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1 Theory

1.1 Semiclassical spectroscopy: A powerful quantum investigation tech-

nique

In molecular spectroscopy quantum aspects like zero-point energies, tunneling splittings, over-

tones, and combined excitations are of great importance. Purely quantum investigations are

doable for small systems, but they become quickly computationally unaffordable as the com-

plexity of the system under study increases. In spite of their intrinsic limitations and inaccu-

racies, ad hoc scaled harmonic approaches and classical investigations are usually undertaken

in absence of a quantum treatment1,2. Semiclassical (SC) spectroscopy is a recently developed

technique able to combine the advantages of classical and quantum spectroscopy into a novel

and powerful investigation tool3. It has already been adopted to study the vibrational features

of large molecules like fullerene4, and biomolecules like glycine, nucleobases, and dipeptide

derivatives5–7. Furthermore, SC spectroscopy has permitted to solve open issues related to

supra-molecular systems. This is the case of some peculiar vibrational features of the glycine

dimer and H2-tagged protonated glycine, which have been successfully explained by means of

SC spectroscopy8. All these results and other recent investigations provide a solid background

for the investigations presented in the main body of this manuscript6,9–19.

The foundation of semiclassical spectroscopy lies in the possibility to get the eigenvalues of

the vibrational Hamiltonian starting from the Fourier transform of the survival amplitude

I(E) ∝
ˆ

dt eiEt/~〈Ψ0|Ψ(t)〉, (1)

where |Ψ0〉 is an arbitrary state and I(E) is the density of vibrational states. If one describes

this arbitrary state as a linear combination of the Hamiltonian eigenstates |Ej〉, i.e. |Ψ0〉 =
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∑
j cj|Ej〉, then Eq. (1) can be recast as

I(E) =
∑
j

|cj|2δ(E − Ej), (2)

which clearly demonstrates that peaks in the plot of I(E) are centered at the vibrational eigen-

values.

Eq. (1) requires to evolve the initial state |Ψ0〉 for a time t. In SC dynamics this is done

by means of the SC propagator, whose most popular version is known as the Herman-Kluk

propagator20. The reference state evolved in time using the Herman-Kluk propagator takes the

form:

|Ψ(t)〉 =
1

(2π~)Nvib

ˆ ˆ
dp0dq0Ct(p0,q0) e

iSt(p0,q0)/~ 〈p0,q0|Ψ0〉|pt,qt〉. (3)

Semiclassical propagation according to Eq. (3) requires to run full (Nvib)-dimensional classical

trajectories for a total time t, usually of the order of one picosecond, starting from momenta and

coordinates (p0,q0). For this reason the initial value representation (IVR) denomination is often

used to describe the method21. The instantaneous classical action St(p0,q0) and the complex-

valued prefactor Ct(p0,q0) are fingerprints of the original derivation of the SCIVR theory as

stationary phase approximation to Feynman’s path integral representation of the quantum prop-

agator22. Finally, the |p0,q0〉 and |pt,qt〉 states are the initial and time-evolved basis set co-

herent states. It is this sophisticated mathematical machinery which permits the quantitative

description of quantum effects starting from classical trajectories.

For application of SC dynamics to the evaluation of Eq. (1), Kaledin and Miller introduced

their time-averaged formulation of the Herman-Kluk propagator and worked out the following

SC expression for the spectral density
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I(E) ∝
ˆ ˆ

dp0dq0

∣∣∣∣ˆ T

0

dt ei[St(p0,q0)+φt(p0,q0)+Et]/~ 〈pt,qt|Ψ0〉
∣∣∣∣2 , (4)

where the total evolution time is indicated by T and only the phase of the prefactor φt(p0,q0)

is employed. As anticipated, a plot of I(E) versus E, i.e. the power spectrum of the vibrational

Hamiltonian, allows one to identify the eigenvalues as the energies at which the several spec-

tral signals are centered. The corresponding frequencies of vibration are readily obtained by

difference with respect to the ZPE value. Our power spectra provide a quantum comparison to

experimental IR and Raman spectra regarding the vibrational frequencies, a feature which is at

the heart of the investigations described in the main body of the manuscript.

Eq. (4) requires a phase space integration which is computationally unaffordable as the

system dimensionality increases beyond a few degrees of freedom. In this case it is necessary

to rely on a SC technique able to provide accurate vibrational frequencies from a single or

few trajectories. The multiple coherent states semiclassical approach (MC SCIVR) makes this

possible9. It is based on the fact that quantum eigenvalues can be estimated exactly by a single-

trajectory SC simulation, provided that the classical trajectory is run at that exact energy23.

Clearly the exact energy is not known a priori, but the MC-SCIVR technique provides anyway

a very accurate approximation to it. The approach adopts the same mathematical formalism of

Eq. (4) but relies on the choice of tailored reference states able to enhance the spectral signal

associated to the energy at which the simulation is performed. Furthermore, the MC SCIVR has

opened the possibility to adopt direct ab initio molecular dynamics for SC spectroscopy with

application to medium-large systems for which accurate analytical potential energy surfaces are

not available.

Notwithstanding, application of SC spectroscopy to large systems has been hampered by

the difficulty to get sensible spectroscopic signals when the quantum overlap in Eq. (4) is
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not sizeable due to its multi-dimensional product nature. To overcome this major issue, very

recently, the divide-and-conquer SC method (DC SCIVR) has been introduced4,15. The working

equation of DC SCIVR is similar to Eq. (4) but based on the projection of the several dynamical

quantities onto lower dimensional subspaces appropriately chosen to accommodate strongly

coupled vibrational modes

Ĩ(E) ∝
ˆ ˆ

dp̃0dq̃0

∣∣∣∣ˆ T

0

dt ei[S̃t(p̃0,q̃0)+φ̃t(p̃0,q̃0)+Et]/~ 〈p̃t, q̃t|Ψ̃0〉
∣∣∣∣2 . (5)

The total power spectrum is eventually reconstructed as a convolution of the lower dimensional

spectra, and the tilde symbol (~) has been added to those quantities that have been projected onto

a M -dimensional subspace. All the quantities appearing in Eq. (5) can be straightforwardly

projected, with the exception of the action. This happens because the potential V of the systems

under investigation is not separable (it cannot be written down exactly as a sum of terms coming

from different subspaces). To project the action we adopted the following equation:

S̃t(p̃0, q̃0) =

tˆ

0

dt′
[

1

2
p̃t′

T p̃t′ −
(
V (q̃t′ , q

(Nvib−M)
t′ )− V (q̃eq, q

(Nvib−M)
t′ )

)]
, (6)

which is exact for separable systems and approximates the projected action for non-separable

ones. The multiple coherent and divide-and-conquer techniques can be interfaced leading to

single-trajectory simulations for subspaces of reduced dimensionality. The technique is called

multiple coherent states divide-and-conquer semiclassical initial value representation (MC-DC

SCIVR), which is indeed the kind of approach adopted for the investigations presented in the

main body of the manuscript. The key observation that allows one to reduce the number of

trajectories is that most of the contribution to the spectrum comes from the trajectories having

an energy as close as possible to the true but unknown quantum mechanical eigenvalues. On
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this basis, in the multiple coherent framework proper initial conditions and tailored reference

states are employed to decrease the number of trajectories down to one per simulation.

For any target state α (like the ground state or excited states), the reference state |Ψ̃0〉 can

be chosen as a combination of coherent states

|Ψ̃0〉α =
M∏
k=1

|p̃eqk , q̃
eq
k 〉+ εk,α| − p̃eqk , q̃

eq
k 〉. (7)

In the previous equation, q̃eq are the equilibrium positions and p̃eq the harmonically approxi-

mated mass-scaled momenta

p̃eqk =
√
~ωk(2nk + 1), (8)

where ωk is the harmonic frequency of the k-th mode and nk its vibrational quantum number. In

Eq. (7), εk,α is the k-th component of an M -dimensional array of integers appropriately chosen

to enhance the spectral signal associated to the specific state α. For instance, a collection of

εk,α = +1 values allows one to get the ZPE signal. As another example, if only the k′-th element

of the array is equal to -1 (with all other array elements equal +1), then the spectral features

corresponding to α states that in harmonic approximation have an odd number of quanta in the

k′-th degree of freedom are emphasized. The procedure is rigorous in the case of uncoupled

harmonic oscillators, and only approximated but still very helpful in the general case, in which

less intense signals due to states strongly coupled to the α one may also be present.
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2 Methodological approach

2.1 Assigning normal modes to specific water monomers

In water clusters, the normal modes are strongly delocalized over different water molecules.

So, the assignment of a vibrational mode to a specific monomer must be done carefully. For

assigning the normal modes to specific water molecules, we relied on the time-averaged root-

mean-square displacement (TA RMSD). Specifically, we considered one vibrational mode at a

time, leaving the others at their equilibrium values. Along the trajectory of the select mode,

we summed up the deviation from the equilibrium positions of all the water molecules that

compose the cluster. At the end of the trajectory, we assigned the vibrational normal mode to

the water molecule with the highest TA RMSD. The underlying principle is that if a normal

mode primarily contributes to the motion of a specific monomer, then it will be assigned to

that water molecule. This approach corresponds to the usual chemical interpretation of the

assignment procedure. Table 1 reports the values of TA RMSD of the central water molecule

of (H2O)21 obtained for all the bendings and stretches. The three normal modes assigned to the

central water molecule are q132 (bending), q149, and q153 (stretches). Fig. 1 shows the behavior

of TA RMSD with respect to the central water molecule of the three select normal modes.

The distinction between symmetric and asymmetric stretches is a more complex task be-

cause the same normal mode can act with a symmetric character on a water molecule but with

an asymmetric character on another one. To distinguish the symmetric stretches from the asym-

metric ones, we adopted an approach based on a reward function. For each stretching mode

and at each time-step of the trajectory, a reward of +1 is assigned to a monomer if the two OH

distances change in the same direction, i.e. if the stretch is symmetric. In the same fashion, a -1

reward is assigned if the OH distances change in opposite directions, the key feature of asym-

metric stretch. It is noteworthy that we always obtained full (either positive or negative) rewards

8



for all the stretches of the clusters we studied. This means that even though the same normal

mode can have different behavior when acting on different monomers, its pure symmetric or

asymmetric character is preserved along the trajectory. In fig. 2 we showed the two types of re-

ward plot we obtained for all the stretches studied in this work. Depending on the normal mode

under consideration and on the water molecule it is attributed to, the reward is always positive

(symmetric stretch) or always negative (asymmetric stretch). As anticipated earlier and in the

main text, for all the simulations we employed a single classical trajectory, using the MC-DC

SCIVR method developed by our group.
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Table 1: Values of TA RMSD with respect to the motion of the central water molecule
obtained for all the bendings and stretches of the (H2O)21 cluster. The normal modes “q” are
labeled according to their harmonic frequencies. It is possible to observe that the three normal
modes 132, 149, and 153 (one bending and two stretches) can be unambiguously assigned to
the central water molecule of the cluster.

q TA RMSD/au q TA RMSD/au
132 1.24 10−1 156 8.22 10−3

149 9.13 10−2 134 8.17
...

153 9.11
... 141 7.05

137 8.66 167 6.63
154 6.99 129 6.16
130 6.37 144 4.75
122 5.82 145 4.68
131 4.08 171 4.09
150 3.61 125 4.03
168 2.90 161 3.40
124 2.48 163 2.99
151 2.44 147 2.12
158 2.35 165 2.01
157 2.25 142 1.89
138 2.21 175 1.79
126 2.19 143 1.52
160 2.15 172 1.22
139 2.09 146 1.19
133 2.01 123 1.16
159 1.92 170 1.05
166 1.88 179 9.17 10−4

155 1.86 164 8.23
...

152 1.73 181 7.68
136 1.39 178 3.96
128 1.38 174 3.91
121 1.33 173 3.31
162 1.19 176 3.12
135 1.07 177 2.81
169 9.75 10−3 182 2.31
127 9.75

... 183 1.99
140 9.00 180 1.93
148 8.24
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Figure 1: Behavior of TA RMSD for the normal modes assigned to the central monomer
of the (H2O)21 cluster. q132: bending; q149: symmetric stretch; q153: asymmetric stretch.
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Figure 2: Rewards obtained for all the stretches analyzed in this work. Violet: reward
assigned to symmetric stretches. Green: same but referred to asymmetric stretches. Our sim-
ulations are made of 6000 steps, so it is clear that we always obtain full (positive or negative)
rewards.
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2.2 Combination band calculation

Once the bending associated to central monomer has been assigned, it is possible to calculate

the band associated to the combined excitation of the bending with all the low-frequency libra-

tional modes. This band would span a very large portion of the spectrum because, for a general

(H2O)n cluster, there are 6(n− 1) low-frequency vibrational normal modes, and hence 6(n− 1)

combination signals. To obtain results comparable between the several water aggregates inves-

tigated, we chose to focus on the libration that exhibits the highest coupling with the bending

of the central water molecule.

The challenge now is how to recognize this special librational mode. First of all, a ZPE

trajectory is run (a 0.7 ps-long trajectory with a timestep of 0.12 fs), without removing the an-

gular momentum of the water molecules from the trajectory. In fact, the low-frequency modes

are usually characterized by hindered rotations or translations, which could not be accurately

described using the same approach employed for the intramolecular mode simulations. Along

this trajectory, we apply the Hessian method developed by our group to identify the librational

mode showing the highest coupling with the bending. In practice, the off-diagonal elements of

the Hessian matrix, which correspond to the second derivative of the potential with respect to

the bending and to the different librations, are calculated and their absolute values are summed

up. In this way, we obtained time-averaged Hessian matrix elements, which are a direct measure

of the coupling between normal modes. Specifically, the off-diagonal elements of the Hessian

are equal to zero in the case of completely uncoupled oscillators. So, the magnitude of the

mixed derivative of the potential with respect to two normal modes is a measure of their cou-

pling. Therefore, the libration experiencing the highest coupling with the bending of the central

monomer will be the one with the highest off-diagonal element of the time-averaged Hessian

matrix. Fig. 3 shows the chosen libration for the (H2O)21 cluster. In fig. 4 we reported the be-

havior of the time-averaged off-diagonal elements of the Hessian matrix for different librational
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modes. Once the target libration has been determined, it is possible to calculate the combination

signal through a proper choice of the wavepacket. In this case, both the ε coefficients of Eq.

(7) associated to the target bending and libration are set equal to -1, while leaving all the others

equal to 0.

Figure 3: Selected libration for the (H2O)21 cluster. This normal mode is labeled q53 in Fig.
4.
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Figure 4: Time-averaged absolute values of the Hessian matrix for the bending of the
central monomer of (H2O)21. The time-averaged matrix elements are compared for different
librational motions: q53 is the select libration (reported in Fig. 3), q52 is a libration with similar
harmonic frequency, q1 is a libration with lower harmonic frequency, and q100 is characterized
by a higher harmonic frequency.

3 Benchmark calculations

3.1 Vibrational frequencies of small-dimensional water clusters

Here we report the frequency values obtained with the MC-DC-SCIVR approach and discussed

in the main text. The results are benchmarked against experiments and MultiMode (MM) or

Local Monomer Model (LMM) calculations. Both the MM and the LMM simulations were

carried out on a different potential energy surface (the WHBB one)24. Nonetheless, these val-

ues provide an accurate qualitative benchmark to confirm the accuracy of the MC-DC-SCIVR

method. The vibrational spectrum of the water dimer is depicted in Fig. 5 and the corresponding

frequencies are reported in Table 2. The vibrational frequencies of the water trimer and of the
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water hexamer prism (Fig. 2 in the main text) are listed in Table 3 and in Table 4, respectively.

Figure 5: Vibrational spectrum of the water dimer. Peak colors are chosen in agreement with
the water monomer they belong to. The liquid water infrared spectrum is reported as shaded
gray areas.
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Table 2: Frequencies of the water dimer (cm-1). Column “q” reports the normal modes or-
dered according to their harmonic frequencies (Harm); column “MM” shows the MultiMode es-
timates; column “MC-DC SCIVR” reports the semiclassical frequencies obtained in the present
work; under column “Exp” we have reported the experimental frequencies25. Mean absolute
errors with respect to experiments (MAE exp) and MM calculations (MAE MM) are shown.
The spectrum can be found in fig. 1 of the main text.

q Exp MM MC-DC SCIVR Harm
7 1600 1588 1607 1651
8 1617 1603 1632 1665
9 3591 3573 3627 3752

10 3661 3627 3698 3832
11 3734 3709 3720 3915
12 3750 3713 3745 3935

MAE exp - 23 19 133
MAE MM - - 36 156

Table 3: Frequencies of the water trimer (cm-1). Labels are chosen in agreement with Table
2.

q MM MC-DC SCIVR Harm
13 1597 1562 1656
14 1600 1591 1661
15 1623 1561 1685
16 3486 3465 3636
17 3504 3550 3685
18 3514 3475 3694
19 3709 3753 3906
20 3716 3714 3915
21 3720 3714 3916

MAE MM - 29 143
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Table 4: Frequencies of the water hexamer prism (cm-1). Labels are chosen in agreement
with Table 2. Under column “LMM” we have reported the Local Monomer Model esti-
mates.

q LMM MC-DC SCIVR Harm
31 1606 1605 1652
32 1612 1600 1671
33 1620 1630 1680
34 1633 1659 1690
35 1654 1669 1711
36 1677 1682 1729
37 3092 3114 3307
38 3256 3283 3513
39 3372 3361 3603
40 3442 3412 3627
41 3482 3534 3729
42 3521 3622 3747
43 3579 3578 3789
44 3588 3627 3805
45 3630 3609 3818
46 3697 3739 3908
47 3706 3701 3910
48 3728 3694 3911

MAE LMM - 25 161

3.2 Vibrational frequencies of tetrahedrally coordinated water molecules

In this section we report the frequencies associated to bendings, stretches and combination

bands of water molecules with tetrahedral coordination. Table 5 reports the frequencies of the

central water monomers of (H2O)5 and (H2O)7. Table 6 reports the vibrational frequencies of

the central water molecule in larger water clusters. Specifically, Table 7 shows the vibrational

frequencies of the monomers that make up the first solvation shell of the central water molecule

of (H2O)23 (depicted in Fig. 6).

In Tables 5, 6, and 7, the vibrational frequencies of the target water molecules are high-
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lighted if they are compatible with the experimental frequencies of liquid water. We remark

that this comparison can be made only from a qualitative point of view. In fact, we can only

rely on broad infrared signals to confirm the solvation of a target water molecule. Raman-MCR

experiments somewhat help to narrow the stretching band in the case of tetrahedrally coordi-

nated water molecules, but the signal still remains quite broad. At present, we can only give a

qualitative description of a solvated water molecule. Any well-defined energy window that dis-

criminates a solvated water molecule from a non-solvated one would not be neither accurate nor

very helpful. More specifically, a plethora of stretching signals are compatible with a solvated

water molecule within the experimental band, given the infinity number of geometries that it

can assume.

Table 5: Frequencies associated to the central monomers of small water clusters (cm-1).
The corresponding MC-DC-SCIVR power spectra are reported in Fig. 3 of the main text. The
MC-DC-SCIVR frequencies are reported under columns “SC”, while the harmonic frequen-
cies are listed under columns “Harm”. Frequencies of bendings and combination bands that
are comparable with the ones of the liquid water infrared spectrum as well as signals associ-
ated to symmetric and asymmetric stretches comparable with the MCR-Raman spectrum are
highlighted.

(H2O)5 (H2O)7
SC Harm SC Harm

bending 1616 1662 1656 1680
combination band 1863 1902 1854 1909
symmetric stretch 3329 3600 3290 3469

asymmetric stretch 3288 3722 3461 3583
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Table 6: Frequencies associated to the central monomers of larger water clusters (cm-1).
The corresponding MC-DC-SCIVR power spectra are reported in Fig. 4 of the main text. La-
bels are chosen in agreement with Table 5. Frequencies of bendings and combination bands
that are comparable with the ones of the liquid water infrared spectrum as well as signals asso-
ciated to symmetric and asymmetric stretches comparable with the MCR-Raman spectrum are
highlighted.

(H2O)19 (H2O)21 (H2O)23
SC Harm SC Harm SC Harm

bending 1687 1696 1659 1697 1649 1709
combination band 2127 2313 1950 1980 2124 2233
symmetric stretch 3448 3607 3276 3462 3200 3425
asymmetric stretch 3506 3583 3253 3538 3351 3465

Figure 6: Magnified view of the (H2O)23 cluster. The monomers composing the first solvation
shell of the central water molecule are highlighted with different colors (yellow, blue, green,
and purple). The central water molecule is colored in orange.
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Table 7: MC-DC SCIVR frequencies associated to the monomers constituting the first
coordination shell of the (H2O)23 cluster (cm-1). The colors of the labels are chosen to match
the corresponding monomers in the previous figure. Frequencies of bendings and combination
bands that match the IR spectrum of liquid water as well as signals associated to symmetric and
asymmetric stretches matching the MCR-Raman spectrum are highlighted.

(H2O)23 Mon1 Mon2 Mon3 Mon4
bending 1684 1640 1602 1684

symmetric stretch 2961 3303 3353 3525
asymmetric stretch 3343 3402 3494 3465
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