I. METHOD
1. The original Hammett procedure

The Hammett equation was originally intended only
for reactions occurring on simple aromatic molecules that
have only one substituent on the ring. However, the equa-
tion itself contains no assumptions on the structure of the
molecule. Due to its linear nature, this equation can be
applied to any data set and property P where: (i) the
ordering of the substituents with respect to P is mostly
stable across all reactions, (ii) the set of values for the
property P correlates linearly for any two reactions. The
first condition is necessary to have one unique set of sub-
stituent constant for every reaction, the second allows to
calculate P using only a single multiplicative factor p.

2. Hammett revisited

The equilibrium constant can be expressed as a func-
tion of the free energy difference between product and re-
actant. The transition state theory extends this formula-
tion to the kinetic constant by assuming a quasi-chemical
equilibrium between transition state and reactant, thus
using the free energy difference between these two. Both
constants can be expressed as:

(1)

—A
K x exp [RTG]

Thanks to eq 1, we can replace the log K in the Ham-
mett equation with a free energy difference AG or a po-
tential energy difference, since it meets the conditions
imposed by the Hammett equation presented above. The
logarithm of the kinetic constant can be replace by the
activation energy E,, giving:

Ea(s, 1) = Eo(r) = p(r)o(s) (2)

where r is one of the Ny reactions, s one the Ng set
of substituents and FEj is the activation energy for the
unsubstituted molecule.

In the following, we describe our approach formally.
Moreover, the exact implementation used in this work is
freely available[1].

We first evaluate the set of reaction constants {p}.
If we compare the activation energies of any two dif-
ferent reactions r; and r; which share common set of
substituents, we obtain the following system.

Eqo(s,1i) — Eo(r;) ~ p(ri)o(s)

Buls,r3) = Eolry) = plrs)o(s) ®)

Dividing the first equation by the second one gives:

Eu(s.rs) = P (o)) — Bolrp)] + Bo(r)  (4)

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2020

The ratio between the two reaction constants p(r;) and
p(r;) can be obtained via a linear regression of energies,
as it is given by the linear slope m of such regression. We
made use of a robust regressor [2] to minimize the impact
of strong outliers on the final values. This gives a set of
N% — Ng equation of the following form:

mp(r;) — p(ri) =0 (5)
These equations can be combined in the linear system:
Mp=0 (6)

Where M is coefficient matrix with the values for m ob-
tained via equation 5, p is the column vector of the Ny
reaction constants and 0 is a vector of zeroes. Solving
equation 6 for p will give {p}. For numerical reasons, it
might be necessary to initially fix one arbitrary reaction
constant to 1 to avoid trivial solutions. This is the only
source of bias in the procedure, its effects are discussed
below.

Once the {p} is defined, the substituent constants {o}
are obtained by averaging the ratio between activation
energy and reaction constant across all reactions:

1 & E,(s,7) — Eo(r)
o(s) == _— 1 7
©= 5L 00 (7)

We treated each Ey(r) as a model parameter and set
it to the median of all the activation energies available
for the reaction r. This is done in order to reduce the
dependence of the model on only Ny calculations.

This procedure gives a set of substituent constants {c}
that is much less sensible to reference reaction and the
presence of outliers. These {0} can then be used to im-
prove the reaction constants {p} such that they give the
best evaluation of activation energies via equation 2. The
new values are obtained with a linear regression between
{o} and {E,}. For a specific reaction r;, the reaction
constant p(r;) is given by:

Ng
p(r;) = arg H;in > (plr)).o(s) = Ealrj,))*  (8)
p(Tj s=1

Where the sum runs over all the possible substituents
N,. This procedure can be used to improve the values
for {Ep} at the same time.

8. Decomposition of o

The substituent constants obtained from eq 7 are
molecular properties, which describe the effect of the en-
tire set s of substituents. By denoting each substituted
position on the molecule by the index p and each sub-
stituent group (e.g. NOg) by the index g, we highlight
the dependency of each o as o(s) = 0({gp}), where by



gp we indicate the group g to be in position p. If Np is
the total number of positions p on the molecule, and Ng
the total number of substituent groups g, the maximum
number of set s is Név #. However, each molecular o de-
pends only on Np terms at most. The overall o(s) can
be expressed as a linear combination of these Np terms:

Np
= (9 9)
p=1

The 6(g,) are the single-substituent sigmas. They are in-
dependent from one another and can be determined via
categorical regression using a dummy encoding. In this,
fingerprint-like representation, each molecule in the data
set is described by a vector of Np N¢ values, representing
all the possible combinations of position and group. All
the elements are zeros, except for the ones correspond-
ing to the group-position pairs present in the molecule.
These vectors are then stacked into a matrix A which is
then used to solve the linear system

AG =0 (10)

This type of decomposition reduces the number of pa-
rameters needed to describe the substituents from N(I;V P
to NgNp and allows to predict values of o(s) for set
of substituents for which no data is available. However,
these 6(g,) still depend on both the position and the
group, meaning that the same group will have a different
value depending on its position on the molecules. While
this is chemically sound, it limits the transferability of
the model. To separate the effect of the group g from
the one of the position p, we replace the dependence on
the latter by distance decaying function that scales the
single-substituent effect. This is why the energy differ-
ence is modelled after the electronic density. Here an ex-
ponential decaying push/pull effect is given by electron
withdrawing and electron donating group, respectively.

This can be modelled by the following functions:

Np

a(s) =o({gp}) = Z

)exp —2 (11)

Np

o(s) = o({gp}) = (12)

where a(g) is a parameter which depends only on the
group g, regardless of its position on the molecule, d), is
the distance between the position p and the reacting cen-
tre on the molecule, and 7 is a parameter of the model
which regulates the distance decay of the inductive effect.
a(g) is determined by a linear regression while the opti-
mal 7 can be found by a scan. This approach further cuts
down the number of parameters required by the model
to describe the substituents from NpNg to Ng + 1. It

requires geometrical information on the backbone of the
molecule, which is easily obtainable.

Eq 9, 11 and 12 all neglect the interactions between
different group-position pairs. These could be modelled
by three body terms such as the Axilrod-Teller-Muto po-
tential form [3]:

1 + 3 cos~y; cosy; cos g

Visk TijTikTik (13)
In this case, V is is not a potential, but it keeps the
same functional form and includes distances and angles
between any two group-position and the reacting centre.
This can be used to describe the residuals of the previous
fit by including many-body effects. The added flexibility
comes at the cost of (¢ + g)/2 additional parameters,
one for each possible substituent pair.

4. Dependence on the reference reaction

As discussed above, it necessary to initially set on of
the reaction constants p to 1, in order to avoid trivial so-
lutions. This is the only source of bias in our model and
its effect is observed to be limited. For the experimental
data sets described in section III.1, the effect of the refer-
ence’s choice is shown in figure 1. For the computational
Sn2 data, we show the influence of the reference choice
in figure 1.
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FIG. 1. Influence of the reference reaction on the Mean Ab-
solute Error (MAE) of the prediction of activation energies.
Red circles report the overall MAE when the reaction listed
on the x-axis is used as a reference. The gray lines, one for
each different reference, show the error on the prediction on
each specific reaction

The two panels show the Mean Absolute Error (MAE)
of the prediction of activation energies. For the top panel,



the substituent constants are obtained from eq 7; we
named this method o-Hammett. In the bottom panel,
the substituent constants are obtained from the sum of
individual contributions with a power-law distance de-
cay, as calculated from eq 12; we named this method
a-Hammett.

Each gray line corresponds to a different choice for the
reference reaction, out of the 12 listed on the x-axis, and
shows how the MAE changes across the reaction space.
In each panel, we highlighted in blue the one that gives
the best overall prediction. The red circles show the total
error, i.e. across all the 12 reactions, for each reference
indicated indicated on the x-axis. These results are com-
pared to the accuracy of the MP2 method, shown by the
dashed line.

These plots show how the overall prediction, given by
the red circles is only partially affected by the reference
bias, especially for the a-Hammett model. Additionally,
the gray lines are all very close to each other, meaning
that even the description on smaller subset of the data
remains mostly consistent regardless of the reference re-
action chosen.

The a-Hammett model gives a worse prediction, by
about 0.75 kcal /mol on average, but it almost completely
negates the effect of the reference bias.

5. Machine Learning

The activation energies can also be obtained from Ma-
chine Learning. In this work we use Kernel-Ridge Regres-
sion, for which the property of interest y of a molecule
X can be predicted as:

N
y(X) ~ Z aik(X, X;) (14)

where ¢ runs over all the molecules in the training set, a;
are regression coefficients and k(X,X;) is a kernel func-
tion. In this work, we used a Laplacian kernel, where
each element j,i is given by:

A B;
by = exp (LB -

where A; and B; are representation vectors and w is
the kernel width. The regression coeflicients «; can be
calculated as:

;= (K+ M)y (16)

where A > 0 is a hyperparameter used as a regularizer
and K and I are the kernel matrix and identity matrix
respectively. As representation X we used the one-hot
encoding described in sec. I 3. In this case, the string
describes not only the set of substituents, but also the
reaction being considered, and for this reason it contains
R extra characters, one for each reaction in the data set.
This type of machine learning algorithm is used to either
predict directly the activation energies or to learn the
residuals of the Hammett regression using Delta Machine
Learning [4]. The latter works on the assumption that
learning the target property from a smoother surface is
easier, and thus requires fewer training points to reach
high accuracy.
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