Supporting Information

Synthesis, crystal structure and charge transport characteristics of stable *peri*-tetracene analogues

Masashi Mamada,*abc Ryota Nakamura,ab Chihaya Adachi*abcd

^aCenter for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka 819-0395, Japan ^bJST, ERATO, Adachi Molecular Exciton Engineering Project c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka 819-0395, Japan ^cAcademia-Industry Molecular Systems for Devices Research and Education Center (AIMS), Kyushu University, Nishi, Fukuoka 819-0395, Japan ^dInternational Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka 819-0395, Japan

mamada@opera.kyushu-u.ac.jp adachi@cstf.kyushu-u.ac.jp

Contents:

Methods S1. Synthesis	3
Methods S2. Theoretical calculations	9
Fig. S1. Two possible conformations	10
Table S1. Converged energies, relative energies and the biradical character (y_0)	10
Table S2. Converged energies and relative energies.	10
Table S3. Molecular orbitals	.11
Fig. S2. Spin density distribution for the open-shell singlet and triplet states	12
Fig. S3. Odd-electron density maps	12
Table S4. Calculated vertical excitation energies (VEE) for singlet and triplet excited states	13
Fig. S4. Simulated absorption spectra	14
Fig. S5. Photos of TBP3 solution in dichloromethane	14
Fig. S6. Emission spectra for TBP4 and TBP5	15
Fig. S7. Cyclic voltammograms (CV) in dichloromethane	15
Table S5. Electrochemical properties	15
Methods S3. X-ray crystallographic structure determinations	16
Table S6. Crystal data and structure refinement for 5b.	16
Table S7. Crystal data and structure refinement for TBP5.	17
Fig. S8. The bond lengths of TBP5 in the crystal and calculations	17
Fig. S9. X-ray single crystal structure of TBP4	18
Fig. S10. ESR spectra in powder at rt and 77 K	18
Methods S4. OFET fabrications	19
Fig. S11. Schematic image of the drop-casting procedure	19
Fig. S12. OFET characteristics.	20
Fig. S13. Out-of-plane X-ray diffractograms for the films of TBP5	20
Fig. S14. Microscope images for the films of TBP5.	20
Table S8. Materials	21
Table S9. Instruments	22
Table S10. Optimized geometry for the closed-shell singlet of TBP1	23
Table S11. Optimized geometry for the open-shell singlet of TBP1	24
Table S12. Optimized geometry for the triplet of TBP1	25
Table S13. Optimized geometry for the closed-shell singlet of TBP2	26
Table S14. Optimized geometry for the open-shell singlet of TBP2	27
Table S15. Optimized geometry for the triplet of TBP2	28
Table S16. Optimized geometry for the closed-shell singlet of TBP3	29
Table S17. Optimized geometry for the open-shell singlet of TBP3	30
Table S18. Optimized geometry for the triplet of TBP3	31
Table S19. Optimized geometry for the closed-shell singlet of TBP4	32
Table S20. Optimized geometry for the open-shell singlet of TBP4	33
Table S21. Optimized geometry for the triplet of TBP4	34
Table S22. Optimized geometry for the closed-shell singlet of TBP5	35
Table S23. Optimized geometry for the open-shell singlet of TBP5	36
Table S24. Optimized geometry for the triplet of TBP5	37
Data S1. NMR spectra	38
Supplementary References	46

Methods S1. Synthesis

Compound 1 was synthesized according to the literature.¹ Compounds 4 was synthesized by modifying the synthesis method of compounds 2 and $3.^2$

Compound 1

The mixture of 5,12-naphthacenequinone (8.00 g, 31.0 mmol) and granular tin (16.0 g, 135.0 mmol) in glacial acetic acid (200 ml) was refluxed for 5 h. The solution was filtered on hot at normal pressure to remove tin, treated with conc. HCl (20 ml), concentrated to half its volume, filtered, washed with MeOH, and dried to give 1 as a pale orange solid (6.23 g, 82%).

¹H-NMR: δ /ppm (500 MHz, CDCl₃) = 8.94 (s, 1H); 8.41 (d, 1H, *J* = 7.9 Hz); 8.06 (d, 1H, *J* = 8.2 Hz); 7.93 (s, 1H); 7.87 (d, 1H, *J* = 8.3 Hz); 7.64–7.58 (m, 2H); 7.54–7.47 (m, 3H). MS (ASAP) m/z (%): 245 (100) [M+H⁺].

Compound 4

To a solution of compound **1** (5.88 g, 24.1 mmol) in pyridine (250 ml) and piperidine (25 ml) were added pyridine *N*-oxide (27.9 g, 294 mmol) and FeSO₄·7H₂O (0.70 g, 2.52 mmol). The mixture was heated at 120 °C for 48 h, and then treated with 6M HCl (200 ml). The solid was collected by filtration, washed with cold water, MeOH and dried. The crude product was purified by a dry loading column chromatography over silica gel using hexane/DCM (1:3) mixture, then gradually increased to 100% DCM as eluent to give **4** as an orange solid (1.84 g, 32%). The compound **4** shows strong green emission in solution and orange emission in the solid state. The sublimation temperature for **4** is 300 °C.

Mp: >400 °C. ¹H-NMR: δ /ppm (500 MHz, CDCl₃) = 9.30 (s, 2H); 8.50 (d, 2H, *J* = 7.7 Hz); 8.37 (d, 2H, *J* = 8.5 Hz); 8.25 (d, 2H, *J* = 7.7 Hz); 8.00 (d, 2H, *J* = 8.0 Hz); 7.64 (dd, 2H, *J* = 8.0 Hz, *J* = 7.0 Hz); 7.52 (dd, 2H, *J* = 8.0 Hz, *J* = 7.0 Hz); 7.45 (dd, 2H, *J* = 8.5 Hz, *J* = 7.0 Hz); 7.38 (dd, 2H, *J* = 8.0 Hz, *J* = 7.0 Hz). ¹³C-NMR: δ /ppm (125 MHz, CDCl₃) = 184.34, 137.79, 133.09, 133.03, 132.70, 132.23, 131.98, 131.88, 130.89, 129.79, 129.64, 129.32, 128.33, 128.18, 127.93, 127.56, 126.51, 124.46. MS (ASAP) m/z (%): 483 (100) [M+H⁺]. Anal. Calcd. For C₃₆H₁₈O₂: C, 89.61; H, 3.76; O, 6.63. Found: C, 89.51; H, 3.82.

Compound 5a

To a solution of compound 4 (0.193 g, 0.40 mmol) in THF (30 ml) was added the phenyl magnesium bromide solution in ether (3 M, 2 ml, 6 mmol) at 0 °C under N₂ and the reaction mixture was stirred for 4 h at 0 °C and for 24 h at 40 °C. The reaction was quenched with 1N HCl and THF was removed. The reaction mixture was extracted with CHCl₃, dried over Na₂SO₄ and the solvent was removed. Although the ASAP-MS showed a peak at m/z 635, indicating formation of the product, the reaction might not be completed at this point. Although a red color fraction on the TLC was separated by column chromatography using hexane/DCM (1:1), orange color fractions gradually appeared. When small amount of DDQ was added to a solution of red solid in DCM, the solution color quickly changed to orange, indicating oxidation to form quinone. Therefore, DDQ was added to the crude product and then the mixture was purified by column chromatography over silica gel using hexane/DCM (1:1) mixture as eluent to give an orange solid (0.122 g, 48%). The product was further purified by recrystallization from DCM layered with MeOH.

The melting point cannot be determined because the decomposition started at ~300 °C. ¹H-NMR: δ /ppm (500 MHz, CDCl₃, Me₄Si) = 8.29 (d, 2H, *J* = 8.5 Hz); 8.23 (d, 2H, *J* = 7.6 Hz); 7.91 (d, 2H, *J* = 8.0 Hz); 7.741 (d, 2H, *J* = 8.4 Hz); 7.70–7.59 (m, 6H); 7.52 (br, 2H); 7.46 (dd, 2H, *J* = 7.5 Hz); 7.42–7.34 (m, 6H); 7.30 (dd, 2H, *J* = 7.5 Hz). NMR: δ /ppm (125 MHz, CDCl₃) = 184.88, 146.41, 141.12, 137.06, 133.10, 132.77, 132.66, 132.53, 131.75, 130.10, 129.64, 129.23, 129.08, 129.00, 128.80, 128.21, 127.95, 127.66, 127.48, 127.25, 127.15, 126.27, 121.27, 77.41, 77.16, 76.9. MS (ASAP) m/z (%): 635 (100) [M+H⁺]. HRMS/FAB: m/z Calcd. For C₄₈H₂₆O₂: m/z 634.19328. Found: 634.1936.

Compound 5b

The Grignard reagent was prepared from mesityl bromide (1.20 g, 6.01 mmol) and magnesium (0.21 g, 8.79 mmol) in THF (6 ml). To a solution of compound **4** (0.49 g, 1.02 mmol) in THF under N₂ was added the Grignard reagent at rt, followed by stirring at rt overnight. The reaction mixture was quenched with 1N HCl and the mixture was extracted with DCM, dried over Na₂SO₄ and the solvent was removed. The mixture was purified by column chromatography over silica gel using hexane/DCM (2:1) mixture as eluent to give **5b** as an orange solid (0.61 g, 83%). The product was further purified by recrystallization from DCM layered with MeOH to give red crystals. The melting point cannot be determined because the decomposition started at ~300 °C. ¹H-NMR: δ /ppm (500 MHz, CDCl₃, Me₄Si) = 8.28 (dd, 4H, *J* = 7.0 Hz); 8.00 (d, 2H, *J* = 8.0 Hz); 7.63 (d, 2H, *J* = 8.3 Hz); 7.45–7.37 (m, 6H);

7.31 (dd, 2H, J = 7.5 Hz); 7.18 (s, 2H), 7.12 (s, 2H), 2.51 (s, 6H), 1.90 (s, 12H). ¹³C-NMR: δ /ppm (125 MHz, CDCl₃) = 184.64, 146.14, 137.14, 137.09, 136.62, 136.57, 133.49, 132.88, 132.75, 132.66, 131.67, 131.64, 130.36, 129.73, 129.06, 128.87, 128.65, 128.37, 127.92, 127.86, 127.59, 126.13, 121.30, 21.64, 20.53, 20.27. MS (ASAP) m/z (%): 719 (100) [M+H⁺]. Anal. Calcd. For C₅₄H₃₈O₂ + CH₂Cl₂: C, 82.18; H, 5.02; Cl, 8.82; O, 3.98. Found: C, 82.49; H, 4.99. HRMS/FAB: m/z Calcd. For C₅₄H₂₈O₂: m/z 718.28718. Found: 718.2868.

TBP2

To a solution of triisopropylsilylacetylene (0.203 g, 1.11 mmol) in dry THF (2 ml) at 0 °C was added *n*-butyllithium (*n*-BuLi, 1.59 M, 0.63 ml, 1.0 mmol). After stirring for 40 min, the mixture was added to a solution of **4** (0.180 g, 0.37 mmol) in THF (5 ml) at 0 °C. The mixture was stirred at rt overnight. The mixture was quenched with 10% hydrochloric acid, and extracted with DCM, washed with water, dried over Na₂SO₄ and the solvent was removed. The solid was dissolved in acetone (3 ml) and a solution of SnCl₂ dihydrate (0.230 g, 1.02 mmol) in 50% AcOH/H₂O (3 ml) was added dropwise. The reaction mixture was stirred at 50 °C for 24 h. The resulting solid was filtered and dissolved in DCM in dark, and a solution was washed with water and NaHCO₃ aqueous solution, dried over Na₂SO₄, and the solvent was removed. The crude solid was purified by column chromatography over silica gel using degassed hexane/DCM mixture (the ratio of DCM gradually increased from 0%) as eluent and dried in vacuum without heating to give **TBP2** as an olive green solid (trace amount, <1%).

HRMS/FAB: m/z Calcd. For C58H60Si2: m/z 812.42335. Found: 812.4234.

TBP3

To a solution of **5a** (0.14 g, 0.19 mmol) in THF (5 ml) at -70 °C was added freshly prepared phenyllithium (2 ml, 1 mmol). The mixture was stirred at -70 °C for 30 min and at rt overnight. The mixture was quenched with water and then dilute hydrochloric acid, and extracted with DCM, washed with water, dried over Na₂SO₄ and the solvent was removed. The solid was dissolved in acetone (10 ml) and a solution of SnCl₂ dihydrate (0.24 g, 1.06 mmol) in 50% AcOH/H₂O (5 ml) was added dropwise. The reaction mixture was stirred at 50 °C for 24 h. The resulting solid was filtered and dissolved in DCM in dark, and a solution was washed with water and NaHCO₃ aqueous solution, dried over Na₂SO₄, and the solvent was removed. The crude solid was purified by column chromatography over silica gel using degassed hexane/DCM mixture (the ratio of DCM gradually increased from 0%) as eluent and dried in vacuum without heating to give **TBP3** as a green solid (trace amount, <1%). HRMS/FAB: m/z Calcd. For C₆₀H₃₆: m/z 756.28170. Found: 756.2816.

To a solution of mesityl bromide (0.33 g, 1.67 mmol) in THF (5 ml) at -78 °C was added *n*-butyllithium (*n*-BuLi, 1.55 M, 0.85 ml, 1.32 mmol). After stirring for 30 min, a solution of **5b** (0.14 g, 0.20 mmol) in THF (5 ml) was added to the mixture. The mixture was stirred at -78 °C for 1 h and at rt overnight. The mixture was quenched with water and then dilute hydrochloric acid, and extracted with DCM, washed with water, dried over Na₂SO₄ and the solvent was removed. The solid was dissolved in acetone (10 ml) and a solution of SnCl₂ dihydrate (0.28 g, 1.26 mmol) in 50% AcOH/H₂O (5 ml) was added dropwise. The reaction mixture was stirred at 50 °C for 24 h. The resulting solid was filtered and dissolved in DCM in dark, and a solution was washed with water and NaHCO₃ aqueous solution,

dried over Na₂SO₄, and the solvent was removed. The crude solid was purified by column chromatography over silica gel using degassed hexane/DCM mixture (the ratio of DCM gradually increased from 0%) as eluent, and recrystallization from DCM layered with isopropanol, dried in vacuum without heating to give **TBP4** as a green solid (79.7 mg, 43%).

¹H-NMR: *δ*/ppm (500 MHz, CD₂Cl₂) = 7.40 (d, 4H, *J* = 8.7 Hz); 7.26 (d, 4H, *J* = 8.8 Hz); 7.16 (dd, 4H, *J* = 8.8 Hz, *J* = 7.5 Hz); 7.086 (dd, 4H, *J* = 8.7 Hz, *J* = 7.5 Hz); 6.74 (s, 4H); 6.49 (s, 4H); 7.09 (s, 2H); 2.29 (s, 12H); 1.80 (s, 12H); 1.45 (s, 12H). HRMS/FAB: m/z Calcd. For C₇₂H₆₀: m/z 924.46950. Found: 924.4697.

TBP5

According to the literature, ether is a good solvent to generate the acetylide with TMS group.³ However, the yields were similar for both ether and THF. To a solution of trimethylsilylacetylene (1.2 ml, 8.0 mmol) in dry THF (10 ml) at -78 °C was added *n*-butyllithium (*n*-BuLi, 1.55 M, 5.2 ml, 8.0 mmol). After stirring for 40 min, the mixture was added to a solution of **5b** (0.57 g, 0.80 mmol) in THF (30 ml) at -78 °C. The mixture was stirred at rt overnight. The mixture was quenched with 10% hydrochloric acid, and extracted with DCM, washed with water, dried over Na₂SO₄ and the solvent was removed. The solid was dissolved in acetone (5 ml) and a solution of SnCl₂ dihydrate (0.24 g, 1.1 mmol) in 50% AcOH/H₂O (5 ml) was added dropwise. The reaction mixture was stirred at 50 °C for 24 h. The resulting solid was filtered and dissolved in DCM in dark, and a solution was washed with water and NaHCO₃ aqueous solution, dried over Na₂SO₄, and the solvent was removed. The crude solid was purified by column chromatography over silica gel using degassed hexane/DCM mixture (the ratio of DCM gradually increased from 0%) as eluent, and recrystallization from DCM layered with isopropanol, dried in vacuum without heating to give **TBP5** as an olive green solid (17.5 mg, 3%).

¹H-NMR: δ /ppm (500 MHz, CD₂Cl₂) = 8.87 (d, 2H, *J* = 8.8 Hz); 7.62 (d, 2H, *J* = 8.8 Hz); 7.61 (d, 2H, *J* = 8.8 Hz); 7.51–7.47 (m, 4H); 7.28 (dd, 2H, *J* = 8.8 Hz, *J* = 8.2 Hz); 7.18 (dd, 4H, *J* = 7.3 Hz); 7.10 (s, 2H); 7.09 (s, 2H); 2.53 (s, 6H); 2.02 (s, 6H); 1.83 (s, 6H); 0.27 (s, 18H). Anal. Calcd. For C₆₄H₅₆Si₂: C, 87.22; H, 6.40; Si, 6.37. Found: C, 86.84; H, 6.26. HRMS/FAB: m/z Calcd. For C₆₄H₅₆Si₂: m/z 880.39205. Found: 880.3924.

Attempted synthesis of peri-tetracene precursor 6

To a solution of compound 4 (95.4 mg, 0.20 mmol) in anhydrous dichloromethane (50 ml) under N_2 , iron chloride (1.01 g, 6.21 mmol) dissolved in degassed nitromethane (5 ml) was added by using dropping funnel. The reaction mixture was stirred for 24 h at room temperature and poured into methanol. The precipitated product was filtered, washed with HCl aq, water and methanol. The analysis of the product obtained by vacuum sublimation at 400 °C indicated the formation of compound 6. MS (MALDI) m/z: 478 [M⁺].

Methods S2. Theoretical calculations

The computations were mainly performed using the computer facilities at the Research Institute for Information Technology, Kyushu University. Molecular orbital calculations were performed using the program Gaussian 16.⁴ The geometries were optimized at the B3LYP/6-311G(d,p) level for the singlet and UB3LYP/6-311G(d,p) for the triplet, and these optimized structures are used for the further calculations of the singlet and triplet, respectively, unless otherwise noted according to the literature.⁵ The structures of intersecting conformations for two tetracene units are found to be more stable than those of bent conformation for all compounds (Fig. S1). The singlet biradical was investigated by using open-shell broken-symmetry calculations at the UB3LYP/6-311G(d,p) level. The results are summarized in Table S1. The presence of energy minima for the geometry optimization was confirmed by the absence of imaginary modes (no imaginary frequencies). To numerically achieve accurate values, we have used a fine grid. The triisopropylsilyl (TIPS) groups were substituted with trimethylsilyl (TMS) groups. The structures were also optimized at the CAM-B3LYP/6-311+G(d,p), broken symmetry UCAM-B3LYP/6-311+G(d,p), and UCAM-B3LYP/6-311+G(d,p) for closed-shell singlet, open-shell singlet, and triplet, respectively (Table S2).

The singlet biradical factor was calculated by the natural orbital occupation number (NOON) of the LUMO in a spinunrestricted Hartree-Fock (HF) calculation using 6-31G(d,p) basis set.⁶ The broken symmetry UHF/6-31+G(d,p)calculations gave LUMO occupation number. According to the Yamaguchi scheme,⁷ the index for singlet biradical character is expressed as

$$y_i = 1 - \frac{2T_i}{1 + T_i^2}$$

where T_i is the orbital overlap between the corresponding orbital pairs and it can be presented using the NOON of HOMO and LUMO.

$$T_i = \frac{n_{HOMO} - n_{LUMO}}{2}$$

The diradical characters by the theoretical calculation are listed in Table S1.

Odd-electron density distribution were calculated using the program Multiwfn,⁸ (Fig. S3).

The time-dependent density functional theory (TD-DFT) calculations were conducted at the B3LYP/6-311+G(d,p) level for the excited states calculations (Table S4 and Fig. S4).

Fig. S1. Two possible conformations.

Table S1. Converged energies, relative energies and the biradical character (y_0)

Compd	Closed-shell (CS) singlet ^{a)}	Open-shell (OS) singlet ^{a)}	Triplet ^{a)}	$\Delta E_{(OS-CS)}^{b)}$	$\Delta E_{\text{S-T}}^{c)}$	yo ^{d)}
TBP1	-2396.97928470	-2396.97931119	-2396.96719001	0.017	7.61	0.60
TBP2	-2354.07046119	-2354.07066145	-2354.06047388	0.126	6.39	0.62
TBP3	-2308.60185040	-2308.60187009	-2308.59002936	0.012	7.43	0.60
TBP4	-2780.50975322	-2780.50975322	-2780.49635406	0.000	8.41	0.59
TBP5	-3052.21068463	-3052.21085771	-3052.20079995	0.109	6.31	0.62

^{*a*} at the B3LYP/6-311G(d,p) (hartrees). ^{*b*} CS singlet energy minus OS broken symmetry singlet energy (kcal/mol). ^{*c*} Unrestricted triplet energy minus singlet energy (kcal/mol). ^{*d*} at the UHF/6-31G(d,p).

Compd	Closed-shell (CS) singlet ^{a)}	Open-shell (OS) singlet ^{a)}	Triplet ^{a)}	$\Delta E_{(OS-CS)}^{b)}$	$\Delta E_{\text{S-T}}^{c)}$
TBP1	-2395.57627761	-2395.58096327	-2395.56988597	2.94	6.95
TBP2	-2353.00124766	-2353.00728271	-2352.99780725	3.79	5.95
TBP3	-2307.28142474	-2307.28631188	-2307.27564848	3.07	6.69
TBP4	-2778.89752904	-2778.90157287	-2778.88978245	2.54	7.40
TBP5	-3050.73421078	-3050.74015609	-3050.73071432	3.73	5.92

Table S2. Converged energies and relative energies

^{*a*} at the CAM-B3LYP/6-311G(d,p) (hartrees). ^{*b*} CS singlet energy minus OS broken symmetry singlet energy (kcal/mol). ^{*c*} Unrestricted triplet energy minus singlet energy (kcal/mol).

Table S3. Molecular orbitals at the B3LYP/6-311G(d,p)

Fig. S2. Spin density distribution for the open-shell singlet and triplet states calculated at the CAM-B3LYP/6-311+G(d,p).

Fig. S3. Odd-electron density maps calculated at LC-UBLYP/6-311+G(d,p) with a contour value of 0.001 a.u.. (a) **TBP1**, (b) **TBP2**, (c) **TBP3**, (d) **TBP4**, and (e) **TBP5**.

	5 ¹¹¹ () at ti		211/0 511 K	$\frac{1}{6-311+C(d n)}$	STORON S			$5_{-311+C(4,p)}$	
Compound	Excited			Wavelangth			VFF	Wavelength	
Compound	States	S	(eV)	(nm)	f	S	(eV)	(nm)	f
	1	3	-0.1218	-10177.6	0	2.896	0.1772	6996.75	0
TBP1	2	3	1.4027	883.89	0	2.989	1.4203	872.93	0
	3	1	1.4633	847.30	0.3255	0.988	1.4687	844.19	0.3218
	4	3	1.9870	623.98	0	2.990	2.0000	619.91	0.0022
	5	3	2.0121	616.18	0	1.067	2.0193	613.99	0
	6	1	2.0146	615.43	0	2.991	2.0252	612.21	0.0015
	7	1	2.2838	542.89	0.0001	1.045	2.2884	541.80	0.0001
	8	3	2.3594	525.49	0	2.994	2.3684	523.49	0
	9	1	2.5992	477.00	0.0006	1.083	2.6039	476.15	0.0007
	10	1	2.9200	424.60	0.0019	1.070	2.9251	423.87	0.0019
	1	3	-0.2284	-5427.47	0	2.717	0.3297	3760.85	0
	2		1.3803	898.26	0.4003	0.978	1.3971	887.44	0.3752
	3	3	1.3884	892.98	0	2.946	1.4535	853.03	0.0026
	4	3	1.8466	6/1.42	0	2.961	1.895/	654.01	0.0013
TBP2	5	3	1.9224	644.95	0	2.960	1.9/33	628.30	0.0194
	07	1	1.9394	032.77 558.88	0 0011	1.242	1.9/0/	027.23 554.61	0 0010
	8	1	2.2104	535 11	0.0011	2 760	2.2355	530.63	0.0010
	9	1	2.5150	516 30	0 0402	1 672	2.3303	509.48	0.0005
	10	1	2.1011	441.95	0.0367	1.072	2.1330	438 36	0.0358
	1	3	-0.1197	-10354.1	0.0507	2.900	0.1742	7115.75	0.0550
	2	3	1.4248	870.16	ů 0	2.985	1.4416	860.03	0.0016
	3	1	1.4719	842.37	0.3888	1.003	1.4773	839.28	0.3828
	4	3	1.9480	636.48	0	2.991	1.9605	632.41	0.0002
TDD2	5	3	2.0083	617.35	0	2.990	2.0208	613.55	0.0031
TBP3	6	1	2.0431	606.85	0	1.068	2.0473	605.60	0
	7	1	2.2902	541.36	0	1.039	2.2948	540.28	0
	8	3	2.3416	529.48	0	2.990	2.3499	527.62	0
	9	1	2.5564	484.99	0	1.089	2.5613	484.07	0
	10	1	2.8631	433.04	0.0004	1.058	2.8686	432.22	0.0004
	1	3	0.1456	8517.79	0	3.000	0.1456	8517.96	0
	2	3	1.3950	888.76	0	3.000	1.3950	888.76	0
	3		1.4842	835.34	0.4015	1.000	1.4842	835.34	0.4015
	4	3	1.9/69	627.17	0	3.000	1.9/69	627.17	0
TBP4	5	5	2.0066	61/.88	0	3.000	2.0066	61/.88	0
	07	1	2.0302	540.74	0	1.000	2.0302	540 74	0
	8	1	2.2929	527.86	0	3,000	2.2929	527.86	0
	9	1	2.5488	493 35	0 0005	1 000	2.5400	493 35	0 0005
	10	1	2.5131	493.27	0.0003	1.000	2.5131	493.27	0.0005
	1	3	-0.2218	-5590.03	0.0000	2.731	0.3199	3875.30	0.0000
	2	3	1.3066	948.90	ů 0	2.285	1.3618	910.47	0.2135
	3	1	1.3537	915.86	0.4761	2.108	1.3809	897.86	0.2394
	4	3	1.8401	673.78	0	2.959	1.8866	657.17	0.0009
TDD5	5	3	1.8627	665.60	0	2.962	1.9106	648.93	0.0186
1 BL2	6	1	1.8975	653.42	0	1.261	1.9127	648.20	0
	7	1	2.1567	574.87	0.0012	1.146	2.1727	570.64	0.0011
	8	3	2.2859	542.38	0	2.867	2.3112	536.46	0.0026
	9	1	2.3937	517.96	0.0255	1.482	2.4185	512.65	0.0223
	10	1	2.4933	497.27	0.0006	2.516	2.5688	482.66	0.0044

Table S4. Calculated vertical excitation energies (VEE) for singlet and triplet excited states, wavelength, and oscillator strength (*f*) at the B3LYP/6-311+G(d,p) level and broken symmetry UB3LYP/6-311+G(d,p)

Fig. S4. Simulated absorption spectra at the (a) TD-B3LYP/6-311+G(d,p) and (b) TD-UB3LYP/6-311+G(d,p).

Fig. S5. Photos of TBP3 solution in dichloromethane. (a) As prepared solution, (b) after 90 min, and (c) after 21 h.

Fig. S6. Emission spectra for **TBP4** and **TBP5** (Dashed lines show absorption spectra). The emission spectra were recorded using PMA-12 C10027-02 (350–1100 nm) for **TBP4** and PMA-12 C10028-01 (900–1650 nm) for **TBP5**, respectively. We could not determine the emission lifetime because of technical difficulties.

Fig. S7. Cyclic voltammograms (CV) in dichloromethane for (a) TBP4 and (b) TBP5 (vs Fc/Fc⁺).

	print and the	opennes					
Compound	$E_{\mathrm{ox}}^{1}(\mathrm{V})$	$E_{\rm ox}^2$ (V)	$E_{\rm red}^1$ (V)	$E_{\rm red}^2$ (V)	HOMO (eV) ^{b)}	LUMO (eV) ^{b)}	$E_{ m g}^{ m redox}$ (eV) ^{c)}
TBP4	-0.07	0.50	-1.64	-2.14	-4.73	-3.16	1.57
TBP5	0.00	0.52	-1.37	-1.74	-4.80	-3.43	1.37

	Table	S5 .	Electroc	hemical	properties
--	-------	-------------	----------	---------	------------

^{a)} In dichloromethane at room temperature vs Fc/Fc⁺. ^{b)} Estimated versus the vacuum level from $E_{\text{HOMO}} = -4.80 - E_{\text{ox}}$ (vs Fc/Fc⁺) or $E_{\text{LUMO}} = -4.80 - E_{\text{red}}$ (vs Fc/Fc⁺). ^{c)} Transfer gap calculated by redox potentials.

X-ray diffraction data for **5b** and **TBP5** were collected on a Rigaku AFC HyPix-6000 diffractometer with Mo-K α radiation ($\lambda = 0.71075$ Å) at 100 K. Single crystals suitable for X-ray analysis were grown by recrystallization from dichloromethane layered with MeOH. Data collection, cell refinement, and data reduction were carried out using the software CrysAlisPro. The structure was solved by direct methods using the program SHELXT and refined by full-matrix least squares methods on F^2 using SHELXL-2018.⁹ All materials for publication were prepared using the software Olex2.¹⁰ All non-hydrogen atoms were refined anisotropically. The positions of all hydrogen atoms were calculated geometrically and refined as a riding model. Crystallographic data have been deposited with Cambridge Crystallographic Data Centre (CCDC): Deposition numbers CCDC 2025243-2025244. Copies of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html.

CCDC number	2025243		
Identification code	Compd5b		
Empirical formula	$2(CH_2Cl_2) \cdot 2(C_{54}H_{38}O_2)$		
Formula weight	1607.54		
Temperature	100 K		
Wavelength	0.71075 Å		
Crystal system	Monoclinic,		
Space group	$P2_1/c$		
Unit cell dimensions	<i>a</i> = 14.5132 (6)	$\alpha = 90$	
	<i>b</i> = 21.9543 (9)	$\beta = 94.230$ (4)	
	c = 12.9943 (6)	$\gamma = 90$	
Volume	4129.1 (3)		
Ζ	2		
Density (calculated)	1.293 g/cm ³		
Absorption coefficient	0.20 mm^{-1}		
<i>F</i> (000)	1680		
Crystal size	$0.28\times0.09\times0.04~mm^3$		
Theta range for data collection	2.233 to 27.483°.		
Index ranges	-18<=h<=18, -28<=k<=2	4, -15<=l<=16	
Reflections collected	36370		
Independent reflections	9472 [R(int) = 0.039]		
Completeness to theta = 27.483°	99.91		
Absorption correction	Gaussian		
Max. and min. transmission	1.000 and 0.782		
Refinement method	Full-matrix least-squares o	$n F^2$	
Data / restraints / parameters	9472 / 0 / 538		
Goodness-of-fit on F^2	1.063		
Final R indices [I>2sigma(I)]	$R_1 = 0.048, wR_2 = 0.1278$		
R indices (all data)	$R_1 = 0.069, wR_2 = 0.1397$		
Largest diff. peak and hole	0.43 and -0.54 e.Å ⁻³		

Table S6. Crystal data and structure refinement for 5b

CCDC number	2025244		
Identification code	TBP5		
Empirical formula	$CH_2Cl_2{\cdot}C_{64}H_{56}Si_2$		
Formula weight	966.19		
Temperature	100 K		
Wavelength	0.71075 Å		
Crystal system	Triclinic,		
Space group	<i>P</i> -1		
Unit cell dimensions	<i>a</i> = 11.6467 (3)	$\alpha = 92.613$ (2)	
	<i>b</i> = 13.8960 (4)	$\beta = 102.408$ (2)	
	c = 16.8565(4)	$\gamma = 104.007$ (2)	
Volume	2571.41 (12)		
Ζ	2		
Density (calculated)	1.248 g/cm^3		
Absorption coefficient	0.22 mm^{-1}		
<i>F</i> (000)	1020		
Crystal size	$0.26\times0.13\times0.11~mm^3$		
Theta range for data collection	2.071 to 27.484°.		
Index ranges	-14<=h<=15, -17<=k<=1	8, -21<=l<=21	
Reflections collected	44915		
Independent reflections	11784 [R(int) = 0.033]		
Completeness to theta = 27.484°	99.92		
Absorption correction	Gaussian		
Max. and min. transmission	1.000 and 0.813		
Refinement method	Full-matrix least-squares of	on F^2	
Data / restraints / parameters	11784 / 0 / 634		
Goodness-of-fit on F^2	1.064		
Final R indices [I>2sigma(I)]	$R_1 = 0.0464, wR_2 = 0.1257$	7	
R indices (all data)	$R_1 = 0.0568, wR_2 = 0.1329$		
Largest diff. peak and hole	$0.65 \text{ and } -0.91 \text{ e.}\text{Å}^{-3}$		

Table S7. Crystal data and structure refinement for TBP5

Fig. S8. The bond lengths of TBP5 in the crystal and calculations

Fig. S9. X-ray single crystal structure of TBP4. (a) Molecular structure and (b) packing structure.

Fig. S10. ESR spectra in powder at rt and 77 K for (a) TBP4 and (b) TBP5. The signals appeared at g = 2.003 for both compounds.

Methods S4. OFET fabrications

Bottom-gate/top-contact (BG/TC) OFETs were constructed on heavily doped n-type silicon wafers covered with thermally grown silicon dioxide (300 nm) which was cleaned by piranha solution. The silicon dioxide acts as a gate dielectric layer. and the silicon wafer serves as a gate electrode. The cross-linked PVP (poly-4-vinylphenol) was prepared by spin-coating from a solution of PVP (Aldrich 436224. $M_w \sim 25.000$. 1.0 wt%) and poly(melamine-co-formaldehyde) ($M_n \sim 432$. 1.0 wt%) in propylene glycol monomethyl ether acetate (PGMEA) at the rotational speed of 500 rpm for 5 s and then 4000 rpm for 60 s. followed by the cross-linkage at temperatures of 150 °C for 60 min under nitrogen atmosphere. Organic semiconductor layers were formed by drop-casting (see Fig. S11) from a 0.1–0.3 wt% solution of **TBP5** in *o*-dichlorobenzene (ODCB) at 60 °C. Top-contact gold source-drain electrodes (50 nm) were deposited through a shadow mask with L = 50, 100, 150 and 200 µm and W = 2000 µm. The actual lengths of L/W were measured by the optical microscope.

The FET measurements were carried out at room temperature in a glovebox without exposure to air with a semiconductor parameter analyzer (B1500. Agilent). Mobilities (μ) were calculated in the saturation regime by the relationship: $\mu_{sat} = (2I_DL)/[WC_i(V_G - V_{th})^2]$ where I_D is the source-drain saturation current; C_i is the capacitance of the insulating layer; V_G is the gate voltage and V_{th} is the threshold voltage. The latter can be estimated as the intercept of the linear section of the plot of $V_G (I_D)^{1/2}$.

Fig. S11. Schematic image of the drop-casting procedure. The substrates were placed inside the petri-dish with the saturated solvent vapor at 60 °C. then 30 μ L of the semiconductor solution was drop-casted.

Fig. S12. OFET characteristics. (a) Transfer and (b) output characteristics of a BG/TC device with a drop-casted film of **TBP5** from 0.1 wt% ODCB solution.

Fig. S13. Out-of-plane X-ray diffractograms for the films of TBP5.

Fig. S14. Microscope images for the films of **TBP5**. (a) The bright-field microscope image, (b) the cross-polarlized microscope image, (c) laser microscope image, and (d) atomic force microscope (AFM) image.

Table S8. Materials

Reagents	CAS No.	Supplier, code and Grade
5,12-Naphthacenequinone	1090-13-7	Tokyo Kasei Co., Ltd., N0603, >98.0%
Tin	7440-31-5	Sigma-Aldrich Chemical Co., 30-2400
Acetic acid	64-19-7	WAKO Chemical Industries, 014-00261, >99.0%
Pyridine N-oxide	694-59-7	Tokyo Kasei Co., Ltd., P0557, >98.0%
Iron(II) sulfate heptahydrate	7782-63-0	WAKO Chemical Industries, 098-01085
Piperidine	110-89-4	Tokyo Kasei Co., Ltd., P0453, >99.0%
Pyridine	110-86-1	WAKO Chemical Industries, 166-05316
Phenylmagnesiumbromide, 1.0M in THF	100-58-3	Sigma-Aldrich Chemical Co., 331376
Phenylmagnesiumbromide, 3.0M in Et ₂ O	100-58-3	Sigma-Aldrich Chemical Co., 171565
2-Mesitylmagnesiumbromide, 1.0M in THF	2633-66-1	Sigma-Aldrich Chemical Co., 227234
Mesityl bromide	576-83-0	Tokyo Kasei Co., Ltd., B1261, >99.0%
Magnesium	7439-95-4	WAKO Chemical Industries, 139-06045
(Triisopropylsilyl)acetylene	89343-06-6	WAKO Chemical Industries, 320-58801, >95.0%
<i>n</i> -Butyllithium	109-72-8	Kanto Chemicals, 04937-25, 1.6 mol/l
Tin(II) chloride	7772-99-8	WAKO Chemical Industries, 204-11491, >99.9%
Bromobenzene	108-86-1	WAKO Chemical Industries, 020-02545, >98.0%
Trimethylsilylacetylene	1066-54-2	Tokyo Kasei Co., Ltd., T1239, >98.0%
Iron(III) chloride	7705-08-0	WAKO Chemical Industries, 097-01675

 Table S9. Instruments

Instruments	Brands and Types	Conditions			
Sublimation	ALS technology	Three-zone sublimation apparatus.			
Elemental Analysis	Yanaco MT-5 CHN corder				
MS	Waters 3100 Mass Spectrometer	Direct probe ionization, ASAP-MS.			
MS	Shimadzu AXIMA Confidence	MALDI-MS, Reflection mode			
HRMS	JEOL JMS-700	Ion mode: FAB+, inlet: direct, calibration standard: PEG 400			
NMR	Bruker AVANCE III 500 MHz spectrometer	 Chemical shifts were calibrated to the corresponding deuterated solvents. 7.26 ppm for CDCl₃ and 5.32 ppm for CD₂Cl₂ in ¹H NMR, and 77.2 ppm for CDCl₃ in ¹³C NMR 			
UV-Vis	Perkin-Elmer Lambda 950-PKA UV–vis spectrophotometer	The light source consisted of Deuterium (D2) and Tungsten Iodide (50W) lamps for the ultraviolet and visible regions.			
PL PMA12 C10027-02 PMA12 C10028-01		the excitation wavelength was set to the absorption maximum			
PL quantum Yield	Hamamatsu Photonics Quantaurus-QY C11347-01 Hamamatsu Photonics Quantaurus-QY Plus C13534-21	Absolute PL quantum yield. The measurement error for the obtained values on this instrument is $\pm 3\%$.			
ESR	JEOL JES-FA200 spectrometer	at room temperature			
CV	BAS 608D + DPV Electrochemical system	Supporting electrolyte: tetrabutylammonium hexafluorophosphate (TBAPF ₆) (0.1 M) in dichloromethane. Working electrode: a glassy carbon, Auxiliary electrode: a platinum wire, Reference electrode: an Ag/AgNO ₃ . Calibration: ferrocenium-ferrocene (Fc/Fc ⁺) as a standard. Scan rate: 100 mV s ⁻¹ for cyclic voltammograms.			
UV/ozone	Nippon Laser & Electronics Lab. NL-UV253	15 min			
Spin-coater	Active Co., Ltd., ACT-220D II	at room temperature			
XRD	Rigaku Ultima IV diffractometer	40 kV and 40 mA using CuKα radiation.			
AFM	Bruker 3100 apparatus	Tapping mode using a silicon tip A resonance of around 500 kHz			
Laser scanning microscope	Olympus LEXT				
Polarized microscope	Nikon Eclipse LV150N				
Melting point	BUCHI melting point M-565	A heating rate of 10 °C per minute			
TG-DTA	Bruker TG-DTA 2400SA,	Under a N_2 atmosphere with a heating rate of 10 °C per minute.			

Atom		V	7	Atom	v	v	7
C	0 7/20812	-1 6501212	_2 1503320	люш Ц	7 2726072	-3 0322868	1 4631205
<u> </u>	2 1/5016/	-1 8887168	-2.1333320	C	_1.2120012	1 0202524	_0.6322140
<u> </u>	2.1439104	2 0259527	1.6280064	C	-4.8300377	1.9202324	1 7527004
$\frac{c}{c}$	2.9838780	2 6063475	1 1078027	C	5 / 25762/	2 /3/8607	0.5340243
<u> </u>	1.0406277	2.0903473	-1.10/892/	C	7.0116715	1 8385723	1 6878655
<u> </u>	0.2207120	2 5152425	1 6222600	C	6 9171005	2 6389206	0.5560828
<u> </u>	2 2566915	-5.5152455	-1.0233090	C	7.6240120	2.0388200	0.5309626
<u> </u>	2.8210606	-1.0809349	-0.0708270		7 6210202	2.3499978	-0.3437030
<u> </u>	1 4007150	-0.4240333	-0.2929420	п	7.0210393	2.0224170	1 4600552
<u> </u>	0.5212864	1 2079340	-0.3030733	П	4 6065021	2 7650008	1.4009333
<u> </u>	2 6621288	-1.30/8333	0.1012042	с и	4.0003031	1 8001272	2 1150824
<u> </u>	2 1420074	1 8610060	0.1013943	п	2 8622020	2 5268026	1 52/2/57
<u> </u>	1 7245860	2 1076224	0.3193739	п	5 2286697	2 1278714	2 5676254
<u> </u>	0.9779405	1 1025107	0.4270145	П	5.0221025	1.0640622	2.3070234
<u> </u>	2 0077501	2 9792/29	1.0422212	с и	4 2877006	1 7525627	2 110 2910
$\frac{c}{c}$	2 5229176	4.0672017	1.0452515	п u	4.2877990	-1./35305/	-3.442/8/0
<u> </u>	2 1060271	4.0073017	1.5309089	п	5 7016250	-0.1203103	-2.0327093
$\frac{c}{c}$	1 2524106	4.2336946	0.0877770	П	0.1112015	-0.8840010	-5.7722034
<u> </u>	0.5211929	1 2077176	0.98////9		9.1112913	-2.0093909	-0.3044707
<u> </u>	-0.3211626	0.2079911	-0.4694/94	П	9.3110900	-2.4921404	0.3033229
<u> </u>	-1.4000320	1 1025505	-0.3040223	П	9.5405954	-5.0504580	-0.8297972
<u> </u>	-0.8//8149	-1.1035505	-0.1239391	H C	9.0318480	-1.92/80/5	-1.1052050
$\frac{c}{c}$	-2.8510077	0.4239028	0.1007632		4.0009072	2.7032290	2 11/60/6
<u> </u>	3 1/21175	1 8608872	0.1007032	п Ц	3 8636427	3 5360017	1 5320002
<u> </u>	-3.1421173	2 1075330	0.3191393	п Ц	5 23025427	3.3309017	2 5650122
$\frac{c}{c}$	1.0404066	2.1073333	1.0416154	C II	5.0224206	1.0636386	3.0107080
$\frac{c}{c}$	-2.4831620	2.5061452	-1.1090/88	н	-4.2870187	1.0030300	-3.0177080
$\frac{c}{c}$	-3 3565392	1 6867964	-0.6719357	Н	-4.5021159	0.1199054	-2 8339830
<u> </u>	-3 9979815	-2 8780042	1 0430488	H	-5 7907825	0.8835068	-3 7738393
<u> </u>	-3.5241456	-4.0669437	1.5371667	C	-9.1111776	2.6095094	-0.5070055
C	-2.1072507	-4.2555411	1.5246845	Н	-9.5118815	2.4917915	0.5026451
С	-1.2536302	-3.3287641	0.9882897	Н	-9.3403619	3.6304551	-0.8321007
С	-0.2203662	3.5148680	-1.6242271	Н	-9.6515565	1.9279241	-1.1680824
С	-0.7435211	4.6586317	-2.1605658	С	4.4919002	5.1245718	2.1028153
С	-2.1454627	4.8877503	-2.1340990	С	5.4927404	5.5454644	1.0019277
С	-2.9835322	3.9354718	-1.6304596	Н	6.1883804	6.2973456	1.3876187
Н	0.0875126	-5.3891205	-2.6191783	Н	6.0811955	4.6974460	0.6448597
Н	2.5493409	-5.8095223	-2.5377829	Н	4.9699232	5.9746802	0.1428592
Н	4.0551928	-4.0916416	-1.6389222	С	3.7597045	6.3889811	2.5903475
Н	-0.8464305	-3.3494303	-1.6638840	Н	3.2005146	6.8722512	1.7845487
Н	4.7361435	0.4900627	0.1110217	Н	3.0654377	6.1701074	3.4061007
H	5.0603349	2.6601758	1.0601748	Н	4.4892652	7.1116708	2.9655054
<u>H</u>	1.6808353	5.1498356	1.9592525	C	5.2684207	4.5276084	3.2992292
<u>H</u>	0.1896922	3.5187655	1.0168494	H	4.5836703	4.2184824	4.0936081
<u>H</u>	-4.7361670	-0.4900372	0.1101312	H	5.8542223	3.6539469	3.0050689
<u>H</u>	-5.0605620	-2.6599358	1.0597029	H	5.9580397	5.269/156	3.7137324
<u>H</u>	-1.6812538	-5.1493/64	1.9601067	C	-4.4923516	-5.1241000	2.1030110
<u>H</u>	-0.1899088	-3.51852/4	1.01/6364	C II	-3./6025/3	-0.3883882	2.3910111
<u>П</u>	0.0840/834	5 2995166	-1.0044/20	П	-3.2009/99	-0.8/191/8	1./854508
<u>п</u> п	-0.0809343	5.2080200	-2.0204379	П	-3.0000913	-0.1092839	2.0662911
<u>п</u> и	-2.3488012	<u> </u>	-2.3390734	П	-4.4898900	-/.11094/0	1.0010668
<u>п</u> С	4.0346440	1 0203080	-1.0407403	U Ц	6 1886764	6 2070010	1.0019008
<u> </u>	5 6340442	-1.7203700	-1 7520800	Н	-6.0812107	-4 6972017	0 6444007
<u> </u>	5 4356351		0 5356978	H	-4 9698672	-5 9747116	0 1431529
<u> </u>	7.0120468	-1.8388210	-1.6859031	C	-5.2691797	-4.5268917	3.2991093
<u> </u>	6.8169707	-2.6388017	0.5589969	Н	-4.5846276	-4.2175727	4.0935811
Č	7.6241326	-2.3501031	-0.5415994	Н	-5.8549447	-3.6533126	3.0046243
Н	7.6216116	-1.6017087	-2.5530866	Н	-5.9588832	-5.2689243	3.7136048

Table S10. Optimized geometry for the closed-shell singlet of **TBP1** at the B3LYP/6-311G(d,p)

Atom	v	V	7	Atom	v	V	7
C	A 0.7440027	1	2 1504701	TI	7 2711005	1	1 4605066
$\frac{c}{c}$	0./44992/	4.0012903	-2.1394/81	П	/.2/11093	-3.0303370	0.6291062
$\frac{c}{c}$	2.14555/1	-4.8910041	-2.1291139	C	-4.833/400	1.9222155	-0.0281902
<u> </u>	2.9832747	-3.9392045	-1.0228934	C	-3.0328948	1.0231389	-1./505400
<u> </u>	2.4822530	-2.7003576	-1.1032849	C	-5.4346028	2.434/445	0.5390923
<u> </u>	1.049/095	-2.5115162	-1.0393752	C	-/.010/91/	1.8438899	-1.6840522
<u> </u>	0.2216032	-3.5159120	-1.6244353	C	-6.8158316	2.6393872	0.5624616
<u> </u>	3.3559053	-1.688/192	-0.66/23/8	C	-7.6228769	2.3532657	-0.5388933
<u> </u>	2.8302508	-0.424/032	-0.2936165	H	-7.6202730	1.6088313	-2.551850/
<u> </u>	1.3995163	-0.208141/	-0.3045588	H	-/.2/14825	3.0313382	1.46/2411
<u> </u>	0.5201431	-1.3083031	-0.4886156	C	4.6051874	-2.7616207	1.7609114
C	3.6630841	0.6376089	0.0969748	Н	4.0577879	-1.8855174	2.1198724
C	3.1429620	1.8632336	0.5136595	Н	3.8615349	-3.5334011	1.5419571
C	1.7265051	2.1097879	0.4238341	Н	5.2371453	-3.1229467	2.5743130
C	0.8774012	1.1039412	-0.1261432	C	5.0225303	-1.0713424	-3.0161021
C	3.9995703	2.8790747	1.0364798	Н	4.2858935	-1.7607801	-3.4383707
C	3.5264584	4.0685934	1.5323054	Н	4.5037805	-0.1262680	-2.8327509
C	2.1106627	4.2569501	1.5221201	Н	5.7909254	-0.8944410	-3.7709569
С	1.2560712	3.3292190	0.9865346	C	9.1100348	-2.6135676	-0.4990739
C	-0.5200339	1.3081733	-0.4890098	Н	9.5104853	-2.4942904	0.5104945
C	-1.3994488	0.2080516	-0.3049208	Н	9.3388103	-3.6351867	-0.8223436
C	-0.8773749	-1.1039931	-0.1261009	Н	9.6509372	-1.9333838	-1.1611722
C	-2.8301851	0.4246195	-0.2943441	С	-4.6055426	2.7620684	1.7592707
C	-3.6631078	-0.6376077	0.0962849	Н	-4.0582187	1.8860560	2.1185682
C	-3.1430801	-1.8631350	0.5133728	Н	-3.8618433	3.5337920	1.5402740
С	-1.7266015	-2.1097081	0.4239323	Н	-5.2376686	3.1236026	2.5724491
С	-1.0494741	2.5112837	-1.0401118	С	-5.0218921	1.0705779	-3.0174006
С	-2.4820024	2.7001116	-1.1043926	Н	-4.2851659	1.7599019	-3.4396986
С	-3.3557548	1.6885576	-0.6683474	Н	-4.5031832	0.1255497	-2.8336943
C	-3.9998074	-2.8788504	1.0362415	Н	-5.7901319	0.8934803	-3.7723674
С	-3.5268079	-4.0682443	1.5324730	С	-9.1099164	2.6134637	-0.5016128
C	-2.1110095	-4.2565971	1.5226681	Н	-9.5106412	2.4940621	0.5078335
C	-1.2562956	-3.3289945	0.9870546	Н	-9.3385896	3.6351296	-0.8248063
C	-0.2212269	3.5155830	-1.6251366	Н	-9.6506495	1.9333732	-1.1639434
C	-0.7444900	4.6608722	-2.1605068	С	4.4960474	5.1249793	2.0969487
C	-2.1450631	4.8911782	-2.1305270	С	5.4938616	5.5472977	0.9938696
C	-2.9829009	3.9388665	-1.6243414	Н	6.1907038	6.2985105	1.3786877
Н	0.0885163	-5.3906089	-2.6203729	Н	6.0811278	4.6997072	0.6338285
Н	2.5495748	-5.8130297	-2.5334477	Н	4.9686854	5.9778918	0.1369091
Н	4.0545075	-4.0956753	-1.6305557	C	3.7651391	6.3886588	2.5882350
Н	-0.8453411	-3.3493332	-1.6672183	Н	3.2040767	6.8732206	1.7845206
Н	4.7359279	0.4889468	0.1072977	Н	3.0727959	6.1684485	3.4052642
H	5.0621334	2.6608445	1.0517587	Н	4.4956280	7.1107338	2.9627973
H	1.6848626	5.1507335	1.9578483	C	5.2758572	4.5263811	3.2904469
<u>H</u>	0.1924077	3.5191126	1.0174170	Н	4.5932575	4.2162918	4.0863002
H	-4.7359538	-0.4889415	0.1063324	Н	5.8608662	3.6530768	2.9936330
H	-5.0623756	-2.6606243	1.0512118	Н	5.9666501	5.2679358	3.7039701
H	-1.6853075	-5.1502673	1.9587244	C	-4.4965288	-5.1245068	2.0971215
<u>H</u>	-0.1926392	-3.5188739	1.0182435	C	-3.7657421	-6.3881098	2.5887848
<u>H</u>	0.8457297	3.3490032	-1.6676206	Н	-3.2046572	-6.8729191	1.7852362
H	-0.0879033	5.3901093	-2.6213638	Н	-3.0734403	-6.1677331	3.4058051
H	-2.5489852	5.8125328	-2.5351181	Н	-4.4963065	-7.1100395	2.9634797
H	-4.0541315	4.0953371	-1.6322814	C	-5.4941257	-5.5470049	0.9939135
C	4.8358883	-1.9223656	-0.6267167	Н	-6.1910809	-6.2981133	1.3787313
С	5.6332729	-1.6235872	-1.7487697	Н	-6.0812771	-4.6994582	0.6335809
С	5.4345000	-2.4346065	0.5408216	Н	-4.9687841	-5.9777882	0.1371496
С	7.0111544	-1.8442994	-1.6821387	С	-5.2765716	-4.5256846	3.2903545
С	6.8157269	-2.6392357	0.5645331	Н	-4.5941247	-4.2154277	4.0862733
С	7.6230016	-2.3533860	-0.5367218	Н	-5.8615451	-3.6524508	2.9932649
Н	7.6208165	-1.6094611	-2.5498702	Н	-5.9674268	-5.2671712	3.7038959

Table S11. Optimized geometry for the open-shell singlet of **TBP1** at the UB3LYP/6-311G(d,p)

	· 1 8	5	1			,	
Atom	Х	Y	Z	Atom	Х	Y	Z
С	0.7628239	-4.6929999	-2.1612752	Н	7.2510868	-3.0121181	1.5604134
C	2.1421410	-4.9407350	-2.0757605	C	-4.8217239	1.9496578	-0.5684302
C	2.9750934	-3.9878189	-1.5310491	C	-5.6202214	1.6912052	-1.6998752
<u> </u>	2 4662648	-2 7577631	-1 0337259	C	-5 4180910	2 4311536	0.6133351
<u> </u>	1 0502644	-2 5560117	-1.0202128	C	-6 9965356	1 9192106	-1 6276138
<u> </u>	0.2367396	-3 5245212	-1 6424697	C	-6 7978487	2 6448898	0.6421932
$\frac{c}{c}$	3 3/36237	-1 7135450	-0.6120797	C	-7 6059663	2.0440070	-0.4677968
$\frac{c}{c}$	2 8194520	-0.4341103	-0.3046334	<u>с</u> н	-7.6069/17	1 7152338	-2 5026196
$\frac{c}{c}$	1 3823334	0.2104451	0.3104861	- 11 - Ц	7 251/162	3.0124610	1 5581040
$\frac{c}{c}$	0.50/1625	-1.3130707	-0.4852324	C II	4 5867107	_2 7131245	1.5561747
$\frac{c}{c}$	3 6615647	0.6355100	0.0282001	<u>с</u> и	4.0532421	1 810//15	2 1800107
<u> </u>	2 1572264	1 2040142	0.0282091	11 11	2 8210404	2 4702120	1.6484167
<u> </u>	1 752204	2 1404506	0.42/11/2		5.0510494	2 0619527	2 6667774
<u> </u>	0.9700127	2.1404390	0.5707152	П	5.0122205	-5.0018357	2.000///4
$\frac{c}{c}$	0.8/0912/	2 8001410	-0.15811/4		5.0123205	-1.1/1310/	-2.9801428
<u> </u>	4.0255501	2.8901419	1.4(42)119	Н	4.2505100	-1.855/005	-3.30/1018
<u> </u>	3.5640069	4.0856324	1.4642118	H	4.524/412	-0.2041882	-2.8280930
<u> </u>	2.1646819	4.2695/48	1.4945278	H	5.7768395	-1.04/1426	-3.7493220
<u> </u>	1.2938955	3.3294258	0.9701124		9.0912493	-2.66/5905	-0.4211444
<u> </u>	-0.5040591	1.3129551	-0.4856294	H	9.4930230	-2.5229102	0.5845652
<u> </u>	-1.3822661	0.2103660	-0.3198317	Н	9.3126/86	-3.6994465	-0.7157620
C	-0.8708806	-1.1084764	-0.1580620	Н	9.6366416	-2.0100694	-1.1021920
C	-2.8193876	0.4340359	-0.3053372	С	-4.5871053	2.7135079	1.8434048
C	-3.6615725	-0.6355100	0.0275610	Н	-4.0537150	1.8198930	2.1796374
C	-3.1573209	-1.8948264	0.4268576	Н	-3.8313966	3.4796493	1.6468388
C	-1.7533659	-2.1403838	0.3768083	Н	-5.2154812	3.0624158	2.6649896
C	-1.0500443	2.5557806	-1.0209958	C	-5.0116820	1.1706690	-2.9814848
C	-2.4660413	2.7575303	-1.0348577	Н	-4.2495765	1.8529709	-3.3684814
C	-3.3434919	1.7134035	-0.6131767	Н	-4.5241517	0.2035701	-2.8291279
C	-4.0255346	-2.8899395	0.9362912	Н	-5.7760361	1.0463524	-3.7508041
С	-3.5643255	-4.0853143	1.4643496	С	-9.0911513	2.6675332	-0.4236838
С	-2.1650072	-4.2692513	1.4950061	Н	-9.4932063	2.5227203	0.5818955
С	-1.2941076	-3.3292187	0.9705705	Н	-9.3124763	3.6994371	-0.7182119
С	-0.2363836	3.5241556	-1.6432836	Н	-9.6363691	2.0101199	-1.1049735
С	-0.7623544	4.6925238	-2.1624531	C	4.5548581	5.1292561	2.0113995
С	-2.1416895	4.9402787	-2.0772891	С	5.5153464	5.5658064	0.8809071
С	-2.9747607	3.9874802	-1.5325537	Н	6.2287522	6.3074587	1.2535864
Н	0.1072954	-5.4133043	-2.6371899	Н	6.0858465	4.7222173	0.4860018
Н	2.5551890	-5.8658118	-2.4621268	Н	4.9622596	6.0130777	0.0504637
Н	4.0444540	-4.1547291	-1.5029050	С	3.8438911	6.3857262	2.5471395
Н	-0.8265009	-3.3461911	-1.7213987	Н	3.2597311	6.8852499	1.7695136
Н	4.7320289	0.4732733	0.0515112	Н	3.1760756	6.1518850	3.3806194
Н	5.0875595	2.6703056	0.9280780	Н	4.5874111	7.0995452	2.9117562
Н	1.7432235	5.1605047	1.9402450	С	5.3735664	4.5098710	3.1678740
Н	0.2312184	3.5192512	1.0298437	Н	4.7176874	4.1907304	3.9823689
Н	-4.7320416	-0.4732669	0.0505975	Н	5.9452661	3.6392097	2.8389816
Н	-5.0877618	-2.6701037	0.9275803	Н	6.0811002	5.2430563	3.5676045
Н	-1.7436451	-5.1600835	1.9410099	С	-4.5552943	-5.1288138	2.0115612
H	-0.2314434	-3.5190312	1.0305733	C	-3.8444437	-6.3851735	2.5477146
H	0.8268737	3.3458075	-1.7219431	H	-3.2601208	-6.8848610	1.7703161
H	-0.1067223	5 4127257	-2 6383802	Н	-3 1768034	-6 1511605	3 3812867
н	-2 5546528	5 8652734	-2 4639419	Н	-4 5880424	-7 0989144	2 9123236
H	-4 0441267	4 1543070	-1 5046758	C	-5 5155582	-5 5656026	0 8809705
C	4 8218468	_1 9497865	-0 5669633	н	-6 2290426	-6 3071706	1 2536671
<u> </u>	5 6205800	-1.6915687	-1 6987010	Н	-6.0850752	_4 7220066	0.4857670
<u> </u>	5 4170500		0.6150227	н		-6.0130564	0.0507345
<u> </u>	6 0068876	_1 0105/61	-1 6256828	C	-5 37/23074	_/ 5001720	3 1677272
	6 7077151	-1.7173401	-1.0230626	ц Ц	-3.3742302	_/ 1808602	3.10//3/3
	7 6060707	2 2000050	0.0442334	п Ц	5 0/50550	2 6295760	2.2022244
U	7.0000/0/	-2.3700030	-0.403029/	11 U	6 0010504	5 242264	2.0303411
п	1.00/4824	-1./13/301	-2.3003993	п	-0.0818304	-J.Z4ZZ048	3.30/484/

Table S12. Optimized geometry for the triplet of **TBP1** at the UB3LYP/6-311G(d,p)

A 4 5 115	V	V	7	A 4	V	v	7
Atom	X 1.4122022	Y 4.0004172	L	Atom	X	Y 2 (0222.10	L
<u> </u>	1.4133923	4.9084173	1.8697703	C	8.5970841	-2.6823248	-0.2117242
<u> </u>	2.8352476	4.903/837	1.8899398	C	8.7508349	0.1662569	-1.4113536
<u> </u>	3.5159123	3.8226552	1.4107431	C	8.5488249	-0.2116802	1.6529195
<u>C</u>	2.8234162	2.6922093	0.8726040	C	-8.5491450	-0.2112867	-1.6523712
C	1.3849826	2.7339926	0.7627252	C	-8.5970718	-2.6823766	0.2116438
C	0.7172183	3.8667049	1.3195119	C	-8.7505971	0.1659068	1.4120337
C	3.5212400	1.5564345	0.4669617	Н	0.8753642	5.7411625	2.3082772
C	2.8561929	0.3912315	0.0662881	Н	3.3701656	5.7472473	2.3114293
С	1.4140126	0.3980088	0.0219998	Н	4.5991501	3.7859547	1.4538780
С	0.7034396	1.6188388	0.1952338	Н	-0.3632089	3.8858024	1.3310180
С	3.5626504	-0.7966531	-0.2906100	Н	4.6039438	1.5594026	0.4945160
С	2.8495633	-1.9263476	-0.7579577	Н	4.6141177	-3.0622963	-1.2739464
С	1.4090493	-1.9371363	-0.7165115	Н	3.3818327	-4.9774402	-2.2063021
С	0.7066603	-0.8198543	-0.1722109	Н	0.8875350	-4.9166694	-2.3135586
С	3.5316769	-3.0685477	-1.2776236	Н	-0.3410816	-3.0338183	-1.3682231
С	2.8448841	-4.1280282	-1.7994163	Н	-4.6039527	1.5593745	-0.4945759
С	1.4271159	-4.1024257	-1.8436381	Н	-4.5991855	3.7859440	-1.4539071
С	0.7379843	-3.0465334	-1.3123242	Н	-3.3702218	5.7472537	-2.3114459
С	-0.7066429	-0.8198645	0.1720638	Н	-0.8754208	5.7411834	-2.3083247
С	-1.4140082	0.3979938	-0.0221221	Н	0.3631748	3.8858161	-1.3311013
С	-0.7034482	1.6188340	-0.1953406	Н	0.3411279	-3.0338479	1.3680160
С	-2.8561892	0.3912063	-0.0663952	Н	-0.8874640	-4.9167349	2.3133105
С	-3.5212495	1.5564114	-0.4670413	Н	-3.3817620	-4.9775273	2.2060670
С	-2.8234391	2.6921973	-0.8726732	Н	-4.6140694	-3.0623675	1.2737781
С	-1.3850051	2.7339890	-0.7628099	Н	9.6872308	-2.7527728	-0.1427087
С	-1.4090185	-1.9371644	0.7163470	Н	8.1696627	-3.3149355	0.5709030
С	-2.8495310	-1.9263868	0.7578107	Н	8.2960170	-3.0952907	-1.1784326
С	-3.5626321	-0.7966859	0.2904996	Н	9.8449348	0.1606001	-1.3748442
С	-3.5159476	3.8226480	-1.4107863	Н	8.4175261	1.2044108	-1.3296237
С	-2.8352942	4.9037867	-1.8899757	Н	8.4449830	-0.2054053	-2.3930120
С	-1.4134384	4.9084286	-1.8698234	Н	8.2133867	0.8209738	1.7824046
С	-0.7172525	3.8667126	-1.3195875	Н	8.1247172	-0.8048607	2.4674683
С	-0.7379387	-3.0465703	1.3121261	Н	9.6383819	-0.2256401	1.7576807
С	-1.4270563	-4.1024834	1.8434171	Н	-9.6387157	-0.2253590	-1.7569778
C	-2.8448240	-4.1280973	1.7992051	Н	-8.2138609	0.8214450	-1.7816309
Č	-3.5316297	-3.0686073	1.2774495	Н	-8.1250816	-0.8041979	-2.4671385
<u> </u>	-4.9768781	-0.8258532	0.2097779	Н	-9.6872398	-2.7527849	0.1429226
<u> </u>	-6.1932351	-0.8479173	0.1394619	Н	-8.2957316	-3.0956513	1,1781342
Si	-8.0319341	-0.8933398	0.0275529	Н	-8.1698888	-3.3147506	-0.5713053
<u> </u>	4 9768948	-0.8258138	-0 2098490	Н	-8 4447103	-0.2060958	2 3935521
<u> </u>	6 1932486	-0.8478643	-0 1394806	Н	-8 4171630	1 2040429	1 3305960
Si	8.0319258	-0.8933342	-0.0272638	Н	-9.8447007	0.1603984	1.3756135
51	0.0017400	0.0/00014	0.02/2000		2.011/00/	0.10000000	1.0,00100

Table S13. Optimized geometry for the closed-shell singlet of TBP2 at the B3LYP/6-311G(d,p)

			-				
Atom	Х	Y	Z	Atom	Х	Y	Ζ
С	1.4267565	4.9163454	1.8614039	С	8.5921352	-2.6890773	-0.2099326
С	2.8461560	4.9132661	1.8688665	С	8.7504730	0.1606714	-1.4062673
С	3.5236106	3.8311547	1.3819004	С	8.5466798	-0.2204889	1.6574861
С	2.8270229	2.7031805	0.8495057	С	-8.5469380	-0.2204642	-1.6571802
С	1.3906510	2.7440910	0.7514471	С	-8.5921528	-2.6890702	0.2102184
С	0.7267383	3.8718256	1.3158960	С	-8.7502404	0.1606699	1.4066092
С	3.5220180	1.5610130	0.4454283	Н	0.8906515	5.7482109	2.3038793
С	2.8545239	0.3941747	0.0577598	Н	3.3849317	5.7562813	2.2862995
С	1.4112362	0.4014558	0.0165494	Н	4.6071714	3.7946859	1.4165160
С	0.7026202	1.6233520	0.1890800	Н	-0.3535835	3.8902566	1.3365033
С	3.5612733	-0.7975115	-0.2881384	Н	4.6047631	1.5621254	0.4708906
С	2.8468559	-1.9332624	-0.7513469	Н	4.6114498	-3.0690395	-1.2616375
С	1.4093596	-1.9414569	-0.7146096	Н	3.3796821	-4.9830215	-2.2005416
С	0.7036796	-0.8178921	-0.1714413	Н	0.8863523	-4.9169399	-2.3164226
С	3.5289938	-3.0736171	-1.2687502	Н	-0.3405332	-3.0297891	-1.3743553
С	2.8419444	-4.1333467	-1.7952783	Н	-4.6047686	1.5620963	-0.4709615
С	1.4272209	-4.1043009	-1.8452285	Н	-4.6071934	3.7946683	-1.4165600
С	0.7383760	-3.0445098	-1.3150225	Н	-3.3849680	5.7562836	-2.2863186
С	-0.7036671	-0.8179000	0.1713404	Н	-0.8906877	5.7482325	-2.3038966
С	-1.4112331	0.4014452	-0.0166333	Н	0.3535608	3.8902758	-1.3365422
С	-0.7026265	1.6233491	-0.1891481	Н	0.3405617	-3.0298106	1.3742157
С	-2.8545207	0.3941537	-0.0578441	Н	-0.8863099	-4.9169878	2.3162478
С	-3.5220235	1.5609915	-0.4454993	Н	-3.3796392	-4.9830868	2.2003630
С	-2.8270370	2.7031693	-0.8495619	Н	-4.6114209	-3.0690966	1.2614946
С	-1.3906655	2.7440898	-0.7515015	Н	9.6821486	-2.7611683	-0.1405325
С	-1.4093390	-1.9414794	0.7144893	Н	8.1634989	-3.3219701	0.5718030
С	-2.8468353	-1.9332963	0.7512264	Н	8.2908838	-3.1005012	-1.1772381
С	-3.5612612	-0.7975422	0.2880388	Н	9.8445431	0.1535051	-1.3691817
С	-3.5236328	3.8311449	-1.3819432	Н	8.4185591	1.1991971	-1.3235838
С	-2.8461862	4.9132673	-1.8688955	Н	8.4446515	-0.2095128	-2.3884910
С	-1.4267867	4.9163575	-1.8614318	Н	8.2125584	0.8124502	1.7880711
С	-0.7267609	3.8718364	-1.3159361	Н	8.1214701	-0.8140469	2.4711847
С	-0.7383474	-3.0445383	1.3148822	Н	9.6361796	-0.2360519	1.7626302
С	-1.4271845	-4.1043444	1.8450683	Н	-9.6364544	-0.2360115	-1.7621543
С	-2.8419077	-4.1334003	1.7951160	Н	-8.2128231	0.8124719	-1.7878050
С	-3.5289649	-3.0736663	1.2686071	Н	-8.1218632	-0.8140185	-2.4709519
С	-4.9742549	-0.8272161	0.2074250	Н	-9.6821793	-2.7611356	0.1409970
С	-6.1909290	-0.8513839	0.1367269	Н	-8.2907510	-3.1005144	1.1774684
Si	-8.0295031	-0.8994893	0.0238974	Н	-8.1636600	-3.3219619	-0.5715967
С	4.9742685	-0.8271697	-0.2075435	Н	-8.4442787	-0.2095361	2.3887810
С	6.1909403	-0.8513379	-0.1368036	Н	-8.4183100	1.1991875	1.3238890
Si	8.0294952	-0.8994862	-0.0236799	Н	-9.8443164	0.1535353	1.3696917

Table S14. Optimized geometry for the open-shell singlet of **TBP2** at the UB3LYP/6-311G(d,p)

Atom	Х	Y	Z	Atom	Х	Y	Ζ
С	1.4993644	4.9558650	1.8146320	С	8.5638220	-2.7277740	-0.2036449
С	2.9055633	4.9583061	1.7581799	С	8.7515532	0.1329630	-1.3692014
С	3.5640661	3.8708036	1.2328079	С	8.5300233	-0.2782939	1.6889843
С	2.8460935	2.7557694	0.7287900	С	-8.5299406	-0.2782405	-1.6889806
С	1.4194220	2.7941332	0.6918178	С	-8.5639162	-2.7277745	0.2035771
С	0.7783400	3.8988503	1.2944329	С	-8.7514717	0.1329401	1.3692152
С	3.5250222	1.5827551	0.3310327	Н	0.9753619	5.7847014	2.2766802
С	2.8471101	0.4103867	0.0088282	Н	3.4642817	5.7989101	2.1535765
С	1.3979257	0.4217811	-0.0155780	Н	4.6481651	3.8339138	1.2247345
С	0.6996544	1.6468510	0.1573278	Н	-0.3001673	3.9149656	1.3625079
С	3.5533119	-0.8008466	-0.2808945	Н	4.6079380	1.5742563	0.3476714
С	2.8316029	-1.9630645	-0.7276111	Н	4.5937229	-3.0983693	-1.2192613
С	1.4073350	-1.9573914	-0.7127634	Н	3.3602930	-5.0033851	-2.1903118
С	0.6887517	-0.8034910	-0.1717003	Н	0.8721801	-4.9097877	-2.3417763
С	3.5113057	-3.0935718	-1.2401052	Н	-0.3430687	-3.0011910	-1.4104406
С	2.8206181	-4.1523337	-1.7906507	Н	-4.6079845	1.5741135	-0.3476679
С	1.4207033	-4.1056666	-1.8649590	Н	-4.6482806	3.8337681	-1.2247353
С	0.7350586	-3.0273221	-1.3364301	Н	-3.4644572	5.7987994	-2.1535799
С	-0.6887252	-0.8035121	0.1717087	Н	-0.9755368	5.7846673	-2.2766816
С	-1.3979367	0.4217380	0.0155852	Н	0.3000494	3.9149725	-1.3625050
С	-0.6997031	1.6468293	-0.1573218	Н	0.3431619	-3.0011817	1.4104475
С	-2.8471206	0.4102991	-0.0088214	Н	-0.8720284	-4.9098166	2.3417805
С	-3.5250689	1.5826459	-0.3310284	Н	-3.3601383	-5.0034904	2.1903151
С	-2.8461761	2.7556804	-0.7287874	Н	-4.5936264	-3.0985111	1.2192670
C	-1.4195058	2.7940883	-0.6918142	Н	9.6528402	-2.8093700	-0.1293419
C	-1.4072733	-1.9574348	0.7127710	Н	8.1261269	-3.3653638	0.5692120
C	-2.8315412	-1.9631514	0.7276187	Н	8.2643519	-3.1265503	-1.1767737
C	-3.5532854	-0.8009552	0.2809027	Н	9.8453162	0.1163172	-1.3263117
C	-3.5641827	3.8706915	-1.2328080	Н	8.4279750	1.1733636	-1.2774060
С	-2.9057131	4.9582133	-1.7581814	Н	8.4480336	-0.2244280	-2.3568498
C	-1.4995141	4.9558156	-1.8146323	Н	8.2024425	0.7554539	1.8293168
C	-0.7784574	3.8988240	-1.2944309	Н	8.0974378	-0.8774548	2.4946454
C	-0.7349645	-3.0273457	1.3364366	Н	9.6189882	-0.3026700	1.7981248
C	-1.4205762	-4.1057119	1.8649641	Н	-9.6189056	-0.3025484	-1.7981346
C	-2.8204895	-4.1524218	1.7906554	Н	-8.2022968	0.7554924	-1.8292756
C	-3.5112093	-3.0936804	1.2401111	Н	-8.0973813	-0.8774009	-2.4946560
C	-4.9594136	-0.8353937	0.1990596	Н	-9.6529394	-2.8092963	0.1292670
C	-6.1775770	-0.8716777	0.1235061	Н	-8.2644767	-3.1265992	1.1766955
Si	-8.0146407	-0.9357499	0.0013944	Н	-8.1262597	-3.3653704	-0.5692967
C	4.9594410	-0.8352423	-0.1990524	Н	-8.4479884	-0.2245024	2.3568561
C	6.1776046	-0.8715208	-0.1234984	Н	-8.4278205	1.1733213	1.2774558
Si	8.0146651	-0.9357194	-0.0014057	Н	-9.8452353	0.1163712	1.3263121

 Table S15. Optimized geometry for the triplet of TBP2 at the UB3LYP/6-311G(d,p)

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-1.3698894	-4.5292983	1.7674894	Н	-0.3710143	3.3613554	1.4407161
С	-2.7760798	-4.6242312	1.5985516	Н	0.8270244	5.3331183	2.2514969
С	-3.4772484	-3.5815248	1.0642111	Н	3.2978271	5.5200788	1.9162981
С	-2.8289807	-2.3630901	0.6681112	Н	4.5506115	3.6552216	0.9656042
С	-1.3869251	-2.3312230	0.7103736	С	4.9970453	-1.4589504	0.1482276
С	-0.7012754	-3.4252901	1.3186552	С	6.0187988	-1.5754048	-0.8006759
С	-3.5609909	-1.2409688	0.2201339	С	5.3135343	-1.6598505	1.4976527
С	-2.8920639	0.0000304	0.0000517	С	7.3220639	-1.8704855	-0.4100175
С	-1.4349562	0.0000224	0.0000948	Н	5.7913877	-1.4218245	-1.8488159
С	-0.7075052	-1.2045777	0.1774685	С	6.6158402	-1.9594666	1.8894376
С	-3.5609686	1.2410357	-0.2200702	Н	4.5278687	-1.5872902	2.2416711
С	-2.8289185	2.3631486	-0.6680189	С	7.6255488	-2.0651208	0.9360075
С	-1.3868599	2.3312523	-0.7102208	Н	8.1020009	-1.9467475	-1.1594455
С	-0.7074819	1.2046122	-0.1772600	Н	6.8392061	-2.1155829	2.9392511
С	-3.4771380	3.5815834	-1.0642107	Н	8.6403698	-2.2983668	1.2382694
С	-2.7759197	4.6242540	-1.5985563	С	4.9970425	1.4588954	-0.1482518
C	-1.3697237	4.5292830	-1.7674265	С	5.3134098	1.6597466	-1.4977134
С	-0.7011581	3.4252749	-1.3185240	С	6.0188790	1.5753932	0.8005556
С	0.7074783	1.2046085	0.1774092	С	6.6156796	1.9593502	-1.8896271
С	1.4349329	-0.0000036	0.0001057	Н	4.5276767	1.5871599	-2.2416577
C	0.7074547	-1.2046010	-0.1771938	С	7.3221091	1.8704584	0.4097678
С	2.8920464	-0.0000167	0.0000811	Н	5.7915632	1.4218535	1.8487223
С	3.5609384	-1.2410248	-0.2200522	С	7.6254736	2.0650414	-0.9362918
C	2.8288818	-2.3631487	-0.6679464	Н	6.8389511	2.1154271	-2.9394665
C	1.3868250	-2.3312737	-0.7101001	Н	8.1021125	1.9467508	1.1591235
<u> </u>	1.3868871	2.3312782	0.7102766	H	8.6402669	2.2982776	-1.2386540
<u> </u>	2.8289442	2.3631290	0.6680650	C	-4.9970399	1.4589242	0.1483635
<u> </u>	3.5609663	1.2409866	0.2201595	C	-6.018892/	1.5/55169	-0.80041/6
<u> </u>	3.4//1191	-3.5815/06	-1.064139/	C	-5.3134036	1.6595948	1.49/8544
<u> </u>	2.7759013	-4.6242//4	-1.5984143	U 11	-/.3221195	1.8/05350	-0.4095839
$\frac{c}{c}$	0.7011216	-4.5293478	-1./0/2102	H C	-5./915914	1.4220891	-1.8480033
<u> </u>	0.7011216	-3.4233302	-1.3183298		-0.0100098	1.9391311	1.8898145
<u> </u>	1 2608286	4 5202915	1.31830/1	П	-4.3270000	2.0640505	2.241/640
$\frac{c}{c}$	2 7760292	4.5293613	1.7075500	U	-7.0234723 <u>8.1021212</u>	1.0460084	1 1580221
<u> </u>	2.7700382	3 5815610	1.5964576	п	6 8380328	2 1150004	2 0306745
<u></u>	_0.8270845	-5 3330168	2 2516012	н	-8.6402642	2.1150774	1 2389000
H	-3 2978688	-5 5200230	1 9163815	C	_4 9970291	-1 4588679	-0 1484092
H	-4 5506376	-3.6552110	0.9655744	C	-5 3132798	-1.4505806	-0.1484092
H	0 3709642	-3 3612618	1 4408897	C	-6.0189509	-1.5754723	0.8002954
H	-4 5505297	3 6552969	-0.9656434	C	-6.6155104	-1.9591617	-1 8899781
H	-3.2976726	5.5200441	-1.9164504	Н	-4.5274837	-1.5869064	-2.2417894
H	-0.8268784	5.3329695	-2.2516362	C	-7.3221434	-1.8705103	0.4093628
H	0.3710859	3.3612129	-1.4407118	H	-5.7917346	-1.4220221	1.8484970
H	4.5505206	-3.6552450	-0.9656292	C	-7.6253877	-2.0649614	-0.9367426
H	3.2976636	-5.5200622	-1.9163075	H	-6.8386862	-2.1151363	-2.9398530
H	0.8268453	-5.3330633	-2.2513739	Н	-8.1022132	-1.9468795	1.1586417
Н	-0.3711264	-3.3613006	-1.4404869	Н	-8.6401522	-2.2981773	-1.2392173

Table S16. Optimized geometry for the closed-shell singlet of TBP3 at the B3LYP/6-311G(d,p)

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	1.3740089	-4.5316128	-1.7644422	Н	0.3674375	3.3621024	-1.4428902
С	2.7786036	-4.6273302	-1.5907945	Н	-0.8319309	5.3349367	-2.2501228
С	3.4785534	-3.5842057	-1.0537587	Н	-3.3013636	5.5231731	-1.9068606
С	2.8292966	-2.3665344	-0.6600911	Н	-4.5515923	3.6582632	-0.9516210
С	1.3884746	-2.3341475	-0.7065614	С	-4.9956379	-1.4575331	-0.1596010
С	0.7044428	-3.4263710	-1.3174951	С	-6.0196329	-1.5820061	0.7859437
С	3.5605912	-1.2416883	-0.2133076	С	-5.3090436	-1.6473329	-1.5113838
С	2.8911001	-0.0000046	0.0000247	С	-7.3219164	-1.8740692	0.3898591
С	1.4337403	-0.0000028	0.0000345	Н	-5.7948376	-1.4366202	1.8358101
С	0.7068443	-1.2052991	-0.1756779	С	-6.6103667	-1.9440693	-1.9086055
С	3.5605958	1.2416806	0.2133341	Н	-4.5217328	-1.5683069	-2.2529946
С	2.8293104	2.3665309	0.6601178	С	-7.6222512	-2.0577494	-0.9584182
С	1.3884891	2.3341481	0.7066127	Н	-8.1035988	-1.9564580	1.1368169
С	0.7068482	1.2052961	0.1757480	Н	-6.8312685	-2.0915725	-2.9601835
С	3.4785797	3.5842030	1.0537602	Н	-8.6363280	-2.2886747	-1.2649307
С	2.7786443	4.6273340	1.5908013	С	-4.9956410	1.4575424	0.1595996
С	1.3740530	4.5316210	1.7644801	С	-5.3090793	1.6473574	1.5113727
С	0.7044739	3.4263783	1.3175543	С	-6.0196098	1.5820204	-0.7859727
С	-0.7068426	1.2052931	-0.1757019	С	-6.6104108	1.9441050	1.9085588
С	-1.4337383	0.0000001	0.0000364	Н	-4.5217881	1.5683321	2.2530042
C	-0.7068459	-1.2052951	0.1757726	С	-7.3219015	1.8740956	-0.3899238
C	-2.8910982	0.0000009	0.0000286	Н	-5.7947877	1.4366289	-1.8358325
C	-3.5605944	-1.2416792	0.2133658	C	-7.6222701	2.0577852	0.9583447
C	-2.8293074	-2.3665226	0.6601673	Н	-6.8313385	2.0916174	2.9601301
C	-1.3884856	-2.3341385	0.7066569	H	-8.1035636	1.9564869	-1.1369025
<u> </u>	-1.3884742	2.3341284	-0.7066119	H	-8.6363530	2.288/203	1.2648294
<u> </u>	-2.8292957	2.3665153	-0.6601383	C	4.9956370	1.45/5334	-0.1596421
<u> </u>	-3.3603889	1.2416807	-0.213328/	C	5.2000272	1.5820472	0./8589/0
$\frac{c}{c}$	-3.4/83/30	-3.3841903	1.0538309	C	5.3090373	1.04/3002	-1.3114300
$\frac{c}{c}$	-2.7780341	4.02/512/	1.3908840		5 7049207	1.6/41121	1.9257692
$\frac{c}{c}$	0.7044662	2 4262508	1.7045540	П	6 6102565	1.4300927	1.0096629
$\frac{c}{c}$	0.7044003	3 1263353	1 3175803	ч	4 5217255	1.9440382	-1.9080038
$\frac{c}{c}$	-0.7044407	4 5315634	-1.7645559	C II	7.6222/10	2.0577554	-0.958/1821
$\frac{c}{c}$	-2 7786114	4.6272831	-1.5909065	н	8 1035945	1 9565322	1 1367550
$\frac{c}{c}$	-3 4785575	3 5841723	-1.0538396	Н	6 8312544	2 0915138	-2 9602466
<u>н</u>	0.8319195	-5 3349997	-2 2499829	Н	8 6363156	2.0915156	-1 2650034
H	3 3013528	-5 5232308	-1 9067231	C	4 9956417	-1 4575392	0.1596343
H	4.5515873	-3.6582992	-0.9515383	C	5.3090651	-1.6473862	1.5114063
H	-0.3674422	-3.3621409	-1.4428007	C	6.0196267	-1.5819672	-0.7859270
<u> </u>	4.5516126	3.6582899	0.9515193	C	6.6103954	-1.9441261	1.9086016
H	3.3014029	5.5232349	1.9067137	Н	4.5217622	-1.5683959	2.2530292
Н	0.8319766	5.3350120	2.2500283	С	7.3219179	-1.8740319	-0.3898684
Н	-0.3674076	3.3621517	1.4428870	Н	5.7948176	-1.4365444	-1.8357853
Н	-4.5516057	-3.6582818	0.9515941	С	7.6222700	-2.0577605	0.9583984
Н	-3.3013904	-5.5232099	1.9068115	Н	6.8313107	-2.0916669	2.9601716
Н	-0.8319625	-5.3349806	2.2501109	Н	8.1035924	-1.9563851	-1.1368383
Н	0.3674163	-3.3621311	1.4429339	Н	8.6363526	-2.2886877	1.2648903

 Table S17. Optimized geometry for the open-shell singlet of TBP3 at the UB3LYP/6-311G(d,p)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 -1.4795674 -2.2268919 -1.7532717 -0.7238527 -0.3561599 0.5182206
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1.4795674 -2.2268919 -1.7532717 -0.7238527 -0.3561599 0.5182206
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2.2268919 -1.7532717 -0.7238527 -0.3561599 0.5182206
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1.7532717 -0.7238527 -0.3561599 0.5182206
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.7238527 -0.3561599 0.5182206
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.3561599 0.5182206
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5182206
C 3.5522129 -1.2486450 -0.0947295 C -5.2275236 -1.4057382 C 2.8751195 -0.0000090 0.0000617 C -7.3117571 -1.9168986 C 1.4144332 -0.0000051 0.0000636 H -5.8502165 -1.6877319 C 0.6970746 -1.2148716 -0.1503692 C -6.5096053 -1.6435692 C 3.5522181 1.2486290 0.0947991 H -4.4130386 -1.2128092 C 2.8364467 2.4167952 0.5281165 C -7.5572238 -1.8998785 C 1.4155087 2.3781989 0.6470466 H -8.1223433 -2.1067309 C 0.6970798 1.2148677 0.1504756 H -6.6877270 -1.6325626	
C 2.8751195 -0.000090 0.0000617 C -7.3117571 -1.9168986 C 1.4144332 -0.0000051 0.0000636 H -5.8502165 -1.6877319 C 0.6970746 -1.2148716 -0.1503692 C -6.5096053 -1.6435692 C 3.5522181 1.2486290 0.0947991 H -4.4130386 -1.2128092 C 2.8364467 2.4167952 0.5281165 C -7.5572238 -1.8998785 C 1.4155087 2.3781989 0.6470466 H -8.1223433 -2.1067309 C 0.6970798 1.2148677 0.1504756 H -6.6877270 -1.6325626	-1.7331549
C 1.4144332 -0.0000051 0.0000636 H -5.8502165 -1.6877319 C 0.6970746 -1.2148716 -0.1503692 C -6.5096053 -1.6435692 C 3.5522181 1.2486290 0.0947991 H -4.4130386 -1.2128092 C 2.8364467 2.4167952 0.5281165 C -7.5572238 -1.8998785 C 1.4155087 2.3781989 0.6470466 H -8.1223433 -2.1067309 C 0.6970798 1.2148677 0.1504756 H -6.6877270 -1.6325626	0.0311571
C 0.6970746 -1.2148716 -0.1503692 C -6.5096053 -1.6435692 C 3.5522181 1.2486290 0.0947991 H -4.4130386 -1.2128092 C 2.8364467 2.4167952 0.5281165 C -7.5572238 -1.8998785 C 1.4155087 2.3781989 0.6470466 H -8.1223433 -2.1067309 C 0.6970798 1.2148677 0.1504756 H -6.6877270 -1.6325626	1.5867703
C 3.5522181 1.2486290 0.0947991 H -4.4130386 -1.2128092 C 2.8364467 2.4167952 0.5281165 C -7.5572238 -1.8998785 C 1.4155087 2.3781989 0.6470466 H -8.1223433 -2.1067309 C 0.6970798 1.2148677 0.1504756 H -6.6877270 -1.6325626	-2.2216839
C 2.8364467 2.4167952 0.5281165 C -7.5572238 -1.8998785 C 1.4155087 2.3781989 0.6470466 H -8.1223433 -2.1067309 C 0.6970798 1.2148677 0.1504756 H -6.6877270 -1.6325626	-2.4225055
C 1.4155087 2.3781989 0.6470466 H -8.1223433 -2.1067309 C 0.6970798 1.2148677 0.1504756 H -6.6877270 -1.6325626	-1.3404838
С 0.6970798 1.2148677 0.1504756 Н -6.6877270 -1.6325626	0.7259241
	-3.2914968
<u>C 3.5030193 3.6200560 0.8853286 H -8.5566458 -2.0842467</u>	-1.7183514
C 2.8265737 4.6700295 1.4685605 C -4.9669591 1.4212911	0.3561813
C 1.4499235 4.5643867 1.7193061 C -5.2275241 1.4061281	1.7331822
C 0.7624284 3.4410380 1.3028354 C -6.0286144 1.6849450	-0.5182730
C -0.6970221 1.2148699 -0.1503612 C -6.5096234 1.6439923	2.2216474
C -1.4143801 0.0000018 0.0000613 H -4.4130168 1.2134835	2.4225859
C -0.6970282 -1.2148730 0.1504681 C -7.3118170 1.9165578	-0.0312715
C -2.8750656 0.0000073 0.0000600 H -5.8502659 1.6870546	-1.5868256
C -3.5521698 -1.2486210 0.0948368 C -7.5572721 1.8999348	1.3403764
C -2.8363986 -2.4167877 0.5281448 H -6.6877374 1.6332926	3.2914647
C -1.4154575 -2.3782016 0.6470489 H -8.1224275 2.1060944	-0.7260909
C -1.4154371 2.3781889 -0.6469829 H -8.5567096 2.0843209	1.7181943
C -2.8363818 2.4167850 -0.5281147 C 4.9669493 1.4213192	-0.3563456
C -3.5521646 1.2486341 -0.0947717 C 6.0286844 1.6852316	0.5179333
C -3.5029858 -3.6200199 0.8854227 C 5.2273471 1.4059643	-1.7333756
C -2.8265419 -4.6699871 1.4686676 C 7.3118043 1.9168914	0.0307363
C -1.4498826 -4.5643593 1.7193717 H 5.8504638 1.6875197	1.5865061
C -0.7623801 -3.4410317 1.3028558 C 6.5093632 1.6438715	-2.2220382
С -0.7623344 3.4409970 -1.3027997 Н 4.4127734 1.2131321	-2.4226480
C -1.4498160 4.5643207 -1.7193596 C 7.5570946 1.9000622	-1.3409385
С -2.8264788 4.6699671 -1.4686867 Н 8.1224794 2.1066308	0.7254247
C -3.5029458 3.6200198 -0.8854319 H 6.6873467 1.6330139	-3.2918756
Н 0.9224229 -5.3637314 -2.2269077 Н 8.5564676 2.0844848	-1.7189092
H 3.3654159 -5.5667958 -1.7531849 C 4.9669564 -1.4213398	0.3563704
H 4.5684060 -3.6995602 -0.7237357 C 5.2273542 -1.4063217	1.7334045
H -0.3022986 -3.3748723 -1.4796329 C 6.0287149 -1.6849274	-0.5179787
H 4.5684378 3.6995469 0.7236930 C 6.5093874 -1.6442634	2.2220046
Н 3.3654725 5.5668435 1.7530698 Н 4.4127646 -1.2137394	2.4227278
H 0.9224806 5.3638245 2.2268184 C 7.3118542 -1.9166081	-0.0308425
Н -0.3022665 3.3749413 1.4796484 Н 5.8504980 -1.6869324	-1.5865531
H -4.5684137 -3.6994889 0.7238303 C 7.5571406 -1.9001322	1.3408372
Н -3.3654495 -5.5667803 1.7532260 Н 6.6873687 -1.6336794	3.2918452
Н -0.9224409 -5.3637878 2.2268995 Н 8.1225469 -2.1060889	-0.7255811
Н 0.3023174 -3.3749415 1.4796536 Н 8.5565282 -2.0845750	1 7187594

Table S18. Optimized geometry for the triplet of **TBP3** at the UB3LYP/6-311G(d,p)

			-				
Atom	Х	Y	Z	Atom	Х	Y	Z
C	-1 3131711	-4 4928999	1 8518877	Н	7 0218416	2 6517756	-2 4385607
	-1.5151/11	4.57710(2	1.0510077	11	7.0210410	1.715(0.40	1.6057102
C	-2./2/1432	-4.5//1062	1./545/19	Н	8.0430150	1./156948	1.605/192
С	-3.4438080	-3.5403611	1.2297757	С	-5.0239523	1.4963324	-0.0619525
С	-2 8067135	-2 3387794	0 7657977	С	-5 9819250	1 4439147	-1.0908571
<u> </u>	1 2654252	2.3367791	0.7519015	C	5 4028225	1.0709120	1 2120450
<u> </u>	-1.5054252	-2.5101425	0./318013	C .	-3.4038223	1.9708129	1.2120430
С	-0.6590546	-3.4039129	1.3501610	C	-7.3095201	1.7747472	-0.8062904
С	-3.5629278	-1.2346607	0.3089123	С	-6.7394295	2.2934856	1.4524957
C	-2 9050947	-0.000003	0.0000016	C	-7 7150001	2 1865754	0.4603781
<u> </u>	1.4425024	-0.0000000	0.0000010	U U	-7.7130771	1.7150020	1.(057005
<u> </u>	-1.4435024	-0.0000009	-0.0000141	Н	-8.0429569	1./159830	-1.605/985
С	-0.7062123	-1.1971075	0.1874015	Н	-7.0218905	2.6516638	2.4386003
С	-3.5629402	1.2346423	-0.3088780	С	-5.0239358	-1.4963529	0.0619906
<u> </u>	2 8067453	2 3387827	0.7657653	C	5 4037051	1.0708350	1 2128214
<u> </u>	-2.8007433	2.3307027	-0.7037033	C	-3.403/931	-1.9/08339	-1.2120214
<u> </u>	-1.3654603	2.3161436	-0.7518225	С	-5.9819192	-1.4439378	1.0908771
С	-0.7062220	1.1971106	-0.1874382	С	-6.7393963	-2.2934849	-1.4524941
C	-3 4438450	3 5403750	-1 2296854	С	-7 3095157	-1 7747722	0.8062930
	2 7271027	4.5771050	1 7544099	C	7.5075157	2 10(5002	0.0002750
U	-2./2/192/	4.3//1238	-1./544988	C	-/./150/82	-2.1803803	-0.4003819
С	-1.3132306	4.4929057	-1.8518992	Н	-7.0218245	-2.6516711	-2.4386077
С	-0.6591036	3.4039036	-1.3502140	Н	-8.0429715	-1.7160218	1.6057796
<u> </u>	0.7062135	1 1071107	0.187/298	C	5 6154555	_1 1000265	-2 5180869
<u> </u>	0.7002133	1.17/110/	0.10/4290	U U	5.0154555	-1.1099303	-2.3180809
<u> </u>	1.4435008	0.0000091	-0.0000287	H	6.3422340	-0.4235329	-2.95/4404
С	0.7062199	-1.1970958	-0.1874809	Н	5.6067799	-2.0181396	-3.1309921
С	2,9050944	0.0000040	-0.0000235	Н	4.6278392	-0.6599508	-2.5960876
<u> </u>	3 5620320	1 23/6300	0.3080302	C C	1 3825622	2 2158225	2 3011821
<u> </u>	3.3029329	-1.2340300	-0.3089392	U U	4.3623022	-2.2136223	2.3011621
<u> </u>	2.806/33/	-2.338/501	-0.7658724	H	3.8049979	-3.1221458	2.0887710
С	1.3654496	-2.3161153	-0.7519059	Н	4.8712255	-2.3540785	3.2677155
C	1 3654385	2 3161282	0 7518571	Н	3 6644048	-1 3999600	2 3952500
<u> </u>	2 9067255	2.3101202	0.7659257	C II	0.1622779	2 4091227	0.7556075
<u> </u>	2.8007233	2.338/034	0.7038237	U U	9.1025778	-2.4981337	0.7550975
<u> </u>	3.5629303	1.2346528	0.3089041	H	9.6853407	-1.6119948	1.1323478
С	3.4438358	-3.5403108	-1.2298599	Н	9.2564923	-3.2788303	1.5146492
C	2 7271821	-4 5770484	-1 7547017	Н	9 6901308	-2 8315889	-0 1410096
	1 2122160	4 4020425	1.0520504		0.1(24120	2.001000	0.755(052
<u> </u>	1.5152108	-4.4928423	-1.8320304	C	9.1024129	2.4980909	-0.7550052
<u> </u>	0.6590889	-3.4038659	-1.3503067	H	9.6899299	2.8324248	0.1409210
С	0.6590817	3.4038805	1.3502661	Н	9.6855996	1.6117053	-1.1313489
С	1 3132076	4 4928585	1 8519977	Н	9 2565523	3 2781410	-1 5152172
<u> </u>	2 7271764	4.5770754	1 7546270	C	5 6152820	1 1100160	2 5181020
<u> </u>	2./2/1/04	4.3770734	1./3403/0	U U	5.0155629	1.1100109	2.5181029
<u> </u>	3.4438287	3.5403413	1.2298031	H	6.3423327	0.4239097	2.9576355
Н	-0.7543891	-5.2912287	2.3268421	Н	5.6063499	2.0182953	3.1308968
Н	-3.2409840	-5.4592220	2.1201223	Н	4.6279028	0.6597295	2.5960636
 	4 5214058	2 6065519	1 1921902	C	1 2826262	2 2157078	2 2012118
<u> </u>	-4.5214056	-3.0003318	1.1031092	U U	4.3620302	2.213/9/0	-2.3012116
H	0.41///5/	-3.3445257	1.4231624	Н	3.8051367	3.1221889	-2.0888921
Н	-4.5214394	3.6065912	-1.1830481	Н	4.8713113	2.3539451	-3.2677574
Н	-3 2410502	5 4592572	-2 1199892	Н	3 6644173	1 3999866	-2 3952217
 	0.7544601	5 2012205	2.1155052	C II	5.6152080	1 1101402	2.5762217
п	-0./344091	5.2912295	-2.3208831	C	-3.0133989	-1.1101402	2.3181000
<u>H</u>	0.417/222	3.3444909	-1.4232643	H	-6.3416688	-0.4230064	2.95/2202
Н	4.5214315	-3.6065216	-1.1832489	Н	-5.6076682	-2.0182253	3.1312514
Н	3 2410419	-5 4591494	-2 1202600	Н	-4 6274068	-0 6609930	2 5962728
11	0.7544450	5 2011502	2.1202000	C	1.0271000	2 2155942	2.3902720
<u></u>	0.7344430	-3.2911392	-2.32/0308		-4.3020403	-2.2133043	-2.3012098
H	-0.417/404	-3.34447/15	-1.4233231	Н	-3.8049607	-3.1218473	-2.0889265
Н	-0.4177462	3.3444896	1.4232987	Н	-4.8713455	-2.3538634	-3.2677822
Н	0.7544334	5.2911700	2.3269908	Н	-3.6645942	-1.3996300	-2.3953438
 	2 2/10257	5 / 501000	2.020000	C	1 2026052	2 2155172	2.3733 130
<u>п</u>	3.241023/	3.4391900	2.1201//3	U U	-4.3020933	2.21331/3	2.3013130
<u>H</u>	4.5214233	3.6065444	1.1831813	Н	-3.8049982	3.1217855	2.0890044
С	5.0239350	-1.4963394	-0.0619705	Н	-4.8714026	2.3537923	3.2678271
С	5 9819793	-1 4437798	-1 0908198	Н	-3 6646591	1 3995537	2 3953946
	5.0017775	1.0700241	1 0107022		5 (152(9)	1.1101777	2.5755740
<u> </u>	5.403/428	-1.9/09241	1.212/933	C	-3.0133686	1.1101///	-2.5181352
C	7.3095579	<u>-1.77</u> 45707	-0.8061997	Н	-6.3420446	0.4236751	-2.9575101
С	6.7393612	-2.2935506	1.4525080	Н	-5.6068557	2.0183972	-3.1310220
- Ē	7 7150760	_2 186/083	0.4604720	н	-4 6276852	0.6603/27	_2 5061767
	0.0420505	-2.100+703	1 (05(200		0.1(22070	0.0003427	-2.3301/0/
<u>H</u>	8.0430585	-1./15/12/	-1.6056390	C	-9.1623970	2.4982639	0./00092
<u>H</u>	7.0217526	-2.6518004	<u>2.43860</u> 61	H	<u>-9.2564</u> 998	<u>3.27874</u> 91	<u>1.51472</u> 53
С	5.0239363	1.4963474	0.0619689	Н	-9.6900433	2.8320280	-0.1410996
<u> </u>	5 4037821	1 9700136	_1 2127078	н	-9 685/75/	1 6120572	1 1318883
	5.0010522	1.7/07130	-1.212/7/0		-7.0034/34	2.4002026	0.755(100
C	5.9819523	1.443/952	1.0908360	C	-9.1623576	-2.4983026	-0./336188
С	6.7394046	2.2935303	-1.4524740	Н	-9.6906916	-2.8294583	0.1415883
С	7.3095478	1.7745682	0.8062485	Н	-9.6847582	-1.6128365	-1.1346242
<u> </u>	7 7151010	2 1864798	-0.4604125	н	-9 2564145	-3 2807246	-1 5128109
U U	1.11.21010	4.100 + 170	-V.TUV+12J	11	-7.4204142	-2.200/240	-1.2120107

Table S19. Optimized geometry for the closed-shell singlet of TBP4 at the B3LYP/6-311G(d,p)

				1			
Atom	Х	Y	Z	Atom	Х	Y	Z
С	-1 3131712	-4 4929002	1 8518878	Н	7 0218421	2 6517757	-2 4385608
<u> </u>	-1.5151712	4.5771065	1.0510070	11	0.0420156	1.715(050	1.6057102
C	-2./2/1434	-4.5//1065	1./545/20	Н	8.0430156	1./156950	1.605/193
С	-3.4438083	-3.5403614	1.2297758	C	-5.0239527	1.4963325	-0.0619525
С	-2.8067137	-2.3387796	0.7657978	С	-5.9819254	1.4439148	-1.0908572
<u> </u>	1 365/252	2 3161426	0.7518015	C	5 /038220	1 0708130	1 2128450
<u> </u>	-1.3034232	-2.3101420	1.2501(11	C	-3.4036229	1.9708130	0.00(0005
<u> </u>	-0.6590547	-3.4039132	1.3501611	C	-7.3095206	1.7/4/4/3	-0.8062905
С	-3.5629280	-1.2346608	0.3089123	C	-6.7394299	2.2934858	1.4524959
C	-2 9050949	-0.0000003	0.0000016	С	-7 7150996	2 1865756	0 4603781
<u> </u>	1 4425025	0.0000000	0.000010	U U	<u> </u>	1 7150922	1 6057096
<u> </u>	-1.4455025	-0.000009	-0.0000141	П	-8.0429374	1./139832	-1.003/980
C	-0.7062124	-1.1971076	0.1874015	Н	-7.0218910	2.6516640	2.4386005
С	-3.5629405	1.2346424	-0.3088780	С	-5.0239361	-1.4963530	0.0619906
С	-2 8067455	2 3387828	-0 7657654	С	-5 4037955	-1 9708360	-1 2128215
<u> </u>	1 2654604	2.3367620	0.7519226	C C	5.0810106	1.9700300	1.0009772
<u> </u>	-1.3034004	2.3101438	-0.7318220	C	-3.9819190	-1.4439379	1.0908772
C	-0./062221	1.19/110/	-0.18/4382	C	-6.7393968	-2.2934851	-1.4524942
С	-3.4438453	3.5403752	-1.2296855	С	-7.3095162	-1.7747723	0.8062930
С	-2.7271929	4.5771261	-1.7544989	С	-7.7150787	-2.1865804	-0.4603820
<u> </u>	_1 3132307	1 / 1929061	-1 8518003	н	-7.0218250	-2 6516713	-2.4386079
<u> </u>	-1.5152507	2.4020020	1 2502141	11	-7.0210230	1.71(0210	1 (057707
<u> </u>	-0.6591036	3.4039038	-1.3502141	Н	-8.0429720	-1./160219	1.605//9/
C	0.7062135	1.1971108	0.1874298	C	5.6154559	-1.1099366	-2.5180871
С	1.4435009	0.0000091	-0.0000287	Н	6.3422345	-0.4235329	-2.9574406
С	0 7062200	-1 1970959	-0 1874809	н	5 6067803	-2.0181397	-3 1309923
<u> </u>	2.0050046	0.0000040	0.0000225	 Ц	4.6278206	0.6500500	2 5060979
<u> </u>	2.9030940	0.000040	-0.0000233	П	4.02/8590	-0.0399309	-2.3900878
<u> </u>	3.5629332	-1.2346301	-0.3089393	C	4.3825625	-2.2158227	2.3011823
С	2.8067339	-2.3387503	-0.7658724	Н	3.8049982	-3.1221460	2.0887712
С	1.3654497	-2.3161155	-0.7519059	Н	4.8712259	-2.3540787	3.2677157
<u> </u>	1 365/386	2 3161284	0.7518572	Ц	3 6644051	1 3000601	2 3052502
<u> </u>	1.3034380	2.3101204	0.7516572	11 C	0.1(00705	-1.3999001	2.3932302
C	2.806/258	2.338/636	0.7658257	C	9.1623785	-2.4981339	0.7556976
С	3.5629306	1.2346529	0.3089041	Н	9.6853414	-1.6119950	1.1323478
С	3.4438360	-3.5403110	-1.2298600	Н	9.2564930	-3.2788305	1.5146493
<u> </u>	2 7271823	-4 5770487	_1 7547019	н	9 6001315	-2 8315801	-0.1/10096
<u> </u>	1.21221(0	4.4020420	1.052050(9.0901313	-2.6515691	0.755(052
<u> </u>	1.3132169	-4.4928428	-1.8520506	C	9.1624135	2.4980970	-0./556053
C	0.6590890	-3.4038661	-1.3503068	Н	9.6899306	2.8324250	0.1409210
С	0.6590817	3.4038807	1.3502662	Н	9.6856003	1.6117055	-1.1313490
С	1 3132077	4 4928588	1 8519978	Н	9 2565530	3 2781413	-1 5152173
<u> </u>	2 7271766	4.5770757	1.0515570	C II	5 6152022	1 1100170	2 5101021
<u> </u>	2.7271700	4.5/70/57	1./3403/1	C	5.0155855	1.1100170	2.3181031
C	3.4438290	3.5403415	1.2298032	H	6.3423332	0.4239097	2.95/635/
Н	-0.7543892	-5.2912290	2.3268423	Н	5.6063503	2.0182955	3.1308970
Н	-3.2409843	-5.4592223	2.1201225	Н	4.6279031	0.6597295	2.5960638
<u>п</u>	4 5214062	3 6065521	1 1831803	C C	1 3826365	2 2157080	2 3012120
II	-4.5214002	-3.0003321	1.1031093		4.3820303	2.213/980	-2.3012120
<u> </u>	0.41///5/	-3.3445260	1.4231625	Н	3.8051370	3.1221891	-2.0888923
Н	-4.5214397	3.6065915	-1.1830482	Н	4.8713116	2.3539453	-3.2677577
Н	-3.2410505	5.4592576	-2.1199893	Н	3.6644175	1.3999867	-2.3952219
Н	-0 7544691	5 2912298	-2 3268853	C	-5 6153993	-1 1101402	2 5181602
	0.4177222	2 2444012	1 4222644		(241((02	0.42200(5	2.5101002
<u>H</u>	0.41//223	5.5444912	-1.4232044	Н	-0.3410093	-0.4230065	2.9572204
H	4.5214318	-3.6065219	-1.1832490	Н	-5.6076686	-2.0182254	3.1312517
Н	3.2410421	-5.4591498	-2.1202602	Н	-4.6274071	-0.6609930	2.5962730
Н	0.7544451	-5.2911595	-2.3270369	С	-4.3826467	-2,2155845	-2.3012699
<u>н</u>	_0 4177405	_3 3///719	_1 4233222	й	_3 80/0610	_3 1218/75	_2 0880267
	0.4177403	-3.3444000	1 4020000	11	4 0712450	-3.1210+/3	-2.0007207
<u>H</u>	-0.41//462	5.5444899	1.4232988	H	-4.8/13458	-2.3338635	-5.26//824
<u> </u>	0.7544335	5.2911704	2.3269909	H	-3.6645945	-1.3996301	-2.3953440
Н	3.2410259	5.4591904	2.1201776	С	-4.3826956	2.2155175	2.3013157
Н	4 5214236	3 6065446	1 1831813	Н	-3 8049985	3 1217857	2 0890045
<u> </u>	5 0220254	1 /062205	0.0610705	 Ц	4 971/020	2 2 2 2 7 0 2 5	2.000070
	5.0239334	-1.4903393	-0.0019/05	п	-4.0/14030	2.333/923	3.20/02/4
<u> </u>	5.9819798	-1.4437799	-1.0908199	Н	-3.6646594	1.3995538	2.3953948
С	5.4037432	-1.9709242	1.2127934	C	-5.6153690	1.1101778	-2.5181354
С	7,3095585	-1.7745709	-0.8061998	Н	-6.3420451	0.4236751	-2,9575103
$\frac{1}{C}$	6 7202617	_2 2025500	1 /525091	и П	-5 6068561	2 0182074	_3 1310222
	0./39301/	-2.2933300	1.4323081	11	-3.0008301	2.01039/4	-3.1310223
<u> </u>	/./150/66	-2.1864985	0.4604729	Н	-4.62/6856	0.6603427	-2.5961/68
Н	8.0430590	-1.7157128	-1.6056392	C	-9.1623977	2.4982641	0.7555592
Н	7.0217531	-2,6518006	2,4386063	Н	-9.2565005	3,2787493	1.5147254
<u> </u>	5 0230366	1 4063475	0.0610680	ч	-9 6000110	2 8320282	_0.1/10006
	5 4027024	1.47034/3	1 2127070	11	-7.0700440	1.0320202	1 1210004
C	5.403/824	1.9/0913/	-1.212/9/8	Н	-9.0854/61	1.0120573	1.1318884
C	5.98 <u>1</u> 9528	1.4437953	1.0908360	C	-9.1 <u>6</u> 23582	-2.4983028	-0.7556188
C	6.7394051	2.2935304	-1.4524741	Н	-9.6906923	-2.8294586	0.1415883
C	7 3095484	1 7745683	0.8062486	Н	-9 6847589	-1 6128366	-1 1346243
$\frac{0}{C}$	7 7151015	2 1864900	0.0002100	 Ц	0.2564152	2 2807240	1 5120110
U	1.1131013	2.100 1 000	-0.4004123	п	-7.2304132	-2.200/249	-1.2120110

Table S20. Optimized geometry for the open-shell singlet of **TBP4** at the UB3LYP/6-311G(d,p)

		-	-				
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
C	-1 3725790	-1 5295745	1 8103057	н	6 9538663	2 4743055	-2 6085428
<u> </u>	-1.3723790	-4.5295745	1.6103937	11	0.9338003	2.4743033	-2.0903420
C	-2./609621	-4.632441/	1.6328299	Н	8.0532505	1.8/13160	1.3883911
С	-3.4610726	-3.5901745	1.0646255	С	-5.0117335	1.4954299	0.0806822
С	-2.8095214	-2.3983464	0.6415260	С	-5.9878251	1.5361165	-0.9321975
С	-1 3869870	-2 3639273	0.6962763	C	-5 3654255	1 8708598	1 3960260
<u> </u>	0.7045078	2 4162200	1 2407280	C	7 2062716	1.0700570	0.5001674
C	-0./0439/8	-3.4103390	1.340/289	C	-/.3062/16	1.8384012	-0.39910/4
C	-3.5578997	-1.2482277	0.2077434	С	-6.6922384	2.1910212	1.6829250
С	-2.8940786	0.0000376	-0.0001191	С	-7.6855164	2.1746413	0.7024911
С	-1 4251720	0.0000188	-0.0001664	Н	-8 0534007	1 8714260	-1 3880404
<u> </u>	0.6054700	1 2057854	0.1610594	II	6.0525442	2.4742545	2 6007005
<u> </u>	-0.0934/90	-1.2037834	0.1019364	п	-0.9333443	2.4/42343	2.0987883
C	-3.5578905	1.2483180	-0.2078627	C	-5.011/840	-1.4953389	-0.0805813
С	-2.8095108	2.3984763	-0.6415663	С	-5.3656760	-1.8708206	-1.3958654
С	-1.3869800	2.3640210	-0.6964362	С	-5.9876972	-1.5360723	0.9324549
<u> </u>	0.605/1582	1 2058004	0.1622877	C	6 6025173	2 1010448	1 6825357
<u> </u>	-0.0934382	1.2038094	-0.1022877	C	-0.0923173	-2.1910440	-1.0823337
C	-3.46104/6	3.5904052	-1.06440//	C	-/.3061912	-1.8584203	0.5996515
С	-2.7609475	4.6327309	-1.6325186	С	-7.6856383	-2.1746916	-0.7019339
С	-1.3725868	4.5298336	-1.8102343	Н	-6.9539781	-2.4743166	-2.6983495
С	-0 7046068	3 4165047	-1 3407897	н	-8.0531825	-1 8714766	1 3886534
<u> </u>	0.6054917	1 2057644	0.1620024	C II	5 65 42 620	1 2060472	2 2004264
<u> </u>	0.0934817	1.203/044	0.1020924	C	5.0545050	-1.50004/5	-2.3884304
С	1.4251662	-0.0000188	-0.0002098	H	6.3585446	-0.6064986	-2.8434004
С	0.6954493	-1.2057863	-0.1624766	Н	5.7167274	-2.2467255	-2.9461624
С	2.8940684	-0.0000382	-0.0002046	Н	4.6480697	-0.9150121	-2.5252166
<u> </u>	3 5578765	1 2483080	0.2080540	C C	1 3 2 3 8 / 3 0	2.0084004	2 4835160
<u> </u>	3.3378703	-1.2403009	-0.2080340		4.5250459	-2.0004994	2.4655100
C	2.8094970	-2.3984042	-0.641890/	H	3./029662	-2.8946281	2.312/964
C	1.3869668	-2.3639221	-0.6967927	Н	4.7968424	-2.1188002	3.4613379
С	1.3870244	2.3638605	0.6964548	Н	3.6471570	-1.1536772	2.5260969
С	2 8095554	2 3983058	0.6415659	C	9 1230535	-2 4817821	1.0460261
<u> </u>	2.5570010	1 2482000	0.2076802	<u></u> и	0.6516729	1 5772802	1 2672022
<u> </u>	5.5579019	1.2482099	0.2070895	п	9.0310728	-1.3773803	1.30/2933
C	3.4610292	-3.5902954	-1.064847/4	Н	9.1930589	-3.2064639	1.8610840
С	2.7609299	-4.6325290	-1.6331253	Н	9.6617185	-2.8859712	0.1856739
С	1.3725791	-4.5295724	-1.8109026	С	9.1231930	2.4818129	-1.0457343
Ċ	0.70/599/	-3 /162060	-1 3/13307	н	9 6616615	2 8862612	_0.1853800
<u> </u>	0.7045774	-3.41(2179	1 2410255	11	0.6510(47	1.5772000	-0.1055000
C	0./046/33	3.4162178	1.3410355	Н	9.651964/	1.5//3890	-1.3666883
С	1.3726768	4.5294476	1.8106833	Н	9.1932714	3.2063086	-1.8609504
С	2.7610373	4.6323648	1.6329505	С	5.6540839	1.3060396	2.3882921
С	3 4611183	3 5901433	1 0646274	Н	6 3582061	0.6065171	2 8433866
<u> </u>	0.8230640	5 3212888	2 3065726	Ц	5 7163610	2 2467450	2.0450830
11	-0.8230049	-5.5212000	2.3003720	11	3.7103010	2.2407430	2.9459650
Н	-3.28914/9	-5.5195294	1.9641181	Н	4.64///2/	0.9150036	2.5249452
Н	-4.5341173	-3.6657650	0.9612521	С	4.3241706	2.0084263	-2.4838130
Н	0.3669619	-3.3482233	1.4671458	Н	3.7033006	2.8945768	-2.3131752
Н	-4 5340757	3 6660390	-0.9609087	Н	4 7972789	2 1186999	-3 461 5849
11	2 201271	5.5109072	1.0626064	II	2 6474610	1 1526260	2 5264560
п	-5.26912/1	5.3196972	-1.9050004	П	5.04/4019	1.1350200	-2.3204300
H	-0.8230859	5.3216044	-2.3063356	C	-5.6539813	-1.3061784	2.3884589
Н	0.3669403	3.3483735	-1.4673006	Н	-6.3579456	-0.6064989	2.8435578
Н	4.5340516	-3.6659617	-0.9613020	Н	-5.7164656	-2.2468653	2.9461577
Н	3 2891014	-5 5196660	-1 9643044	Н	-4 6475827	-0.9153618	2 5250995
11	0.8220007	5 2212596	2 2071527	C II	4.2242971	2 0092729	2.5250775
п	0.8230907	-3.5212380	-2.30/132/	C .	-4.52428/1	-2.0085758	-2.465/555
H	-0.3669413	-3.3481184	-1.4678742	H	-3.7034220	-2.8945422	-2.3131690
Н	-0.3668729	3.3480574	1.4675513	Н	-4.7974367	-2.1185889	-3.4614922
Н	0.8232051	5.3211197	2.3069740	Н	-3.6475729	-1.1535766	-2.5263564
ц	3 2802310	5 5104633	1 06/1077	C	1 3 2 3 8 5 0 /	2.008/100	2 1837231
11	1.5241402	2.6657725	0.0(1120)			2.000+100	2.4037234
H	4.5341493	3.6657725	0.9611306	H	-3./029564	2.8945203	2.3130035
С	5.0117136	-1.4954395	0.0804815	Н	-4.7968487	2.1187196	3.4615490
С	5.9878146	-1.5360637	-0.9323887	Н	-3.6471986	1.1535661	2.5262949
С	5 3654043	-1 8709158	1 3958155	C	-5 6543592	1 3062120	-2 3882584
<u> </u>	7 2062647	1 9592440	0 5002455	<u></u> ц	6 250/100	0.6065556	2.5002504
<u> </u>	/.300204/	-1.0303449	-0.3993033	<u>п</u>	-0.3364226	0.0003330	-2.0432391
C	6.6922185	-2.1910728	1.6827078	H	-5.7169074	2.2469012	-2.9459441
С	7.6855036	-2.1746442	0.7022803	Н	-4.6479978	0.9153625	-2.5250726
Н	8.0533987	-1.8713095	-1.3882345	С	-9,1230656	2,4817824	1.0462397
 	6 0525220	2 /7/2271	2 6005620	<u> </u>	0 1020444	3 206/77/	1 8610257
<u>n</u>	0.9333229	-2.4/433/1	2.0963030	 	-9.1930000	3.2004//4	1.0012003
C	5.0117703	1.4953141	-0.0807115	H	-9.6617340	2.8859584	0.1858837
С	5.3656067	1.8708142	-1.3959970	Н	-9.6516838	1.5773861	1.3675235
С	5,9877392	1.5359878	0.9322824	С	-9.1232195	-2.4819321	-1.0454595
Č	6 6024482	2 1010126	-1 6827246	й	-9 6610970	_2 8852122	_0 18/7/03
	7.20(2102	1.0502000	-1.002/240	11	-7.00170/7	1.5777(05	1 2/7/2/7
U	/.3062193	1.8583082	0.3994234	Н	-9.0316/81	-1.5///605	-1.30/635/
С	7.6856117	2.1746105	-0.7021763	I H	-9.1932969	-3.2073875	-1.8598273

 Table S21. Optimized geometry for the triplet of TBP4 at the UB3LYP/6-311G(d,p)

Atom	Y	V	7	Atom	v	V	7
C	1 2576140	1 25/2020	1 0080412	C	5 7772052	1 1/005/2	1 6112651
$\frac{c}{c}$	2 6720042	4.3342030	2 0474560	C	5 7055105	1 0797791	0.6069164
$\frac{c}{c}$	2.0739943	2 2578670	1.5280064	C	7 1/20770	1 4204415	1 6206284
$\frac{c}{c}$	2 7806222	2.3376079	0.0214922	C	7.1430779	2 1002220	0.6274272
$\frac{c}{c}$	1 2478077	2.2240901	0.9214033	C	7.0730311	1.0501041	0.02/42/3
$\frac{c}{c}$	0.6207051	2.2208907	1 2206755	U Ц	7.6125564	1 2276000	2 5536010
$\frac{c}{c}$	2 5465800	1 1277221	0.4265002	п u	7.097/120	2 5050350	1 5022012
<u> </u>	2 9971467	0.0755909	0.4203995	П	0.2800612	-2.3930339	0.6099154
$\frac{c}{c}$	1 4229162	-0.0755898	0.0022003	U Ц	-9.2009015	-2.3032703	1 1855021
$\frac{c}{c}$	0.6006222	1 1177800	0.0121203	п u	0 7284242	2 2657616	0.2855880
$\frac{c}{c}$	2 5590705	1.11//000	0.2024723	п u	0.4218275	2.3037010	1.0075191
$\frac{c}{c}$	2 8000020	2 3701044	0.8650811	С	5 10/7363	-3.2721000	2 8320582
$\frac{c}{c}$	1 371/212	2 3804445	0.7724287	ч	5 8101600	0.4512501	2.8320382
$\frac{c}{c}$	0.7062446	1 2826408	0.1883046	п Ц	4.2877212	1 2030048	3.1856100
$\frac{c}{c}$	3 4575241	3 5278042	1 4154700	п Ц	4.2077212	0.4142503	2 6145135
$\frac{c}{c}$	2 7//2023	4 5780450	1 0187401	C II	4.0774107	2 2071867	1.0760118
$\frac{c}{c}$	1 3255756	4.5780459	1 016/002	ч	4.9330170	2.20/180/	1 8160668
$\frac{c}{c}$	0.6672405	3 / 80//37	1 3512605	п Ц	5 620/030	2 6133051	2 7382480
$\frac{c}{c}$	0.0072403	1 2826517	0.1882855	п Ц	-3.0204930	1 2065538	2.7362409
$\frac{c}{c}$	-1./338109	-0.0821987	-0.0120880	C II	4.4984823	-2 2071445	1 9760913
$\frac{c}{c}$	-0.6006153	1 1178024	-0.2023510	н	4.9329237	-2.2071445	1.9700913
$\frac{c}{c}$	-2 8871/08	-0.0755650	-0.0021751	н	5 62035/2	-2.5201205	2 7383380
$\frac{c}{c}$	-3 5/65715	1 1277657	-0.0021731	н	1 / 08/158/	-1.2964747	2.7565560
<u> </u>	-2 7805906	2 2249842	-0.9213116	C II	5 1048192	-0.5690062	-2.8320363
<u> </u>	-1 3477782	2.2249842	-0.8074775	н	5 8192684	-0.4514359	-3 6489121
<u> </u>	-1 3714348	-2 3894607	0.7723728	Н	4 2878006	-1 2040409	-3 1855902
$\frac{c}{c}$	-2 8100038	-2 3701902	0.8659544	Н	4 6775160	0.4141341	-2 6145355
$\frac{c}{c}$	-3 5580748	-1 2547145	0.4200157	C	9 2809500	-2 3033775	-0.6085970
<u> </u>	-3 4063813	3 3580050	-1 5287468	Н	9 4318684	-3 2720734	-1 0976698
<u> </u>	-2 6739382	4 3887330	-2 0470976	Н	9.8385258	-1 5604630	-1 1849156
<u>C</u>	-1.2575600	4.3544630	-1.9976536	Н	9.7282777	-2.3662703	0.3858408
C	-0.6207539	3.3092546	-1.3893629	C	4.9537638	1.3186696	0.3989906
С	-0.6672606	-3.4894893	1.3511573	С	6.1176073	1.6803101	0.4384799
С	-1.3256009	-4.5446607	1.9163807	С	-4.9537569	1.3186736	-0.3990378
С	-2.7444184	-4.5780608	1.9186756	С	-6.1176077	1.6802795	-0.4386373
С	-3.4575433	-3.5278849	1.4154477	Si	-7.8432343	2.3168160	-0.5236247
Н	0.6796885	5.1484030	2.4566786	Si	7.8432207	2.3169081	0.5232753
Н	3.1771308	5.2240001	2.5212480	С	8.8349022	1.2911558	1.7544923
Н	4.4844438	3.3723523	1.5963418	Н	9.8666392	1.6520446	1.8164949
Н	-0.4592301	3.2787026	1.3719864	Н	8.3974605	1.3488171	2.7550348
Н	4.5375746	-3.5494980	-1.4491341	Н	8.8559800	0.2398246	1.4591397
Н	3.2630310	-5.4299406	-2.3440667	С	8.6247621	2.2405017	-1.1902414
Н	0.7644335	-5.3520814	-2.3728616	Н	8.0628344	2.8469336	-1.9058432
Н	-0.4130101	-3.4661803	-1.3629601	Н	9.6523548	2.6171195	-1.1631668
Н	-4.4843966	3.3724954	-1.5961175	Н	8.6464247	1.2144865	-1.5646547
Н	-3.1770645	5.2242255	-2.5208266	С	7.7647896	4.1110502	1.1080091
Н	-0.6796226	5.1486208	-2.4562104	Н	7.1679798	4.7254261	0.4283067
H	0.4592703	3.2788298	-1.3716572	Н	7.3222825	4.1858493	2.1054037
H	0.4129906	-3.4662475	1.3628300	Н	8.7690457	4.5442098	1.1567360
Н	-0.7644614	-5.3521485	2.3727172	С	-8.6249022	2.2404920	1.1898387
H	-3.2630620	-5.4299510	2.3440054	Н	-8.0630278	2.8469584	1.9054527
Н	-4.5375934	-3.5494647	1.4491472	Н	-9.6524942	2.6171066	1.1626709
С	-5.0506845	-1.4049717	0.4321776	Н	-8.6465935	1.2144940	1.5642990
С	-5.7055713	-1.9282625	-0.6967249	С	-8.8347969	1.2909710	-1.7548576
С	-5.7772693	-1.1498434	1.6113272	Н	-9.8665323	1.6518457	-1.8169673
С	-7.0756823	-2.1901833	-0.6272826	Н	-8.3972724	1.3485785	-2.7553672
С	-7.1430489	-1.4303052	1.6397536	Н	-8.8558852	0.2396583	-1.4594427
С	-7.8123504	-1.9590064	0.5337697	С	-7.7648076	4.1109248	-1.1084631
Н	-7.5760718	-2.5950178	-1.5021172	Н	-7.1680811	4.7253630	-0.4287436
Н	-7.6976528	-1.2374153	2.5537256	Н	-7.3222112	4.1856752	-2.1058220
C	5.0506782	-1.4050209	-0.4321250	Н	-8.7690733	4.5440483	-1.1573088

Table S22. Optimized geometry for the closed-shell singlet of TBP5 at the B3LYP/6-311G(d,p)

Atom	v	V	7	Atom	v	V	7
Atom	A 1 2502914	Y 4 255(029	L 1.0070(52	Aiom	A 5 7025400	ľ 1 1721051	L 1 5924(2)
<u> </u>	1.2592814	4.5556928	1.99/9652	C	5.7825489	-1.1/21951	-1.3834626
<u> </u>	2.6/32140	4.3944601	2.0389066		5./01//3/	-1.91/6398	0./351958
<u> </u>	3.4056607	3.3641409	1.5144/83	C	/.1483392	-1.4530408	-1.6025222
<u> </u>	2.7789770	2.2325759	0.9105664	C	7.0/21/16	-2.1805435	0.6/4844/
<u> </u>	1.3487640	2.2310899	0.8036421	<u>C</u>	7.8133321	-1.9659386	-0.4864833
<u> </u>	0.6221469	3.3065797	1.3916976	H	7.7065350	-1.2732653	-2.5169854
<u> </u>	3.5457476	1.1296527	0.4173889	H	7.5691090	-2.5729196	1.55/2860
<u> </u>	2.8855618	-0.0787881	0.0075156	C	-9.2821864	-2.31131/3	0.5510260
<u> </u>	1.4310664	-0.0860259	0.0159450	H	-9.8420267	-1.5766296	1.1356314
<u> </u>	0.69/1/39	1.1157327	0.2003600	H	-9.7256921	-2.3602136	-0.4459061
<u> </u>	3.5588548	-1.260/259	-0.3988952	H	-9.4348481	-3.2868189	1.0258165
<u> </u>	2.8130132	-2.3840/15	-0.8408443	C	-5.1149298	-0.6075210	2.8144946
<u> </u>	1.3765556	-2.4006/3/	-0.7604964	H	-5.8319294	-0.5034932	3.6309/42
<u> </u>	0.7053712	-1.28/8101	-0.1823822	H	-4.29/30/4	-1.2455089	3.1612008
<u> </u>	3.4643480	-3.5421396	-1.3793734	H	-4.6896590	0.3797596	2.6122186
<u> </u>	2.7542163	-4.5935232	-1.8893055	C	-4.9441060	-2.1786412	-2.0152359
<u> </u>	1.3380173	-4.5557934	-1.9038738	H	-4.1342247	-2.8979839	-1.8623961
<u> </u>	0.6762207	-3.4957434	-1.3468898	H	-5.6079781	-2.5764710	-2.7849524
<u>C</u>	-0.7053789	-1.28/8114	0.1823784	H	-4.4900215	-1.2621047	-2.4025646
<u> </u>	-1.4310676	-0.0860165	-0.0159115	C	4.9440563	-2.1787829	2.0152099
<u> </u>	-0.69/16/2	1.1157443	-0.2002822	H	4.1341/14	-2.8981098	1.8623152
<u> </u>	-2.8855634	-0.0/8//14	-0.0074864	H	5.60/9137	-2.5766642	2.7849124
<u> </u>	-3.545/410	1.1296829	-0.4173365	H	4.4899/38	-1.2622662	2.4025873
<u> </u>	-2.7/89613	2.2326254	-0.9104557	C	5.1149673	-0.6074063	-2.8144348
<u> </u>	-1.348/493	2.2311301	-0.8035198	H	5.8319840	-0.5033250	-3.6308926
<u> </u>	-1.3/656/9	-2.4006870	0.7604628	H	4.29/3566	-1.2453783	-3.1611972
<u> </u>	-2.8130249	-2.3840772	0.8408163	H	4.6896860	0.3/98594	-2.6121085
<u> </u>	-3.5588618	-1.260/1/2	0.3988962	C	9.2821888	-2.3112958	-0.5509/98
<u> </u>	-3.4056359	3.3642205	-1.5143216	H	9.4349071	-3.2865735	-1.0262102
<u> </u>	-2.6/31811	4.3945614	-2.0386957	H	9.8420976	-1.5/63351	-1.1351/94
<u> </u>	-1.2592489	4.355/846	-1.99//499	H	9.7255784	-2.3606505	0.4459802
<u> </u>	-0.6221232	3.3066412	-1.3915255	C	4.9509379	1.3235584	0.3812557
$\frac{c}{c}$	-0.6/623//	-3.495//40	1.3468284	C	6.1138951	1.0904/00	0.4103026
$\frac{c}{c}$	-1.5580590	-4.3338320	1.903/92/	C	-4.9309333	1.3233847	-0.3812390
$\frac{c}{c}$	-2./542584	-4.3935301	1.8892338	C C	-0.113889/	1.0904952	-0.4103403
<u> </u>	-3.4043034	-3.3421303	1.3793284	51	-/.85/8218	2.3330834	-0.4/8/195
<u>H</u>	2 1776256	5.14/0451	2.4392387	51	/.83/8228	2.3330839	0.4/83083
<u>п</u> п	3.17/0230	2.2800004	2.3100890		0.03/3201	1.5295005	1.7210037
<u>п</u> П	4.4640230	2.2722166	1.370(080	П	9.6061929	1.0942172	2 7222251
<u>– H</u>	-0.45/9508	3.2/33100	1.3/90989	П	8.4035770	0.2727704	2.7223331
<u>п</u> п	4.3440078	-5.3039224	-1.4013322	П	8.6003860	2 2241044	1.4414337
 	0.72703190	5 2672076	-2.3003208	с и	8.0129040	2.2341044	1.0501022
 	0.7787732	-3.3023020	1 2701405	п	0.6201610	2.62/0320	1 2102210
<u>п</u> и	4.4840005	3 3810770	1 5750016	п Ц	8 6371045	1 2026068	1 5058825
<u>п</u> и	3 1775861	5 2307272	2 5008308	С	7 7561618	1.2020908	1.0366633
<u> </u>	0.6804478	5.2307272	2.3098398	- С - Ц	7.1543854	4.1301109	0.3505182
<u></u> 	0.0570541	2 2722720	1 3705203	п Ц	7.1343834	4.7363421	2.0347707
<u></u> 	0.4379341	3.2755729	1 3700747	п Ц	8 7502357	4.2245220	1.0744716
H	_0 7787982	-5 3623550	2 36/12/5	C II	-8 6130144	2 23/1025	1 2365352
<u>п</u>	3 2763456	5 4473205	2.3041243	ч	8 0461761	2.2541025	1.2505552
<u>п</u>	4 5446855	3 5650231	1 4013166	 Ц	0.6302742	2.62/03/4	1.9390209
	-5.0512528	-1./10/162	0.4035012	п Ц	-9.0392142	1 2026051	1 5056708
<u> </u>	-5.0515556	-1.4104102	_0.7351046	С	_8 8277217	1 3703/1/	_1 7010771
<u> </u>	-5.7010019	-1.71/3071	1 5825022	ц Ц	-0.03/231/	1.5275414	-1./212//1
<u> </u>	-7.0721068	-1.1/22415	-0 67/8226	п Ц	-9.000092	1.0942002	-1.//37277
<u> </u>	-7 1/22252	-1/152000/	1 6025722	п Ц	-0.4033772	0.2737670	-1.1223120
<u> </u>	-7.8122266	-1.4550204	0.4865225	С	-0.0003223	4 1361107	-1.7410440
<u> </u>	-7 5601511	-1.7037320	-1 5572865	ц Ц	-7.15/1312	1 73825/2	-0.3506381
<u>п</u> Ч	-7.7065040	-2.3720033	2 5170552	п Ц	-7.13442/1	<u>4.7303343</u> <u>A 2245211</u>	-2 03/2027
 	5 0513/62	-1.2/33013	_0.4035745	н Н	-7.5177251	<u> </u>	-2.0340707
U U	5.0515405	-1.7104312	-0.7033/43	11	-0.1592201	T.J.JU/2J	-1.0/+0723

Table S23. Optimized geometry for the open-shell singlet of TBP5 at the UB3LYP/6-311G(d,p)

	1 0	2	1	i		·	
Atom	Х	Y	Z	Atom	Х	Y	Z
С	1.2557702	4,3439867	2.0135368	С	5.8520221	-1.3721741	-1.2874201
$\frac{c}{c}$	2 6561770	4 4007074	2 0100526	C C	5 6/30807	_1 7036766	1 10/0607
<u> </u>	2.0301779	2.29(2220	1.4505777	C	7.0457697	-1./930200	1.1040097
<u> </u>	3.3916217	3.3862220	1.4505///	C	/.215/383	-1.646/363	-1.1938850
C	2.7627650	2.2635414	0.8601646	C	7.0154168	-2.0549710	1.1540876
С	1.3454121	2.2379738	0.7934604	С	7.8184428	-1.9987587	0.0161737
С	0.6189397	3.2740743	1.4156436	Н	7.8233772	-1.5901270	-2.0926211
С	3 5347091	1 1368229	0 3665427	Н	7 4628104	-2 3201867	2 1075317
<u> </u>	2 8772668	0.1086728	0.0664346	C II	0.2872478	2.3201007	0.0706408
<u> </u>	1.41((022	0.1000720	0.0004540		0.0771226	1 7120229	0.5907522
<u> </u>	1.4100033	-0.1222431	0.0550075	Н	-9.8//1320	-1./130328	0.389/323
<u> </u>	0.6819900	1.0880146	0.1972318	Н	-9.6824101	-2.2285337	-1.0913172
C	3.5671101	-1.3074972	-0.2148000	Н	-9.4582596	-3.3839272	0.2215175
С	2.8422775	-2.4780671	-0.6295534	С	-5.2570043	-0.9713729	2.6156500
С	1.4172004	-2.4772971	-0.6619364	Н	-6.0211459	-0.9606065	3.3951156
С	0.7038672	-1.3298938	-0.1396723	Н	-4.4640891	-1.6555761	2,9295490
<u> </u>	3 5212356	-3 6495063	-1.0673246	Н	-4 8178954	0.0288426	2 5604638
<u> </u>	2 8414414	4 7110877	1 6100221	n C	1 9199649	1 9921202	2.3004030
<u> </u>	2.0414414	-4./1196//	-1.0190221		-4.0100040	-1.0021302	-2.3004038
0	1.4466103	-4.6461955	-1.//31306	H	-3.9860385	-2.58218//	-2.2538903
C	0.7557618	-3.5518166	-1.2976886	H	-5.4303098	-2.2164383	-3.2065980
С	-0.7039116	-1.3298532	0.1399636	Н	-4.3879032	-0.9116517	-2.6290275
С	-1.4166053	-0.1221822	-0.0547741	С	4.8191900	-1.8822942	2.3663248
С	-0.6819404	1.0880482	-0.1969685	Н	3.9862823	-2.5822596	2.2537992
С	-2 8772610	-0 1085949	-0.0663042	Н	5 4307207	-2 2167370	3 2063420
<u> </u>	3 53/6651	1 1360167	0.3664106	- П - Ц	1 3883667	0.0117031	2 6200346
<u> </u>	2.7(2((00	2.2(2)(02	-0.3004100		5.25((251	-0.911/931	2.0290340
<u> </u>	-2./020099	2.2030093	-0.8598/10	U U	5.2500251	-0.9/13200	-2.0158110
<u> </u>	-1.3453189	2.2380636	-0.7931311	Н	6.0205416	-0.9610938	-3.3955051
C	-1.4172987	-2.4771951	0.6622651	Н	4.4632521	-1.6551522	-2.9293504
С	-2.8423711	-2.4779701	0.6297299	Н	4.8180664	0.0291442	-2.5606736
С	-3.5671519	-1.3074226	0.2148588	С	9.2872880	-2.3443396	0.0788837
С	-3.3914818	3.3864321	-1.4501873	Н	9.4582923	-3.3838296	-0.2222139
С	-2 6560013	4 4099511	-2 0104431	Н	9 8770327	-1 7129496	-0 5906747
<u> </u>	-1 2555926	4 3441873	-2 0130147	Н	9.6826138	_2 2283025	1 0904745
<u> </u>	0.6199069	2 2742026	1 4152110	n C	4.0200508	1 2644027	0.2212171
<u> </u>	-0.0188008	3.2/42020	-1.4132110	C	4.9200398	1.3044937	0.23131/1
<u> </u>	-0./5590/6	-3.5516510	1.2981814	C	6.0683123	1.//36280	0.1398808
<u> </u>	-1.446/93/	-4.6459982	1.7/36310	C	-4.9200421	1.3645510	-0.2313883
C	-2.8416082	-4.7118313	1.6193361	C	-6.0683214	1.7736502	-0.1401465
С	-3.5213582	-3.6494100	1.0674767	Si	-7.7672764	2.4700871	-0.0063158
Н	0.6713427	5.1228086	2.4897616	Si	7.7672717	2.4700521	0.0060696
Н	3.1640463	5.2497604	2.4712147	С	8.8672636	1.7053366	1.3318441
H	4 4714724	3 4175581	1 4821801	Н	9 8847360	2 1043455	1 2672130
 	0.4608010	3 2228005	1.1021001	- П - Ц	8 4840624	1 0215315	2 3320124
II	4.509(49)	2 (994770	0.090(242	11	0.4040024	0.(109001	1 2202015
<u>H</u>	4.5986486	-3.6884770	-0.9896243	H	8.9163847	0.6198901	1.2203915
<u>H</u>	3.38/3316	-5.584/866	-1.9591207	C	8.4557446	2.115/0/3	-1./126544
H	0.9114896	-5.4521009	-2.2621816	H	7.8278421	2.5624541	-2.4883148
H	-0.3175180	-3.5114859	-1.4176923	Н	9.4642725	2.5287517	-1.8165602
Н	-4.4713301	3.4178024	-1.4818063	Н	8.5071663	1.0406537	-1.8999398
Н	-3.1638355	5.2500667	-2.4706288	С	7.6484883	4.3354018	0.2736589
Н	-0.6711355	5.1230327	-2.4891649	Н	6.9872314	4.8010949	-0.4620571
H	0.4609327	3 2229858	-1 4328135	Н	7 2615939	4 5714847	1 2689909
 	0.4007527	2 5112771	1 /1920155	п Ц	8 6240124	4.9012196	0.1812540
<u> </u>	0.31/3010	-5.5112771	1.4102040	П	0.0349124	4.0012100	1.7104100
H	-0.911/330	-5.4518518	2.2628327	C	-8.4555822	2.1154584	1./124109
Н	-3.3875168	-5.5846257	1.9594170	Н	-7.8275056	2.5619822	2.4880620
H	-4.5987587	-3.6884181	0.9896205	Н	-9.4641043	2.5283989	1.8166815
С	-5.0565418	-1.4513476	0.1270214	Н	-8.5068705	1.0403368	1.8993794
С	-5.6438334	-1.7935148	-1.1043182	С	-8.8673909	1.7056285	-1.3321419
C	-5.8522208	-1.3721705	1.2871568	H	-9.8848044	2.1047693	-1.2672563
$\frac{\varepsilon}{c}$	_7 0152/62	_2 05/0202	_1 15/15221	<u>н</u>	_8 4843202	1 9220612	_2 3332060
	7 2150077	1 6167011	1 102/075	 Ц	8 0166675	0.6201650	1 22002
	-1.21390//	-1.040/914	1.19342/3	П	-0.9100023	0.0201009	-1.2209092
<u> </u>	-/.8184298	-1.9988040	-0.016/286	0	-/.0484941	4.3354247	-0.2/39822
<u> </u>	-7.4624962	-2.3201079	-2.1080521	Н	-6.9871383	4.8012402	0.4615644
H	-7.8236707	-1.5902496	2.0920847	Н	-7.2617377	4.5713441	-1.2694100
С	5.0565155	-1.4514198	-0.1271721	Н	-8.6349060	4.8012574	-0.1815283

Table S24. Optimized geometry for the triplet of **TBP5** at the UB3LYP/6-311G(d,p)

Data S1. NMR spectra

Compound 1

¹H-NMR spectrum (500 MHz, CDCl₃, 300 K)

Compound 4

¹H-NMR spectrum (500 MHz, CDCl₃, 300 K)

¹³C-NMR spectra (125 MHz, CDCl₃, 300 K)

Compound 5a

¹H-NMR spectrum (500 MHz, CDCl₃, 300 K)

Compound 5b

¹H-NMR spectrum (500 MHz, CDCl₃, 300 K)

TBP4

¹H-NMR spectrum (500 MHz, CD₂Cl₂, 298 K) < 7.52 7.50 - 7.19 - 6.78 - 6.61 — 1.83 — 1.63 0.0 9.5 9.0 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 8.5

¹H-NMR spectrum (500 MHz, CD₂Cl₂, 193 K)

2D $^1\text{H-}{}^1\text{H}$ COSY NMR spectrum (500 MHz, CD₂Cl₂, 213 K)

TBP5

¹H-NMR spectrum (500 MHz, CD₂Cl₂, 298 K)

¹H-NMR spectrum (500 MHz, CD₂Cl₂, 213 K)

2D ¹H-¹H COSY NMR spectrum (500 MHz, CD₂Cl₂, 213 K)

Supplementary References

(1) L. F. Fieser, J. Am. Chem. Soc. 1931, 53, 2329–2341.

(2) S. Toyota, R. Miyaji, Y. Yamamoto, M. Inoue, K. Wakamatsu and T. Iwanaga, *Eur. J. Org. Chem.* 2015, 7648–7651.

(3) M. L. Tang, A. D. Reichardt, T. Siegrist, S. C. B. Mannsfeld and Z. Bao, *Chem. Mater.* 2008, 20, 4669–4676.
(4) Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

(5) G. E. Rudebusch, J. L. Zafra, K. Jorner, K. Fukuda, J. L. Marshall, I. Arrechea-Marcos, G. L. Espejo, R. P. Ortiz, C. J. Gómez-García, L. N. Zakharov, M. Nakano, H. Ottosson, J. Casado and M. M. Haley, *Nat. Chem.* **2016**, *8*, 753.

(6) D. Doehnert and J. Koutecký, J. Am. Chem. Soc. 1980, 102, 1789–1796.

(7) Yamaguchi, K. Chem. Phys. Lett. 1975, 33, 330-335.

(8) T. Lu and F. Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
(9) G. M. Sheldrick, Acta Cryst. 2015, A71, 3–8.

(10) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.* **2009**, *42*, 339–341.