
Н	-9.25487400	-1.29882900	-2.44102100
С	6.91430200	-2.25992200	-2.52728900
Н	6.84190600	-3.33711000	-2.39934800
С	7.10206400	0.53180400	-2.80934800
Н	7.17088400	1.61265200	-2.90695200
С	8.09490300	-1.67840400	-2.88888100
Н	8.97425100	-2.29240500	-3.05538700
С	7.00259100	1.85420600	0.63913900
С	7.15000100	-0.93640600	0.70434000
С	8.23392400	-0.19743700	0.31430200

Н	9.13067100	-0.72173100	0.00085600
С	-7.98933300	0.98359300	4.44017700
Н	-8.90323100	1.52046200	4.67416800
С	-8.26406100	0.64375500	-2.53231500
Н	-9.15542900	1.21786200	-2.76161200
С	8.18755100	-0.26366600	-3.04176600
Н	9.13382500	0.17914800	-3.33802200
С	8.15654500	1.21551700	0.27366100
Н	8.99134400	1.81349000	-0.07748500
Н	-0.25436100	-2.61487600	-0.36509900
Н	0.00563300	2.22836900	-1.07844000
Н	-0.05236600	2.55065200	1.14666700
Н	0.15690700	-2.29709400	1.82470600
С	-7.08409800	2.78677400	-2.57094800
С	-7.29379600	-2.93014000	-1.88262400
С	6.92951500	3.33019300	0.48816000
С	7.24983500	-2.41851100	0.63724200
С	2.49105600	2.41835800	-1.46948100
С	2.62149300	3.61694600	-1.40037800
Н	2.72064600	4.67783700	-1.32948900
С	2.09362300	-3.22892200	-0.97820300
С	2.05726800	-4.41181700	-0.74060600
Н	2.01274700	-5.45447400	-0.51618600
С	-2.52882400	2.86139300	1.45011500
С	-2.65406600	3.95971800	0.96471000
Н	-2.76660400	4.91185300	0.49488300
С	-2.12699300	-2.65085700	2.77282700
С	-2.06788200	-3.84191700	2.95861700
Н	-2.00973900	-4.89603200	3.11573800
Ν	6.09586600	-3.11734200	0.96127900
Ν	5.74483800	3.93386600	0.88007900
Ν	-5.86114300	3.42099300	-2.41400200
Ν	-6.10986700	-3.60434000	-1.62421100
С	4.92696000	-2.55859900	1.51178800
С	4.65537800	3.27534300	1.48308300
С	-4.63483300	2.80084900	-2.11244600
С	-4.82591300	-3.03201800	-1.63214300
0	8.27277000	-2.98435900	0.30322800
0	4.09791600	-3.29591700	1.99048000
0	7.85215400	3.98849600	0.04696000
0	3.77948000	3.91381200	2.01686200
0	-3.65375800	3.50063400	-2.00740700
0	-8.10159100	3.39744700	-2.83292300
0	-3.86223000	-3.76088600	-1.63136300

C6.12910400-4.576360000.90742900H6.19312200-4.994802001.91475400H5.20607400-4.928860000.44413700H6.99973300-4.868079000.32518200C5.712635005.392511000.80376900H6.416669005.823700001.51960900H6.009244005.69890400-0.19987200H4.702072005.718823001.03575100C-5.806165004.87354400-2.56946500H-5.475838005.32984400-1.63410300H-5.088064005.12942100-3.35007400H-5.088064005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	0	-8.36263800	-3.50389500	-1.95071300	
H6.19312200-4.994802001.91475400H5.20607400-4.928860000.44413700H6.99973300-4.868079000.32518200C5.712635005.392511000.80376900H6.416669005.823700001.51960900H6.009244005.69890400-0.19987200H4.702072005.718823001.03575100C-5.806165004.87354400-2.56946500H-5.475838005.32984400-1.63410300H-5.088064005.12942100-3.35007400H-6.803242005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.36397400-0.65459600H-7.18965700-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.66112900-0.98201500N-2.310820001.25077200-1.41260000	С	6.12910400	-4.57636000	0.90742900	
H5.20607400-4.928860000.44413700H6.99973300-4.868079000.32518200C5.712635005.392511000.80376900H6.416669005.823700001.51960900H6.009244005.69890400-0.19987200H4.702072005.718823001.03575100C-5.806165004.87354400-2.56946500H-5.475838005.32984400-1.63410300H-5.088064005.12942100-3.35007400H-6.803242005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.310820001.25077200-1.41260000	Н	6.19312200	-4.99480200	1.91475400	
H6.99973300-4.868079000.32518200C5.712635005.392511000.80376900H6.416669005.823700001.51960900H6.009244005.69890400-0.19987200H4.702072005.718823001.03575100C-5.806165004.87354400-2.56946500H-5.475838005.32984400-1.63410300H-5.088064005.12942100-3.35007400H-6.803242005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Н	5.20607400	-4.92886000	0.44413700	
C5.712635005.392511000.80376900H6.416669005.823700001.51960900H6.009244005.69890400-0.19987200H4.702072005.718823001.03575100C-5.806165004.87354400-2.56946500H-5.475838005.32984400-1.63410300H-5.088064005.12942100-3.35007400H-6.803242005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Н	6.99973300	-4.86807900	0.32518200	
H6.416669005.823700001.51960900H6.009244005.69890400-0.19987200H4.702072005.718823001.03575100C-5.806165004.87354400-2.56946500H-5.475838005.32984400-1.63410300H-5.088064005.12942100-3.35007400H-6.803242005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.36397400-0.65459600H-7.18965700-5.35262700-1.36597600H2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	С	5.71263500	5.39251100	0.80376900	
H6.009244005.69890400-0.19987200H4.702072005.718823001.03575100C-5.806165004.87354400-2.56946500H-5.475838005.32984400-1.63410300H-5.088064005.12942100-3.35007400H-6.803242005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.36397400-0.65459600H-7.18965700-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Н	6.41666900	5.82370000	1.51960900	
H4.702072005.718823001.03575100C-5.806165004.87354400-2.56946500H-5.475838005.32984400-1.63410300H-5.088064005.12942100-3.35007400H-6.803242005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.36397400-0.65459600H-7.18965700-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Н	6.00924400	5.69890400	-0.19987200	
C-5.806165004.87354400-2.56946500H-5.475838005.32984400-1.63410300H-5.088064005.12942100-3.35007400H-6.803242005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.36397400-0.65459600H-7.18965700-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Н	4.70207200	5.71882300	1.03575100	
H-5.475838005.32984400-1.63410300H-5.088064005.12942100-3.35007400H-6.803242005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.36397400-0.65459600H-7.18965700-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	С	-5.80616500	4.87354400	-2.56946500	
H-5.088064005.12942100-3.35007400H-6.803242005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.36397400-0.65459600H-7.18965700-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Н	-5.47583800	5.32984400	-1.63410300	
H-6.803242005.21680600-2.83166100C-6.15192000-5.06081700-1.50512700H-5.54133000-5.36397400-0.65459600H-7.18965700-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Н	-5.08806400	5.12942100	-3.35007400	
C-6.15192000-5.06081700-1.50512700H-5.54133000-5.36397400-0.65459600H-7.18965700-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Н	-6.80324200	5.21680600	-2.83166100	
H-5.54133000-5.36397400-0.65459600H-7.18965700-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	С	-6.15192000	-5.06081700	-1.50512700	
H-7.18965700-5.35262700-1.36597600H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Н	-5.54133000	-5.36397400	-0.65459600	
H-5.74535100-5.52364800-2.40734600N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Н	-7.18965700	-5.35262700	-1.36597600	
N2.43534000-1.161113001.75068700N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Н	-5.74535100	-5.52364800	-2.40734600	
N2.297375001.661129001.59272200N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Ν	2.43534000	-1.16111300	1.75068700	
N-2.45405000-1.54093600-0.98201500N-2.310820001.25077200-1.41260000	Ν	2.29737500	1.66112900	1.59272200	
N -2.31082000 1.25077200 -1.41260000	Ν	-2.45405000	-1.54093600	-0.98201500	
	N	-2.31082000	1.25077200	-1.41260000	

Table S15. Cartesian coordinates of the ground state optimized geometry for Dimer

С	3.02114400	-2.83494700	-0.42331700	
С	1.94607100	-2.24797500	-1.18974700	
С	0.93741800	-1.55914600	-0.55742200	
С	0.94922700	-1.38985600	0.86493600	
С	1.98396600	-1.88889700	1.62076100	
С	3.04364000	-2.64700700	0.99752200	
С	-0.16510400	-0.85615300	-1.32412500	
С	-0.15485300	-0.55003900	1.47321100	
С	-1.46478700	-0.92288300	0.83271400	
С	-1.46803300	-1.08927300	-0.60173000	
С	-3.69668600	-1.55666800	-0.53218600	
С	-3.70915600	-1.31151500	0.88705800	
Н	-0.26138300	-1.27685400	-2.32540300	
Н	-0.23479100	-0.73923200	2.54389700	
Н	0.24206900	0.90040900	-2.57046900	
С	0.14339300	0.71417700	-1.50070100	
С	1.44768800	1.08644400	-0.84411100	
С	-0.95846800	1.56831100	-0.91128700	
С	1.43878300	1.24019000	0.59200500	
С	-0.97789800	1.71122700	0.51353600	

С	-1.95669500	2.11164600	-1.68546500
С	3.69657500	1.43774200	-0.86286000
С	0.12413500	1.02500400	1.29462300
С	-2.01302700	2.36881100	1.13631600
С	-3.03079900	2.85758000	-1.07160300
С	3.69498700	1.54475700	0.57317700
Н	0.20270300	1.44790900	2.29650600
С	-3.06276500	2.98181100	0.35605700
С	4.09038700	-3.18716400	1.74166300
С	5.11684800	-3.91547100	1.13400900
С	5.09341800	-4.10584900	-0.28627100
С	-4.91968800	-1.36657000	1.60690200
С	-6.10651500	-1.66754100	0.91977300
С	-6.08745700	-1.93938700	-0.48334000
С	-4.10884400	3.67958800	0.95720600
С	-5.12489400	4.26622700	0.19793900
С	-5.09230700	4.14278100	-1.22954800
С	4.90759400	1.69840600	1.27170600
С	6.11484300	1.65947700	0.55919200
С	6.11351900	1.58357300	-0.86709800
С	-4.04500100	3.43851600	-1.83011100
С	-4.88219100	-1.91668800	-1.19869300
С	4.04551500	-3.55835500	-1.03151500
С	4.90590100	1.53017800	-1.57582900
Н	-4.01794700	3.34031100	-2.91177400
Н	-4.13059600	3.76896700	2.03979500
Н	4.10386400	-3.04018500	2.81809000
Н	4.02615400	-3.69820900	-2.10878500
С	-7.32075100	-2.20979800	-1.14563800
С	-8.50474600	-2.23740900	-0.45769200
Н	-9.41861600	-2.43841000	-1.00649000
С	-8.52083300	-2.00221900	0.93468000
С	-6.20122600	4.98731500	0.80276700
С	-7.18057900	5.54769500	0.03710700
С	-7.14809900	5.42462400	-1.38442900
С	6.19379500	-4.47787300	1.88726600
С	7.18283900	-5.18291800	1.26757700
С	7.16032800	-5.37173800	-0.14681700
С	7.36744000	1.68359500	1.23803400
С	8.54973000	1.63662000	0.54697000
С	8.54760700	1.56268800	-0.86431400
С	-7.35720200	-1.72203500	1.60165800
С	6.14893000	-4.85085900	-0.89872800
С	7.36258600	1.53783800	-1.55149600

С	-6.13737800	4.74469500	-1.99713700	
Н	-9.44578600	-2.03021100	1.50071700	
Н	-6.21980900	5.07795400	1.88551300	
Н	-7.99423600	6.09242500	0.50570700	
Н	-7.93737200	5.87906200	-1.97516000	
Н	-6.10618500	4.64763200	-3.07901900	
Н	6.20475800	-4.33036300	2.96379800	
Н	7.99679200	-5.60685000	1.84740300	
Н	7.95802400	-5.93479100	-0.62117100	
Н	6.12578400	-4.99175000	-1.97599200	
Н	9.47766400	1.64391300	1.10890400	
Н	9.47371400	1.51041800	-1.42691500	
С	-7.36323000	-2.44179000	-2.61465300	
С	-7.43872900	-1.47644600	3.06535000	
С	7.42488200	1.72628200	2.72367300	
С	4.93494400	1.59514800	-3.07269400	
С	1.96523400	-2.34757800	-2.61827000	
С	1.98300000	-2.41704900	-3.82304400	
Н	1.99207500	-2.46910800	-4.88908100	
С	2.05223500	-1.60191800	3.02200600	
С	2.11553700	-1.32574500	4.19529400	
Н	2.16647800	-1.06627500	5.22949100	
С	-1.96119200	1.90969200	-3.10326100	
С	-1.96565200	1.72923300	-4.29654800	
Н	-1.96377800	1.56011400	-5.35037800	
С	-2.09258000	2.39047400	2.56528600	
С	-2.16993000	2.36797800	3.76938900	
Н	-2.24169800	2.32450200	4.83345500	
Ν	-2.53800900	-1.40734400	-1.25534900	
Ν	-2.53909900	-1.02394300	1.54591400	
Ν	2.53038600	1.19119900	-1.54500500	
Ν	2.51750700	1.45353100	1.27376500	
Ν	6.18794400	1.42135200	-3.68585200	
Ν	6.20255300	1.79592400	3.37576900	
Ν	-6.23978500	-1.18563200	3.69696100	
С	-4.97915000	-1.08069500	3.08054500	
С	-4.88321400	-2.31615200	-2.64497500	
С	4.94430500	1.90628300	2.75646500	
С	7.41316000	1.42386400	-3.03431200	
0	8.46554200	1.34692100	-3.63672300	
0	3.96768200	1.79865800	-3.76793700	
0	8.47947300	1.70750700	3.32711900	
0	3.98142700	2.16166900	3.44048400	
0	-3.89119800	-2.55109100	-3.29362000	

0	-8.40820700	-2.63395900	-3.20412500
0	-8.49293600	-1.52927100	3.66781700
0	-4.03271300	-0.76985000	3.76508600
С	6.19916400	1.91208000	4.83287000
Н	5.91062600	2.92340700	5.12797900
Н	5.47191800	1.21116600	5.24361800
Н	7.20203200	1.68625700	5.18575000
С	6.17801100	1.40505600	-5.14750000
Н	5.89928900	2.38912600	-5.53135800
Н	7.17594200	1.13629300	-5.48387400
Н	5.43999700	0.67931900	-5.48998900
С	-6.11033700	-2.73358900	-4.69593600
Н	-5.46453800	-2.01272700	-5.19796200
Н	-5.70391300	-3.73428200	-4.85928300
Н	-7.12933300	-2.67249300	-5.06890500
С	-6.25584900	-0.92156400	5.13484500
Н	-5.56505800	-1.60150000	5.63585100
Н	-5.92873500	0.10276300	5.32391300
Н	-7.27251400	-1.07140500	5.48806400
Ν	-6.13917500	-2.43152200	-3.26583400