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1 General Considerations

Unless otherwise noted, all reactions were performed in flame or oven-dried glassware fitted with rubber
septa under a positive pressure of nitrogen using standard Schlenk techniques. Air- and moisture-sensitive
liquids were transferred via syringe or stainless-steel cannula through rubber septa. Solids were added
under inert gas or were dissolved in appropriate solvents. Low temperature reactions were carried out in
a Dewar vessel filled with a cooling agent: acetone/dry ice (-78 °C), H,O/ice (0 °C). Reaction temperatures
above 23 °Cwere conducted in an oil bath or in a heated metal block (reactions conducted in tightly capped
vials sealed with teflon tape). Reaction mixtures were magnetically stirred and monitored by NMR
spectroscopy, liquid chromatography—mass spectrometry (LC-MS) or analytical thin-layer chromatography
(TLC), using glass plates precoated with silica gel (Silicycle Siliaplates, glass backed, extra hard layer, 60 A,
250 um thickness, F254 indicator). TLC plates were visualized by exposure to ultraviolet light (254 nm), or
were stained by submersion in agueous potassium permanganate solution (KMnQ,) and developed by
heating with a heat gun. Flash-column chromatography was performed as described by Still et al.,!
employing silica gel (Silicycle silica gel, 40—63 um particle size). Organic solutions were concentrated under
reduced pressure on a Heidolph temperature-controlled rotary evaporator equipped with a dry
ice/isopropanol cold finger. Yields refer to chromatographically and spectroscopically (*H and 3C NMR)
pure material.

1.1 Materials

Unless noted below, commercial reagents were purchased from Sigma Aldrich, Acros Organics, Chem-
Impex, Oakwood Chemical, Combi-blocks, TCI, and/or Alfa Aesar, and used without additional purification.
Solvents were purchased from Fisher Scientific, Acros Organics, Alfa Aesar, or Sigma Aldrich.
Tetrahydrofuran (THF), diethyl ether (Et,0), acetonitrile (CHsCN), benzene, toluene (PhMe), methanol
(MeOH), and triethylamine (EtsN) were sparged with argon and dried by passing through alumina columns
using argon in a Glass Contour solvent purification system. Dichloromethane (CH,Cl,, DCM) was freshly
distilled over calcium hydride under a N, atmosphere prior to each use.

1.2 NMR spectroscopy

NMR spectral data were obtained using deuterated solvents, obtained from Cambridge Isotope
Laboratories, Inc. 'H NMR and **C NMR data were recorded on Bruker AVB-400, AVQ-400, AV-500, AV-600
or AV-700 spectrometers operating at 400 MHz, 400 MHz, 500 MHz, 500 MHz, 600 MHz, 700 MHz for
proton nuclei (100 MHz, 100 MHz, 125 MHz, 125 MHz, 150 MHz, 175 MHz for carbon nuclei), respectively.
Proton chemical shifts are expressed in parts per million (ppm, 6 scale) and are referenced to residual
protium in the NMR solvent (CHCls: & 7.26). Carbon chemical shifts are expressed in parts per million (&
scale, assigned carbon atom) and are referenced to the carbon resonance of the NMR solvent (CDCls: 6
77.16). F NMR spectra were acquired on the AVQ-400 spectrometer and internally referenced to CFCls
(6 0.00). 1B NMR spectra were acquired on the AV-600 spectrometer. When 3C signals appeared too weak
and/or broad (such as all carbons directly bonded to boron, due to quadrupole relaxation), HSQC spectra
were acquired to confirm signal authenticity. *H NMR spectroscopic data are reported as follows: Chemical
shift in ppm (multiplicity, coupling constants J (Hz), integration) (e.g., “5.21 (t, 3J = 7.3 Hz, 1H)"). The
multiplicities are abbreviated with s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet), p
(pentet), se (sextet), h (heptet), m (multiplet) and app (apparent multiplicity). In case of combined
multiplicities, the multiplicity with the larger coupling constant is stated first. Except for multiplets, the
chemical shift of all signals, as well as for centrosymmetric multiplets, is reported as the center of the
resonance range. Data for 3C, 1°F and !B NMR spectroscopy are reported in terms of chemical shift (&
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ppm). In addition to 1D NMR experiments, 2D NMR techniques such as homonuclear correlation
spectroscopy (COSY), heteronuclear single quantum coherence (HSQC), heteronuclear multiple bond
coherence (HMBC) and nuclear Overhauser enhancement spectroscopy (NOESY) were used to assist
structure elucidation. All raw FID files were processed, and the spectra analyzed using the program
MestReNOVA 11.0 from Mestrelab Research S. L.

Note: Instruments in the Berkeley College of Chemistry NMR facility are supported in part by NIH
5100D024998.

1.3 Mass spectrometry

Mass spectral data were obtained at the Lawrence Berkeley National Laboratory (LBNL) Catalysis Facility
at the University of California, Berkeley, on a PerkinElImer AxION 2 UHPLC-TOF system (ESI). Data
acquisition and processing were performed using the “TOF MF Driver” software.

1.4 IR spectroscopy

IR spectral data were obtained from the LBNL Catalysis Facility at the University of California, Berkeley, on
a Bruker Vertex80 FT-IR spectrophotometer using a diamond attenuated total reflectance (ATR) accessory.
As necessary, analytes were dissolved in dichloromethane prior to direct application on the ATR unit. Data
are represented as follows: frequency of absorption (cm™), and intensity of absorption (s = strong, m =
medium, w = weak, br = broad).

Note: Both HRMS and IR instruments were supported by the U.S. Department of Energy (DOE), Office of
Science, Basic Energy Sciences, under Contract No. DE-AC02-05CH11231.

1.5 X-ray analysis

Single-crystal X-ray diffraction experiments were performed at the UC Berkeley CHEXRAY crystallographic
facility. Measurements for all compounds were performed on a Rigaku XtalLAB P200 diffractometer
equipped with a MicroMax 007HF rotating anode and a Pilatus 200K hybrid pixel array detector. Data were
collected using either Mo Ka (A =0.71073 A) or Cu Ka (A = 1.5406 A) radiation. Crystals were kept at 100(2)
K throughout the collection. Data collection was performed with CrysAlis’™.2 Data processing was
conducted with CrysAlis*™ and included a multi-scan absorption correction applied using the SCALE3
ABSPACK scaling algorithm within CrysAlis™™. All structures were solved with SHELXT.® Structures were
refined with SHELXL.* All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were
either included at the geometrically calculated positions and refined using a riding model or located as Q
peaks in the Fourier difference map.
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2 General Experimental Details

2.1 General Procedure A-E

A. General Procedure A: Preparation of indole boronate esters

HBpin or B,pin,
R [I(OMe)COD], R!

\ dtb
M _ deey m_Bpln
=z N solvent
R2 23°CorA
12-24 h dtbpy

On the basis of the procedure developed by Hartwig et al.,” an oven-dried vial was charged with a magnetic
stirring bar, (1,5-cyclooctadiene)(methoxy)iridium(l) dimer (1.5 mol%) and 4,4’-di-tert-butyl-2,2’-dipyridyl
(3 mol%). The vial was flushed with nitrogen and sealed with a septum cap. Anhydrous solvent (0.2 M),
pinacolborane (1.1 equiv) or bis(pinacolato)diboron (2 equiv), and indole (1 equiv) were added
sequentially and the resulting mixture was stirred at 23 °C or heated in a preheated (indicated
temperature) heating block. Stirring was continued at the same temperature until either TLC (for most
substrates) or LC-MS analysis indicated complete consumption of starting material. The reaction mixture
was then cooled to 23 °C, filtered through a celite plug eluting with ethyl acetate, and the filtrate was
concentrated in vacuo. The crude residue was either purified by flash column chromatography on silica gel
or used directly in the next step without further purification.

B. General Procedure B: Preparation of indole—pyrone adducts from 3-triflyloxy-2-pyrone

R1 0 R’I )
AR N Pd(dppf)Cly, K3PO4 A O
| Bpin + O > || \ \ /

Z~N TIO—\ THF/H,0 Z=N
R2 23°C,12h R2

On the basis of the procedure developed by Maulide et al.,® an oven-dried vial was charged with a magnetic
stirring bar, indole boronate ester (1.1 equiv), 3-triflyloxy-2-pyrone® (1.0 equiv), [1,1’-
bis(diphenylphosphino)ferrocene]dichloropalladium(ll) (10 mol%), and tripotassium phosphate (3 equiv).
The vial was flushed with nitrogen and sealed with a septum cap. Tetrahydrofuran (0.1 M) and water (0.01
M) were added sequentially and the resulting mixture was stirred at 23 °C. After 12 h, the mixture was
diluted with saturated agueous ammonium chloride solution. The layers were separated, the aqueous
layer was extracted with ethyl acetate and the combined organic extracts were washed with saturated
aqueous sodium chloride solution. The washed organic layer was dried over sodium sulfate, filtered, and
the filtrate was concentrated in vacuo. The crude residue was purified by flash column chromatography
on silica gel to provide the indole—pyrone adduct.
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C. General Procedure C: Preparation of indole—pyrone adducts from 3-bromo-2-pyrone

R1 @) 1 O

R
R\ - O Pd(dppACl, KaCO3 AR 0
| Bpin + Br \ / > || \ /
Z =N THF/H,0 Z~N
R? R3 70°C,3-4h R2 R3

An oven-dried vial was charged with a magnetic stirring bar, indole boronate ester (1.1 equiv), 3-bromo-
2-pyrone (1.0 equiv), [1,1’-bis(diphenylphosphino)ferroceneldichloropalladium(ll) (10 mol%), and
potassium carbonate (2 equiv). The vial was flushed with nitrogen and sealed with a septum cap.
Tetrahydrofuran (0.1 M) and water (0.01 M) were added sequentially and the vial was placed in a
preheated (70 °C) heating block. Stirring was continued at this temperature until TLC analysis indicated
complete consumption of the 3-bromo-2-pyrone starting material. The mixture was then cooled to 23 °C,
and diluted with saturated agueous ammonium chloride solution. The layers were separated, the aqueous
layer was extracted with ethyl acetate and the combined organic extracts were washed with saturated
aqueous sodium chloride solution. The washed organic layer was dried over sodium sulfate, filtered, and
the filtrate was concentrated in vacuo. The crude residue was purified by flash column chromatography
on silica gel to provide the indole—pyrone adduct.

D. General Procedure D: Preparation of pyrido[1,2-a]indoles

(@) 1
R R
N o) NaOMe I\\ A COaMe
é
| _ N, \ |/ CHCl/MeOH NN
i—| R2 23 or 55 °C \=/\R2

10 min—-12h

A vial was charged with a magnetic stirring bar and indole—pyrone adduct (1 equiv). Dichloromethane (0.1
M) and methanol (0.1 M) were added sequentially and the resulting solution was treated with a solution
of sodium methoxide (25 wt% in MeOH, 1.2 equiv) at 23 °C. The resulting mixture was stirred at 23 °C or
heated in a preheated (55 °C) heating block with stirring for the indicated time (typically until TLC analysis
indicated complete consumption of the starting material). The mixture was then cooled to 23 °C, and
diluted with saturated agueous ammonium chloride solution. The layers were separated, the aqueous
layer was extracted with dichloromethane and the combined organic extracts were washed with saturated
aqueous sodium chloride solution. The washed organic layer was dried over sodium sulfate, filtered, and
the filtrate was concentrated in vacuo. The crude residue was purified by flash column chromatography
on silica gel to provide the pyrido[1,2-alindole product.
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E. General Procedure E: Preparation of carbazoles

NaOMe

CH,Cl,/MeOH ] — R?

R! R 230r55°C, 10 min
I\ A 0 : - I\ I\ /
Z~N \ |_/) then aq. HCI Z~N CO,Me

i?3 R2 23 or 55 °C, 10 min R3

A vial was charged with a magnetic stirring bar and indole—pyrone adduct (1 equiv). Dichloromethane (0.1
M) and methanol (0.1 M) were added sequentially and the resulting solution was treated with a solution
of sodium methoxide (25 wt% in MeOH, 1.2 equiv) at 23 °C. The resulting mixture was stirred at 23 °C or
heated in a preheated (55 °C) heating block with stirring for the indicated time (typically until TLC analysis
indicated complete consumption of the starting material). The mixture was then cooled to 23 °C, and was
treated with an aqueous hydrogen chloride solution (1 M, 3 equiv) and stirring of the resulting biphasic
mixture was continued at 23 °C or heated in a preheated (55 °C) heating block with stirring for the indicated
time (typically until TLC analysis indicated complete consumption of the starting material). The mixture
was then cooled to 23 °C, and diluted with saturated aqueous ammonium chloride solution. The layers
were separated, the aqueous layer was extracted with dichloromethane and the combined organic
extracts were washed with saturated aqueous sodium chloride solution. The washed organic layer was
dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo. The crude residue was
purified by flash column chromatography on silica gel to provide the carbazole product.
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2.2  Photographic Guide for the Pyrido[1,2-alindole formation

Illustrated below is the reaction setup and General Procedure D (entry 8 of Table 1, main manuscript or
entry 12, Table S1)

Figure S1. Reagents used in the
reaction. From left to right:
indole—pyrone  adduct and
NaOMe solution. On a bench
top, a vial is charged with a
magnetic stirring bar and indole—
pyrone adduct.

e
\, /2N

-ALDAICH

Figure S2. Solution of
indole—pyrone adduct in
dichloromethane and
methanol.

Figure S3. Reaction
mixture after addition of a
NaOMe solution.

Figure S4. TLC analysis (before and after KMnO,
stained) after stirring at 23 °C for 10 min.
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2.3 Reaction Development and Optimization Table

The development and subsequent optimization attempts of this annulative reaction were carried out
under varying solvent conditions and temperatures, which have been outlined in Table S1. The general
procedures for our optimization studies were as follows:

Entries 1-11: A flame-dried vial was charged with a magnetic stirring bar and indole—pyrone adduct (0.1
mmol, 1 equiv). The vial was taken into a N,-filled glovebox where sodium methoxide (1.2 equiv) was
added. The vial was sealed with a septum cap, taken out of the glovebox, and placed under N,. Anhydrous
solvent (0.05 M) was then added and the resulting mixture was stirred (temperature and times as indicated
below). The reaction mixture was filtered through a silica plug eluting with ethyl acetate, the filtrate was
concetrated in vacuo, and the crude residue was analyzed by quantitative NMR spectroscopy.

Entry 12: The same procedure as above was followed except non-anhydrous conditions (i.e. non-
anhydrous solvent, non-flame-dried vial, open-to-air setup, and stirred under air) were employed.

Table S1. Optimization of the annulative reaction.

(@) COzMe
O NaOMe (1 2 equiv) Cone
A\
N N/ solvent temp. N COzMe
H

H
7a
Entry Conditions % NMR yield (8a:9:10)?
1 MeCN, 23—50 °C 10:13:16
2 1,4-dioxane, 23 °C 0:15:21
3b cyclohexane/PhMe (1:1), 23—100 °C trace :0:0
4¢ pyridine, 23 °C 0 : trace : trace
5 DMF, 23 °C decomp.
69 DMSO, 23 °C decomp.
7¢ HFIP, 23-50 °C unreacted 7a
8 MeOH, 23 °C 45 (53 brsm) :0:0
9 THF/MeOH (1:1), 23 °C 36:7:10
10 DCE/MeOH, 23 °C 45:0:0
11 CH,Cl,/MeOH (1:1), 23 °C 61:0:0
12f CH,CI,/MeOH (1:1), 23 °C, open vial 59:0:0

All reactions (unless otherwise noted): under Np, anhydrous, 0.1 mmol 7a, 0.05 M (based on mmol 7a), 25 min; agNMR yields
calculated using 1,2,3-trimethoxybenzene as internal standard; *4.5 h; <40 min; 91 h 10 min; 1.5 h; fnot anhydrous

We initially observed formation of pyrido[1,2-a]indole 8a using MeCN as the solvent, albeit in a low 10%
yield, along with formation of carbazole 9 and hemiaminal 10 (entry 1). A mixture of products was also
observed with 1,4-dioxane as solvent (entry 2). However, only carbazole 9 and hemiaminal 10 were
observed as the sole products. Using cyclohexane with toluene as a co-solvent (entry 3), we only observed
trace formation of 8a. At this point, we decided to investigate whether polar solvents would be beneficial
toward selectivity. A survey of polar solvents (i.e., pyridine, DMSO, DMF; entries 4—6) only offered trace 9
and 10 (entry 4) or decomposition of 7a (entries 5 and 6). Hexafluoroisopropanol (HFIP) at slightly elevated
temperatures (50 °C) and prolonged reaction time (1.5 h) only returned the starting indole—pyrone adduct
7a (entry 7). We then turned toward exploring polar aprotic solvents. To our advantage, employing
methanol as the solvent (entry 8) yielded solely the desired 8a in 45% yield. However, we realized indole—
pyrone 7a is not very soluble in methanol and we presumed that enhancing the solubility could increase
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the final yield of 8a. We then began investigating various co-solvents with methanol to improve the
solubility of 7a. Employing THF as the co-solvent led to diminished yield of 8a (entry 9) and additionally,
also resulted in the formation of carbazole 9 and hemiaminal 10. Eventually, we turned our attention to
chlorinated solvents, and found that a mixture of DCE and MeOH gave 8a as the exclusive product (entry
10) but did not improve the yield. Gratifyingly, switiching from DCE/MeOH to DCM/MeOQOH (entry 11)
resulted in an increase in yield (45% — 61%) of 8a. Using the optimal solvent conditions from entry 11,
but under open flask/non-anhydrous conditions (entry 12), no significant drop in yield was observed. For
this reason, the entire scope of this project was developed under non-anhydrous conditions, and for
substrates that required more forcing conditions, the reaction vial was tightly capped with Teflon tape
and placed in a preheated (55 °C) heating block.

The characterization data of pyrido[1,2-a]indole 8a, carbazole 9, and hemiaminal 10 are given below.

A\ CO:Me

N\

—

8a

TLC (5:1, hexanes:ethyl acetate): Ry = 0.46 (UV/KMnO,)

H NMR (400 MHz, CDCls) 6 8.48 (d, J = 6.9 Hz, 1H), 7.91— 7.81 (m, 3H), 7.46 — 7.40 (m, 1H), 7.37 (brs, 1H),
7.36—7.30 (m, 1H), 6.51 (t, J = 6.9 Hz, 1H), and 4.01 (s, 3H).

13C NMR (151 MHz, CDCls) 6 166.0, 133.1, 130.1, 129.5, 129.2, 128.9, 123.8, 121.2, 120.5, 120.4, 110.3,
106.1, 94.7, and 52.2.

IR (Diamond-ATR, neat) Vmax: 3103 (w), 3052 (w), 2949 (m), 1713 (s), 1607 (w), 1519 (w), 1462 (m), 1345
(w), 1270 (s), 1202 (s), 1129 (m), 1060 (w), 774 (w), and 743 (m).

HRMS (ESI): calcd for ([M+H], C14H12NO,)*: 226.0863, found: 226.0866.

mp: 95-97 °C (red solid)

TLC (3:1, hexanes:ethyl acetate): R=0.73 (UV/KMnO,)

14 NMR (700 MHz, CDCls) § 9.93 (br's, 1H), 8.27 (d, J = 7.6 Hz, 1H), 8.12 — 8.07 (m, 2H), 7.54 — 7.51 (m,
1H), 7.50 — 7.46 (m, 1H), 7.31 - 7.24 (m, 2H), and 4.03 (s, 3H).

13C NMR (176 MHz, CDCls) & 168.0, 140.2, 139.8, 127.5, 126.7, 125.6, 124.8, 122.6, 120.5, 120.1, 118.6,
111.7,111.2, and 52.1.

IR (Diamond-ATR, neat) Vmax: 3440 (s), 3061 (w), 3038 (w), 2951 (m), 2924 (w), 2850 (w), 1692 (s), 1603
(w), 1494 (m), 1435 (m), 1300 (m), 1267 (s), 1223 (s), 1195 (m), and 1069 (w).

HRMS (ESI): calcd for ([M+H], C14H12NO,)*: 226.0863, found: 226.0864.

mp: 133-135 °C (off-white solid)

S12



Pyrone remodeling strategy to access diverse heterocyclic cores— Supporting Information

N COzMe

N\

HO
10

TLC (3:1, hexanes:ethyl acetate): Ry=0.20 (UV/KMnO,)

H NMR (700 MHz, CDCls) § 7.64 (d, J = 7.9 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.29 — 7.25 (m, 1H), 7.18 (s, 1H),
7.15 (t,J = 7.5 Hz, 1H), 7.09 — 7.05 (m, 1H), 6.20 — 6.16 (m, 1H), 3.91 (s, 3H), 3.00 — 2.97 (m, 2H), and 2.37
—2.32(m, 1H).

13C NMR (151 MHz, CDCl3) & 164.9, 135.8, 131.3, 129.4, 129.3, 124.9, 123.4, 121.9, 121.1, 108.8, 104.6,
72.5,52.2,and 32.9.

IR (Diamond-ATR, neat) Vmax: 3414 (s), 3054 (w), 2950 (m), 2925 (m), 2852 (w), 1718 (s), 1438 (m), 1344
(m), 1271 (s), 1204 (m), 1133 (m), 1073 (m), 1046 (m), 805 (m), and 738 (m).

HRMS (ESI): calcd for ([M+H], C14H14NQOs)*: 244.0968, found: 244.0968.

Physical state: yellow oil.
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3 Synthesis of Indole-Pyrone Adducts

3.1 Synthesis of indole—pyrone 7a

0 0
mein .\ o Pddppf)Cl, K3PO4> \ 0
H O\ 7 THF/H,0 N/,
23°C, 12h H
S27 S28 7a
(98%)

Following General Procedure B, a mixture of indole boronate ester $277 (1.13 g, 4.65 mmol, 1.1 equiv), 3-
triflyloxy-2-pyrone $28° (1.03 g, 4.22 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocenel-
dichloropalladium(ll) (317 mg, 0.43 mmol, 10 mol%), and tripotassium phosphate (2.70 g, 12.7 mmol, 3
equiv) in tetrahydrofuran (40 mL) and water (4 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (12:1—>1:1 hexanes:ethyl acetate) to provide
indole—pyrone 7a (873 mg, 4.14 mmol, 98%) as a yellow solid.

TLC (1:1, hexanes:ethyl acetate): R¢= 0.65 (UV/KMnO,)

1H NMR (500 MHz, CDCl3) § 10.39 (br's, 1H), 7.87 (dd, J = 6.9, 1.9 Hz, 1H), 7.64 — 7.59 (m, 1H), 7.53 (dd, J =
5.0, 1.9 Hz, 1H), 7.46 — 7.41 (m, 1H), 7.24 — 7.19 (m, 1H), 7.14 — 7.09 (m, 1H), 6.96 — 6.92 (m, 1H), and 6.45
(dd, J = 6.9, 5.0 Hz, 1H).

13C NMR (126 MHz, CDCls) & 161.8, 149.8, 136.5, 135.7, 131.7, 128.0, 123.2, 120.6, 120.5, 119.9, 111.8,
107.6, and 100.6.

IR (Diamond-ATR, neat) Vmax: 3369 (s), 3055 (w), 2979 (m), 2942 (w), 1696 (s), 1621 (w), 1369 (w), 1324
(w), 1238 (w), 1108 (m), 949 (w), 794 (w), 753 (w), and 691 (m).

HRMS (ESI): calcd for ([M+H], C13H10NO,)*: 212.0706, found: 212.0717.

mp: 170-177 °C.
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3.2 Synthesis of indole—pyrone Boc-7a

O
Pd(dppf)Cl,, K3PO (0]
mB(OHb N o) ( pp) 2» I\3 4> \
N TIO—\ THF/H,0 N N
Boc 23°C,12h Boc
S29 S28 (95%) Boc-7a

Following General Procedure B, a mixture of indole boronic acid $29 (144 mg, 0.55 mmol, 1.1 equiv), 3-
triflyloxy-2-pyrone $28° (122 mg, 0.50 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocenel-
dichloropalladium(ll) (37.0 mg, 0.05 mmol, 10 mol%), and tripotassium phosphate (315 mg, 1.50 mmol, 3
equiv) in tetrahydrofuran (5 mL) and water (0.5 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (3:1 hexanes:ethyl acetate) to provide indole—
pyrone Boc-7a (148 mg, 0.48 mmol, 95%) as a yellow solid.

TLC (1:1, hexanes:ethyl acetate): Rr=0.70 (UV/KMnO,)

H NMR (700 MHz, CDCl3) 6 8.19 (d, J = 8.4 Hz, 1H), 7.56 — 7.51 (m, 2H), 7.38 = 7.32 (m, 2H), 7.23 (t,J = 7.5
Hz, 1H), 6.61 (s, 1H), 6.30 (t, J = 5.9 Hz, 1H), and 1.54 (s, 9H).

13C NMR (176 MHz, CDCls) & 161.0, 151.1, 149.8, 138.3, 137.3, 133.8, 128.7, 125.2, 125.1, 123.0, 120.8,
115.7,111.2, 106.3, 84.2, and 28.0.

IR (Diamond-ATR, neat) ¥max: = 3105 (w), 3053 (w), 2980 (m), 2934 (w), 1717 (s), 1453 (w), 1367 (w), 1324
(s), 1223 (m), 1158 (m), 1133 (m), 1097 (m), 1072 (m), 767 (w), and 730 (m).

HRMS (ESI): calcd for ([M+H], C1sH1sNQ4)*: 312.1230, found: 312.1233.

mp: 118-121 °C.
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3.3 Synthesis of indole—pyrone 7b

()

o)
To—\
szinz
Me  [I(OMe)COD]; Me S28 Me O
dtbp Pd(dppf)Clp, K5PO 0
@f\g y’me‘”(HsL >\ 4
N CH,Cl, N THF/H,0 N
H 65°C, 4 h H 23°C, 12 h H
$30 31 (©9%) 7b

Following General Procedure A, a mixture of indole S30 (224 mg, 1.70 mmol, 1 equiv),
bis(pinacolato)diboron (670 mg, 2.64 mmol, 2 equiv), (1,5-cyclooctadiene)(methoxy)iridium(l) dimer (17
mg, 0.03 mmol, 1.5 mol%), and 4,4’-di-tert-butyl-2,2’-dipyridyl (14 mg, 0.05 mmol, 3 mol%) in
dichloromethane (10 mL) was heated at 65 °C with stirring for 4 h. The crude residue was purified by flash-
column chromatography on silica gel (30:1 hexanes:ethyl acetate) to provide an inseparable mixture (270
mg) of indole boronate ester $31 (~ 0.89 mmol) and unreacted indole S30 as a pale yellow oil in a ratio of
6:1, which was directly used in the next step without further purification. The characterization data for
$31 were in full agreement with values previously reported.®

Following General Procedure B, a mixture of crude indole boronate ester S31 (assuming 0.89 mmol, 1.1
equiv), 3-triflyloxy-2-pyrone $28° (195 mg, 0.80 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocene]-
dichloropalladium(ll) (51.0 mg, 0.07 mmol, 10 mol%), and tripotassium phosphate (510 mg, 2.40 mmol, 3
equiv) in tetrahydrofuran (8 mL) and water (0.8 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (2:1 hexanes:ethyl acetate) to provide indole—
pyrone 7b (125 mg, 0.56 mmol, 69%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): Rr=0.29 (UV/KMnO,)

1H NMR (400 MHz, CDCl3) § 10.17 (br's, 1H), 7.73 (dd, J = 7.0, 1.9 Hz, 1H), 7.64 — 7.57 (m, 1H), 7.51 (dd, J =
5.0, 1.9 Hz, 1H), 7.44 — 7.37 (m, 1H), 7.26 — 7.20 (m, 1H), 7.17 — 7.10 (m, 1H), 6.47 (dd, J = 7.0, 5.0 Hz, 1H),
and 2.54 (s, 3H).

13C NMR (151 MHz, CDCls) & 162.3, 149.1, 137.1, 135.4, 128.9, 127.3, 123.5, 120.7, 119.6, 118.9, 112.0,
111.5, 107.4, and 11.5.

IR (Diamond-ATR, neat) Vmax: = 3369 (s), 3056 (w), 2966 (w), 2921 (w), 2866 (w), 1687 (s), 1617 (m), 1385
(w), 1335 (w), 1239 (m), 1115 (w), 1090 (w), 779 (w), 749 (m), 729 (m), and 695 (w).

HRMS (ESI): calcd for ([M+H], C14H12NO,)*: 226.0863, found: 226.0868.

mp: 175-178 °C.

S16



Pyrone remodeling strategy to access diverse heterocyclic cores— Supporting Information

3.4 Synthesis of indole—pyrone 7c

NPhth NPhth
Q Pd(dppf)Cly, KsPO4 0
+ 0 > Q
\ i A\
Bpin  TIO=\ THF/H,0 \ //
N 23°C,12h N
H H
$32 S28 (49%) 7c

Following General Procedure B, a mixture of indole boronate ester $32° (260 mg, 0.63 mmol, 1.1 equiv),
3-triflyloxy-2-pyrone $28° (136 mg, 0.56 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocene]-
dichloropalladium(ll) (40.0 mg, 0.05 mmol, 10 mol%), and tripotassium phosphate (357 mg, 1.70 mmol, 3
equiv) in tetrahydrofuran (5.5 mL) and water (0.5 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (2:1—1:1, hexanes:ethyl acetate) to provide indole—
pyrone 7¢ (104 mg, 0.27 mmol, 49%) as a yellow solid.

TLC (1:1, hexanes:ethyl acetate): Ry = 0.46 (UV/KMnO,)

H NMR (700 MHz, CDCls) & 10.26 (br s, 1H), 8.20 — 8.14 (m, 1H), 7.92 — 7.85 (m, 2H), 7.79 (d, J = 7.9 Hz,
1H), 7.77 - 7.71 (m, 2H), 7.57 = 7.52 (m, 1H), 7.42 (d, J = 8.1 Hz, 1H), 7.28 — 7.23 (m, 1H), 7.18 (t, J = 7.4 Hz,
1H), 6.66 — 6.61 (m, 1H), 3.99 — 3.92 (m, 2H), and 3.32 — 3.25 (m, 2H).

13C NMR (176 MHz, CDCls) 6 168.5, 162.2, 149.7, 138.5, 135.3, 134.2, 132.3, 128.3, 128.2, 123.7, 123.4,
120.2,119.8, 118.8, 111.72, 111.65, 107.8, 37.5, and 25.0.

IR (Diamond-ATR, neat) Vimax: = 3367 (s), 2919 (m), 2850 (m), 1704 (s), 1618 (w), 1399 (m), 1359 (w), 1242
(w), 1030 (w), 775 (w), 718 (w), and 691 (w).

HRMS (ESI): calcd for ([M+H], C23H17N204)*: 385.1183, found: 379.1179.

mp: 219-221 °C.
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3.5 Synthesis of indole—pyrone 7e

OAc OAc
Q o PddppACly, KsPO, Q
A\ > N\ %
Bpin  TIO— THF/H,0 \ /
N 23°C,12h N
H H
S33 S28 (93%) 7e

Following General Procedure B, a mixture of indole boronate ester $33° (90 mg, 0.27 mmol, 1.1 equiv), 3-
triflyloxy-2-pyrone $28° (62 mg, 0.25 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocenel]-
dichloropalladium(ll) (19.0 mg, 0.03 mmol, 10 mol%), and tripotassium phosphate (160 mg, 0.75 mmol, 3
equiv) in tetrahydrofuran (2.5 mL) and water (0.25 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (2:1 hexanes:ethyl acetate) to provide indole—
pyrone 7e (70 mg, 0.24 mmol, 93%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): Rr=0.13 (UV/KMnO,)

1H NMR (500 MHz, CDCl3) § 10.18 (br's, 1H), 8.01 (dd, J = 7.0, 1.9 Hz, 1H), 7.67 — 7.61 (m, 1H), 7.54 (dd, J =
5.0, 1.8 Hz, 1H), 7.43 — 7.39 (m, 1H), 7.27 - 7.23 (m, 1H), 7.17 — 7.12 (m, 1H), 6.51 (dd, J = 7.0, 5.0 Hz, 1H),
4.38 —4.31 (m, 2H), 3.32 - 3.25 (m, 2H), and 2.08 (s, 3H).

13C NMR (126 MHz, CDCls) & 171.4, 162.2, 149.8, 138.2, 135.4, 128.5, 128.4, 123.6, 120.1, 119.9, 118.7,
111.7, 111.0, 107.6, 63.7, 25.1, and 21.2.

IR (Diamond-ATR, neat) Vmax: = 3385 (s), 3104 (w), 3058 (w), 2978 (w), 1705 (s), 1621 (m), 1438 (w), 1366
(w), 1309 (w), 1237 (s), 1106 (w), 1043 (m), 977 (w), 781 (m), and 745 (m).

HRMS (ESI): calcd for ([M+Na], C17H1sNNaO4)*: 320.0893, found: 320.0886.

mp: 127-132 °C.
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3.6 Synthesis of indole—pyrone 7f

)

0
ToO—\
B2pin2
[I(OMe)CODY, S28 Q
N dtbpy NN—Bpin Pd(dppf)Cl, K5PO4 A Q
N > N > \ 7
H THF H THF/H,O N
Me 80°C,4h Me 23°C, 12 h Me H
S34 (62%) $35 (71%) 7f

Following General Procedure A, a mixture of indole S34 (137 mg, 1.04 mmol, 1 equiv),
bis(pinacolato)diboron (305 mg, 1.20 mmol, 1.2 equiv), (1,5-cyclooctadiene)(methoxy)iridium(l) dimer (11
mg, 0.02 mmol, 1.5 mol%), and 4,4’-di-tert-butyl-2,2’-dipyridyl (9 mg, 0.03 mmol, 3 mol%) in
tetrahydrofuran (6 mL) was heated at 80 °C with stirring for 4 h. The crude residue was purified by flash-
column chromatography on silica gel (8:1 hexanes:ethyl acetate) to provide indole boronate ester $35 (220
mg, 0.85 mmol, 82%) as a white foam. The characterization data for S35 were in full agreement with values
previously reported.®

Following General Procedure B, a mixture of indole boronate ester $35 (220 mg, 0.85 mmol, 1.1 equiv), 3-
triflyloxy-2-pyrone $28° (192 mg, 0.79 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocenel-
dichloropalladium(ll) (57.0 mg, 0.08 mmol, 10 mol%), and tripotassium phosphate (510 mg, 2.40 mmol, 3
equiv) in tetrahydrofuran (8 mL) and water (0.8 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (5:1—3:1, hexanes:ethyl acetate) to provide indole—
pyrone 7f (125 mg, 0.56 mmol, 71%) as a yellow solid.

TLC (1:1, hexanes:ethyl acetate): Rr=0.70 (UV/KMnO,)

14 NMR (700 MHz, CDCls) 6 10.33 (br s, 1H), 7.85 (dd, J = 6.9, 1.9 Hz, 1H), 7.51 (dd, J = 5.0, 1.9 Hz, 1H), 7.47
(d, J = 7.7 Hz, 1H), 7.07 — 7.00 (m, 2H), 6.94 (d, J = 2.2 Hz, 1H), 6.43 (dd, J = 6.9, 5.0 Hz, 1H), and 2.56 (s,
3H).

13C NMR (176 MHz, CDCls) & 161.9, 149.7, 136.2, 135.5, 131.4, 127.6, 123.6, 121.1, 120.7, 119.9, 118.3,
107.5, 101.1, and 16.9.

IR (Diamond-ATR, neat) Vmax: = 3412 (s), 3101 (w), 3053 (w), 2919 (w), 2859 (w), 1699 (s), 1619 (m), 1427
(w), 1313 (m), 1237 (w), 1112 (w), 1093 (w), 800 (m), 770 (w), and 745 (m).

HRMS (ESI): calcd for ([M+H], C14H12NO,)*: 226.0863, found: 226.0867.

mp: 198-201 °C.
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3.7 Synthesis of indole—pyrone Boc-7g

Br o)
Pd(dppf)Cl,, KsPO,  Br o)
mB(OH)z . o (dppf)Clz, K3 i A &
N TO—\ / THF/H,0 N
Boc 23°C,12h Boc

Following General Procedure B, a mixture of indole boronic acid $36 (170 mg, 0.5 mmol, 1.1 equiv), 3-
triflyloxy-2-pyrone $28° (111 mg, 0.45 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocenel-
dichloropalladium(ll) (35.5 mg, 0.05 mmol, 10 mol%), and tripotassium phosphate (289 mg, 1.36 mmol, 3
equiv) in tetrahydrofuran (4.5 mL) and water (0.5 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (5:1, hexanes:ethyl acetate) to provide indole—
pyrone Boc-7g (163 mg, 0.42 mmol, 84%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): R=0.22 (UV/KMnO,)

'H NMR (700 MHz, CDCls) 6 8.06 (d, J = 8.9 Hz, 1H), 7.66 (d, J = 2.0 Hz, 1H), 7.54 (dd, J = 5.3, 2.1 Hz, 1H),
7.42 (dd, J = 8.9, 2.1 Hz, 1H), 7.36 (dd, J = 6.5, 2.1 Hz, 1H), 6.53 (s, 1H), 6.31 (dd, J = 6.5, 5.2 Hz, 1H), 1.52
(s, 9H).

13C NMR (176 MHz, CDCls) & 160.80, 151.35, 149.45, 138.72, 135.98, 134.89, 130.34, 127.94, 124.62,
123.36,117.13, 116.18, 110.14, 106.30, 84.67, 27.92.

IR (Diamond-ATR, neat) Vimax: = 3105 (w), 3056 (w), 2980 (m), 2934 (w), 1719 (s), 1539 (w), 1446 (m), 1338
(s), 1314 (m), 1271 (w), 1221 (m), 1157 (s), 1137 (s), 1098 (m), 1072 (m), 1058 (m), 803 (w), and 734 (m).
HRMS (ESI): calcd for ([M+H], C1sH17BrNO,4)*: 390.0335, found: 390.0339.

mp: 62—-71 °C.
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3.8 Synthesis of indole—pyrone 7h

0)

O
TfO \ /
HBpin
OMe [I(OMe)COD], OMe S28 OMe ¢
dtbpy Pd(dppf)Cly, K3PO, o
' \ Bpin ' \ \ /
N hexanes N THF/H,0O N
H 23°C,5h H 23°C,12h H
S37 S38 (82%) 7h

Following General Procedure A, a mixture of indole S37 (147 mg, 1.00 mmol, 1 equiv), pinacolborane (0.16
mL, 1.1 mmol, 1.1 equiv), (1,5-cyclooctadiene)(methoxy)iridium(l) dimer (10 mg, 0.015 mmol, 1.5 mol%),
and 4,4’-di-tert-butyl-2,2’-dipyridyl (9 mg, 0.032 mmol, 3 mol%) in hexanes (5 mL) was stirred at 23 °C for
5 h. The crude residue (~0.72 mmol of $38) was directly used in the next step without further purification.
Note: The amount of $38 in the crude residue was determined by *H NMR analysis using 1,1,2,2-
tetrachloroethane as an internal standard.

Following General Procedure B, a mixture of crude indole boronate ester S38 (assuming 0.72 mmol, 1.1
equiv), 3-triflyloxy-2-pyrone $28° (160 mg, 0.66 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocene]-
dichloropalladium(ll) (48.0 mg, 0.07 mmol, 10 mol%), and tripotassium phosphate (421 mg, 2.00 mmol, 3
equiv) in tetrahydrofuran (6 mL) and water (0.6 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (3:1—2:1, hexanes:ethyl acetate) to provide indole—
pyrone 7h (130 mg, 0.54 mmol, 82%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): Rf=0.22 (UV/KMnO,)

1H NMR (500 MHz, CDCls) & 10.40 (br s, 1H), 7.86 — 7.80 (m, 1H), 7.52 — 7.47 (m, 1H), 7.17 — 7.11 (m, 1H),
7.08 —7.02 (m, 2H), 6.51 (d, J = 7.7 Hz, 1H), 6.44 — 6.39 (m, 1H), and 3.97 (s, 3H).

13C NMR (126 MHz, CDCls) & 161.9, 153.3, 149.5, 137.8, 135.2, 130.4, 124.0, 120.0, 119.3, 107.6, 105.1,
99.7,98.1, and 55.4.

IR (Diamond-ATR, neat) Vmax: = 3295 (s), 3095 (m), 2999 (w), 2957 (w), 2934 (w), 2837 (w), 1686 (s), 1614
(m), 1587 (m), 1510 (m), 1360 (m), 1238 (m), 1186 (w), 1109 (m), 1002 (w), 761 (s), 729 (m), and 522 (w).
HRMS (ESI): calcd for ([M+H], C14H12NOs)*: 242.0812, found: 242.0804.

mp: 175-177 °C.

S21



Pyrone remodeling strategy to access diverse heterocyclic cores— Supporting Information

3.9 Synthesis of indole—pyrone 7i

o)

0
TfO \ /
HBpin $28
© N dtbpy © gy, Pd(@ppACh, KsPO, MeO o
> pin - \ \ /
N hexanes N THF/H,0 N
H 23°C, 12 h H 23°C, 12 h H
$39 71%) S40 ©0%) 7i

Following General Procedure A, a mixture of indole S39 (153 mg, 1.04 mmol, 1 equiv), pinacolborane (0.16
mL, 1.10 mmol, 1.1 equiv), (1,5-cyclooctadiene)(methoxy)iridium(l) dimer (12 mg, 0.02 mmol, 1.5 mol%),
and 4,4’-di-tert-butyl-2,2’-dipyridyl (10 mg, 0.04 mmol, 3 mol%) in hexanes (5 mL) was stirred at 23 °C for
4 h. The crude residue was purified by flash-column chromatography on silica gel (8:1 hexanes:ethyl
acetate) to provide indole boronate ester $40 (203 mg, 0.74 mmol, 71%) as a white foam. The
characterization data for $40 were in full agreement with values previously reported.®

Following General Procedure B, a mixture of indole boronate ester $40 (250 mg, 0.92 mmol, 1.3 equiv), 3-
triflyloxy-2-pyrone $28° (175 mg, 0.72 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocenel-
dichloropalladium(ll) (52 mg, 0.07 mmol, 10 mol%), and tripotassium phosphate (446 mg, 2.10 mmol, 3
equiv) in tetrahydrofuran (7 mL) and water (0.7 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (3:1, hexanes:ethyl acetate) to provide indole—
pyrone 7i (104 mg, 0.43 mmol, 60%) as a yellow solid.

TLC (2:1, hexanes:ethyl acetate): Rf=0.39 (UV/KMnO,)

H NMR (500 MHz, CDCls) § 10.31 (br s, 1H), 7.83 (dd, J = 6.9, 1.9 Hz, 1H), 7.51 (dd, J = 5.0, 1.9 Hz, 1H), 7.32
(d, J = 8.9 Hz, 1H), 7.03 (d, J = 2.5 Hz, 1H), 6.89 (dd, J = 8.9, 2.4 Hz, 1H), 6.86 (s, 1H), 6.44 (dd, J = 6.9, 5.0
Hz, 1H), and, 3.86 (s, 3H).

13C NMR (126 MHz, CDCls) & 161.8, 154.7, 149.6, 135.4, 132.2, 131.9, 128.5, 119.9, 114.2, 112.6, 107.6,
101.5, 100.2, and 55.9.

IR (Diamond-ATR, neat) Vmax: = 3363 (s), 2955 (w), 2921 (w), 2851 (w), 1698 (s), 1620 (w), 1453 (w), 1220
(m), 1156 (w), 1111 (w), 1034 (w), 806 (w), and 771 (w).

HRMS (ESI): calcd for ([M+H], C14H12NOs)*: 242.0812, found: 242.0810.

mp: 182-186 °C.
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3.10 Synthesis of indole—pyrone 7j

Bapin,
[Ir(OMe)COD],, L
A\ KOBu N—Bpin
N > N
MeO,C 1 THF MeO,C 1
S41 S$42
o)
0
N Bpin o Pd(dppi)Cl, KsPOy A °
N 1o > Y
Voot H \ / THF/H,0
€02 23°C,12h MeO,C 1
S42 S28 (87%) 7i

On the basis of the procedure developed by Chattopadhyay et al.,*! an oven-dried vial was charged with
bis(pinacolato)diboron (163 mg, 0.64 mmol, 1.1 equiv), (1,5-cyclooctadiene)(methoxy)iridium(l) dimer (11
mg, 0.02 mmol, 3.0 mol%), ligand L** (12 mg, 0.04 mmol, 7 mol%), potassium tert-butoxide (6 mg, 0.05
mmol, 9 mol%). Tetrahydrofuran (3 mL) and indole S41 (100 mg, 0.57 mmol, 1.0 equiv) were added
sequentially and the resulting mixture was heated in a preheated (80 °C) heating block. After 20 h, the
reaction mixture was cooled to 23 °C, filtered through a siliga gel plug eluting with ethyl acetate (5 mL),
and the filtrate was concentrated in vacuo. The crude residue (~0.13 mmol of $42) was used directly in the
next step without further purification. Note: The amount of $42 in the crude residue was determined by *H
NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard.

Following General Procedure B, a mixture of crude indole boronate ester S42 (assuming 0.13 mmol, 1.2
equiv), 3-triflyloxy-2-pyrone $28° (26 mg, 0.11 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocene]-
dichloropalladium(ll) (7.6 mg, 0.01 mmol, 10 mol%), and tripotassium phosphate (69 mg, 0.33 mmol, 3
equiv) in tetrahydrofuran (1 mL) and water (0.1 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (2:1, hexanes:ethyl acetate) to provide indole—
pyrone 7j (25 mg, 0.09 mmol, 87%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): Rr=0.17 (UV/KMnO,)

'H NMR (700 MHz, CDCl5) 6 11.38 (br's, 1H), 7.91 (d, J = 7.4 Hz, 1H), 7.83 — 7.78 (m, 2H), 7.53 — 7.48 (m,
1H), 7.18 —= 7.12 (m, 1H), 7.00 — 6.95 (m, 1H), 6.42 —6.37 (m, 1H), and 4.03 (s, 3H).

13C NMR (176 MHz, CDCls) & 167.4, 161.1, 150.3, 136.1, 135.9, 132.7, 129.3, 126.2, 125.6, 119.8, 119.4,
113.2,107.2,101.0, and 52.2.

IR (Diamond-ATR, neat) Vmax: = 3415 (s), 3105 (w), 3026 (w), 2952 (w), 2850 (w), 1701 (s), 1620 (w), 1587
(w), 1437 (w), 1358 (w), 1276 (s), 1202 (m), 1141 (m), 1109 (w), 1089 (w), 787 (w), and 752 (w).

HRMS (ESI): calcd for ([M+H], C1sH12NQ,4)*: 270.0761, found: 270.0759.

mp: 142-145 °C.
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3.11 Synthesis of indole—pyrone 7k

0 0

. O Pd(PPhg)s, K,CO 0
mem cor ) 4
ﬂ THF/H,0 N
5r  70°C,1h H or
s27 s43 (46%) 7K

An oven-dried vial was charged with a magnetic stirring bar, indole boronate ester $277 (26 mg, 0.11 mmol,
11 equiv), 3,5-dibromo-2-pyrone s431? (25 mg, 0.10 mmol, 1.0 equiv),
tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.01 mmol, 10 mol%), and potassium carbonate (27 mg,
0.2 mmol, 2 equiv). The vial was flushed with nitrogen and sealed with a septum cap. Tetrahydrofuran (1
mL) and water (0.1 mL) were added sequentially and the vial was placed in a preheated (70 °C) heating
block. After 1 h, the mixture was cooled to 23 °C, and diluted with saturated aqueous ammonium chloride
solution (2 mL). The layers were separated, the aqueous layer was extracted with ethyl acetate (3x2 mL)
and the combined organic extracts were washed with saturated aqueous sodium chloride solution (5 mL).
The washed organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in
vacuo. The crude residue was purified by flash column chromatography on silica gel (12:1, hexanes:ethyl
acetate) to provide indole—pyrone 7k (13 mg, 0.05 mmol, 46%) as a yellow solid.

TLC (8:1, hexanes:ethyl acetate): Rf=0.23 (UV/KMnO,)

1H NMR (400 MHz, CDCl3) § 10.30 (br s, 1H), 7.86 (d, J = 2.4 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 2.4
Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.23 (t, J = 7.9 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), and 7.01 — 6.96 (m, 1H).

13C NMR (176 MHz, CDCls) 6 160.1, 147.0, 138.0, 136.8, 130.2, 127.9, 123.9, 120.9, 120.8, 120.4, 111.9,
102.3, and 102.1.

IR (Diamond-ATR, neat) Vmax: = 3369 (s), 2923 (w), 2852 (w), 1701 (s), 1605 (w), 1532 (w), 1422 (w), 1322
(w), 1233 (w), 1191 (w), 1069 (w), 784 (m), 747 (m), 728 (m), and 662 (m).

HRMS (ESI): calcd for ([M+H], C13HsBrNO>)*: 289.9811, found: 289.9811.

mp: 169-174 °C.
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3.12 Synthesis of indole—pyrone 7|
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s27 S44 (58%) 7l

Following General Procedure C, a mixture of indole boronate ester $27’ (27 mg, 0.11 mmol, 1.1 equiv), 3-
bromo-2-pyrone S442 (24 mg, 0.10 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocene]-
dichloropalladium(ll) (7.5 mg, 0.01 mmol, 10 mol%), and potassium carbonate (28 mg, 0.20 mmol, 2 equiv)
in tetrahydrofuran (1 mL) and water (0.1 mL) was stirred at 70 °C for 4 h. The crude residue was purified
by flash-column chromatography on silica gel (15:1—8:1, hexanes:ethyl acetate) to provide indole—pyrone
71 (16 mg, 0.06 mmol, 58%) as a yellow solid.

TLC (5:1, hexanes:ethyl acetate): Rf=0.32 (UV/KMnO,)

1H NMR (600 MHz, CDCls) § 10.44 (br's, 1H), 8.13 (d, J = 2.5 Hz, 1H), 7.69 (d, J = 2.5 Hz, 1H), 7.63 (d, /= 7.8
Hz, 1H), 7.52 — 7.42 (m, 6H), 7.25 — 7.21 (m, 1H), 7.15 — 7.11 (m, 1H), and 7.04 — 7.01 (m, 1H).

13C NMR (151 MHz, CDCls) & 161.4, 146.1, 136.7, 136.6, 133.7, 131.7, 129.5, 128.8, 128.1, 126.4, 123.3,
122.3,120.7,120.6, 119.2, 111.8, and 101.0.

IR (Diamond-ATR, neat) Vmax: = 3405 (s), 3059 (m), 2925 (w), 2857 (w), 1704 (s), 1663 (m), 1629 (w), 1313
(w), 1101 (w), 761 (w), 750 (w), and 697 (w).

HRMS (ESI): calcd for ([M+H], C1sH14NO,)*: 288.1019, found: 288.1017.

mp: 180-183 °C.
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3.13 Synthesis of indole—pyrone 7m

0 0
o \ o
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N THF/H,0 H
70°C, 4 h
S27 s45 OMe (34%) 7m OMe

Following General Procedure C, a mixture of indole boronate ester $277 (152 mg, 0.63 mmol, 1.1 equiv),
3-bromo-2-pyrone S45 (155 mg, 0.55 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocene]-
dichloropalladium(ll) (41 mg, 0.06 mmol, 10 mol%), and potassium carbonate (157 mg, 1.13 mmol, 2 equiv)
in tetrahydrofuran (5 mL) and water (0.5 mL) was stirred at 70 °C for 4 h. The crude residue was purified
by flash-column chromatography on silica gel (8:1, hexanes:ethyl acetate) to provide indole—pyrone 7m
(60 mg, 0.19 mmol, 34%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): R¢=0.50 (UV/KMnO,)

H NMR (600 MHz, CDCl3) 6 10.46 (br's, 1H), 8.12 (d, J = 2.4 Hz, 1H), 7.65 (d, J = 2.4 Hz, 1H), 7.64 — 7.61 (m,
1H), 7.47 - 7.43 (m, 1H), 7.41 - 7.38 (m, 2H), 7.25 — 7.20 (m, 1H), 7.15 — 7.10 (m, 1H), 7.04 — 7.00 (m, 3H),
and 3.87 (s, 3H).

13C NMR (151 MHz, CDCls) & 161.5, 160.2, 145.4, 137.0, 136.6, 131.8, 128.1, 127.7, 126.0, 123.3, 122.0,
120.7, 120.6, 119.1, 114.9, 111.9, 100.8, and 55.6.

IR (Diamond-ATR, neat) Vmax: = 3386 (s), 3067 (w), 2927 (m), 2847 (w), 1700 (s), 1626 (w), 1514 (s), 1311
(w), 1249 (m), 1177 (m), 1100 (w), 1025 (w), 827 (w), 793 (w), and 670 (w).

HRMS (ESI): calcd for ([M], CaoH1sNOs)*: 317.1046, found: 317.1040.

mp: 198-203 °C.

S26



Pyrone remodeling strategy to access diverse heterocyclic cores— Supporting Information

3.14 Synthesis of indole—pyrone 7n
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Procedure for 3-bromo-2-pyrone S47 synthesis

An oven-dried vial was charged with a magnetic stirring bar, 3,5-dibromo-2-pyrone $43'? (100 mg, 0.39
mmol, 1.0 equiv), boronic acid S46 (90 mg, 0.47 mmol, 1.2 equiv),
tetrakis(triphenylphosphine)palladium(0) (46 mg, 0.04 mmol, 10 mol%), copper(l) iodide (75 mg, 0.39
mmol, 1.0 equiv), and sodium carbonate (84 mg, 0.79 mmol, 2 equiv). The vial was flushed with nitrogen
and sealed with a septum cap. N,N-dimethylformamide (4 mL) was added and the vial was placed in a
preheated (50 °C) heating block. After 12 h, the mixture was cooled to 23 °C, and diluted with saturated
aqueous ammonium chloride solution. The layers were separated, the aqueous layer was extracted with
ethyl acetate and the combined organic extracts were washed with saturated aqueous sodium chloride
solution. The washed organic layer was dried over sodium sulfate, filtered, and the filtrate was
concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (8:1,
hexanes:ethyl acetate) to provide 3-bromo-2-pyrone $47 (61 mg, 0.19 mmol, 49%) as an off-white solid.

Procedure for indole—pyrone 7n synthesis

Following General Procedure C, a mixture of indole boronate ester $27’ (86 mg, 0.35 mmol, 1.1 equiv), 3-
bromo-2-pyrone S47 (100 mg, 0.31 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocene]-
dichloropalladium(ll) (24 mg, 0.03 mmol, 10 mol%), and potassium carbonate (89 mg, 0.65 mmol, 2 equiv)
in tetrahydrofuran (3 mL) and water (0.3 mL) was stirred at 70 °C for 4 h. The crude residue was purified
by flash-column chromatography on silica gel (12:1, hexanes:ethyl acetate) to provide indole—pyrone 7n
(40 mg, 0.11 mmol, 36%) as a yellow solid.

Data for 3-bromo-2-pyrone S47:

TLC (5:1, hexanes:ethyl acetate): Ry=0.30 (UV/KMnO,)

H NMR (600 MHz, CDCls) § 8.00 (d, J = 2.4 Hz, 1H), 7.75 (d, J = 2.4 Hz, 1H), 7.72 (d, J = 8.2 Hz, 2H), and 7.51
(d, J=8.8 Hz, 2H).

13C NMR (151 MHz, CDCl3) & 157.5, 148.0, 144.4, 136.1, 131.1 (q, J = 32.6 Hz), 126.6, 126.5 (q, J = 3.6 Hz),
123.9 (g, J=272.6 Hz), 120.5, and 113.3.

19 NMR (376 MHz, CDCl3) 6 -61.94.

IR (Diamond-ATR, neat) Vmax: = 3074 (w), 2928 (w), 2855 (w), 1738 (s), 1617 (w), 1322 (s), 1275 (w), 1165
(m), 1112 (s), 1069 (s), 1010 (w), 973 (w), 859 (w), 837 (m), and 753 (w).

HRMS (ESI): calcd for ([M+H], C12H;BrFs0,)*: 318.9576, found: 318.9573.

mp: 40-44 °C.

Data for indole—pyrone 7n:
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TLC (5:1, hexanes:ethyl acetate): Rf=0.37 (UV/KMnO,)

H NMR (700 MHz, CDCl3) 6 10.41 (br's, 1H), 8.11 (d, J = 2.5 Hz, 1H), 7.78 = 7.73 (m, 3H), 7.63 (d, J = 7.9 Hz,
1H), 7.60 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.2 Hz, 1H), 7.26 — 7.23 (m, 1H), 7.14 (t, J = 7.4 Hz, 1H), and 7.06 —
7.04 (m, 1H).

3CNMR (151 MHz, CDCls) & 161.04, 146.57, 137.31, 136.74, 135.58, 131.28, 131.0 (q, J = 32.6 Hz), 128.03,
126.78, 126.5 (q, J = 3.9 Hz), 124.0 (q, J = 272.4 Hz), 123.60, 121.15, 120.80, 120.73, 119.65, 111.89, and
101.36.

19 NMR (376 MHz, CDCl3) 6 -61.85.

IR (Diamond-ATR, neat) Vmax: = 3415 (s), 3056 (w), 2978 (m), 2928 (w), 1710 (m), 1542 (m), 1458 (w), 1376
(m), 1314 (s), 1265 (m), 1139 (s), 854 (w), and 742 (s).

HRMS (ESI): calcd for ([M], CaoH12F3NO2)*: 355.0815, found: 355.0816.

mp: 230-235 °C.
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3.15 Synthesis of indole—pyrone Me-7a
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Following General Procedure B, a mixture of indole boronate ester Me-S27** (268 mg, 1.04 mmol, 1.1
equiv), 3-triflyloxy-2-pyrone $28° (230 mg, 0.94 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocene]-
dichloropalladium(ll) (70 mg, 0.10 mmol, 10 mol%), and tripotassium phosphate (600 mg, 2.83 mmol, 3
equiv) in tetrahydrofuran (9 mL) and water (1 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (3:1, hexanes:ethyl acetate) to provide indole—
pyrone Me-7a (177 mg, 0.79 mmol, 83%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): Ry=0.25 (UV/KMnO,)

1H NMR (700 MHz, CDCls) 6 7.64 — 7.61 (m, 1H), 7.60 — 7.58 (m, 1H), 7.48 — 7.46 (m, 1H), 7.37 — 7.34 (m,
1H), 7.29 = 7.25 (m, 1H), 7.15 - 7.11 (m, 1H), 6.63 (s, 1H), 6.39 — 6.35 (m, 1H), and 3.71 (s, 3H).

13C NMR (176 MHz, CDCls) 6 160.9, 152.0, 142.6, 138.7, 134.8, 127.6, 122.7, 121.8, 121.0, 120.0, 109.8,
106.6, 104.2, and 31.6.

IR (Diamond-ATR, neat) Vmax: = 3099 (w), 3055 (w), 2942 (w), 1711 (s), 1624 (w), 1466 (m), 1338 (w), 1236
(w), 1101 (m), 1080 (w), 972 (w), 775 (m), and 750 (m).

HRMS (ESI): calcd for ([M+H], C14H12NO,)*: 226.0863, found: 226.0863.

mp: 127-130 °C.
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3.16 Synthesis of indole—pyrone Ph-7a

o)
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Following General Procedure B, a mixture of indole boronate ester Ph-S27** (200 mg, 0.63 mmol, 1.2
equiv), 3-triflyloxy-2-pyrone $28° (125 mg, 0.51 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocene]-
dichloropalladium(ll) (37 mg, 0.05 mmol, 10 mol%), and tripotassium phosphate (320 mg, 1.50 mmol, 3
equiv) in tetrahydrofuran (5 mL) and water (0.5 mL) was stirred at 23 °C for 12 h. The crude residue was
purified by flash-column chromatography on silica gel (5:1, hexanes:ethyl acetate) to provide indole—
pyrone Ph-7a (140 mg, 0.49 mmol, 95%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): R¢=0.30 (UV/KMnO,)

1H NMR (700 MHz, CDCl5) 6 7.72 — 7.68 (m, 1H), 7.51 — 7.46 (m, 2H), 7.42 — 7.36 (m, 2H), 7.35 — 7.30 (m,
2H), 7.28 — 7.24 (m, 1H), 7.23 - 7.16 (m, 3H), 7.00 (dd, J = 6.9, 2.1 Hz, 1H), and 6.10 (dd, J = 6.8, 5.0 Hz, 1H).
13C NMR (176 MHz, CDCls) & 160.4, 150.6, 140.5, 139.4, 138.4, 133.0, 129.7, 127.9, 127.74, 127.72, 123.5,
121.4,121.0,120.6, 110.6, 107.7, and 106.2.

IR (Diamond-ATR, neat) Vmax: = 3099 (w), 3057 (w), 1720 (s), 1625 (w), 1595 (w), 1497 (m), 1452 (w), 1388
(w), 1336 (w), 1235 (w), 1114 (w), 1092 (w), 761 (m), and 699 (w).

HRMS (ESI): calcd for ([M+H], C1oH14NO,)*: 288.1025, found: 288.1021.

mp: 140-143 °C.
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3.17 Synthesis of indole—pyrone SEM-7a
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An oven-dried flask was charged with a magnetic stirring bar and indole S48 (1.0 g, 4.05 mmol, 1.0 equiv).
The flask was flushed with nitrogen and sealed with a septum. Tetrahydrofuran (8 mL) was added and the
resulting solution was cooled to —78 °C. To the reaction mixture was added dropwise tert-butyllithium
solution (1.6 M in pentane, 2.8 mL, 4.48 mmol, 1.1 equiv) and the resulting solution was stirred at —78 °C.
After 30 min, the mixture was allowed to gradually warm to 23 °C. After 2 h at 23 °C, the reaction mixture
was cooled back to —78 °C, and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1 mL, 4.90 mmol,
1.2 equiv) was added dropwise. After stirring at —78 °C for 30 min, the mixture was allowed to gradually
warm to 23 °C. After 2 h at 23 °C, the reaction mixture was diluted with water (6 mL). The layers were
separated, the aqueous layer was extracted with ethyl acetate (3x5 mL) and the combined organic extracts
were washed with saturated aqueous sodium chloride solution (5 mL). The washed organic layer was dried
over sodium sulfate, filtered, and the filtrate was concentrated in vacuo. The crude residue (~0.91 mmol
of SEM-S27) was used directly in the next step without further purification. Note: The amount of SEM-527
in the crude residue was determined by *H NMR analysis using 1,1,2,2-tetrachloroethane as an internal
standard.

Following General Procedure B, a mixture of crude indole boronate ester SEM-S27 (assuming 0.91 mmol,
1.2 equiv), 3-triflyloxy-2-pyrone  S28° (187 mg, 0.77 mmol, 1.0 equiv), [1,1-
bis(diphenylphosphino)ferrocene]-dichloropalladium(ll) (56 mg, 0.08 mmol, 10 mol%), and tripotassium
phosphate (488 mg, 2.30 mmol, 3 equiv) in tetrahydrofuran (7 mL) and water (0.7 mL) was stirred at 23 °C
for 12 h. The crude residue was purified by flash-column chromatography on silica gel (5:1, hexanes:ethyl
acetate) to provide indole—pyrone SEM-7a (232 mg, 0.68 mmol, 89%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): Ry = 0.48 (UV/KMnO,)

H NMR (700 MHz, CDCls) & 7.71 (dd, J = 6.7, 2.2 Hz, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.56 (dd, J = 5.1, 2.2 Hz,
1H), 7.49 (d, J = 8.3 Hz, 1H), 7.30 — 7.26 (m, 1H), 7.18 — 7.14 (m, 1H), 6.86 (s, 1H), 6.37 (dd, J = 6.7, 5.1 Hz,
1H), 5.47 (s, 2H), 3.52 — 3.46 (m, 2H), 0.89 — 0.83 (m, 2H), and -0.06 (s, 9H).

13C NMR (176 MHz, CDCls) 6 160.9, 151.4, 141.8, 138.8, 133.9, 128.0, 123.3, 121.3, 120.8, 110.3, 106.8,
106.6, 73.7, 66.2, 18.0, and -1.3. (Missing one carbon signal)

IR (Diamond-ATR, neat) Vmax: = 3097 (w), 3056 (w), 2952 (m), 2894 (m), 1715 (s), 1625 (w), 1459 (w), 1336
(w), 1311 (w), 1248 (m), 1165 (w), 1071 (s), 858 (m), 835 (s), and 739 (m).

HRMS (ESI): calcd for ([M+H], C19H24NOsSi)*: 342.1525, found: 342.1531.

mp: 59-62 °C.
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3.18 Synthesis of indole—pyrone Me-7i
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An oven-dried flask was charged with a magnetic stirring bar and indole Me-S39 (50 mg, 0.30 mmol, 1.0
equiv). The flask was flushed with nitrogen and sealed with a septum. Tetrahydrofuran (0.6 mL) was added
and the resulting solution was cooled to =78 °C. To the reaction mixture was added dropwise tert-
butyllithium solution (1.6 M in pentane, 0.22 mL, 0.35 mmol, 1.1 equiv) and the resulting solution was
stirred at —78 °C. After 30 min, the mixture was allowed to gradually warm to 23 °C. After 2 h, the reaction
mixture was cooled back to—78 °C, and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (76 uL, 0.37
mmol, 1.2 equiv) was added dropwise. After stirring at —78 °C for 30 min, the mixture was allowed to
gradually warm to 23 °C. After 2 h, the reaction mixture was diluted with water (1 mL). The layers were
separated, the aqueous layer was extracted with ethyl acetate (3x1 mL) and the combined organic extracts
were washed with saturated aqueous sodium chloride solution (2 mL). The washed organic layer was dried
over sodium sulfate, filtered, and the filtrate was concentrated in vacuo. The crude residue (~0.14 mmol
of Me-S40) was directly used in the next step without further purification. Note: The amount of Me-5S40 in
the crude residue was determined by H NMR analysis using 1,1,2,2-tetrachloroethane as an internal
standard.

Following General Procedure B, a mixture of crude indole boronate ester Me-S40 (assuming 0.14 mmol,
1.3 equiv), 3-triflyloxy-2-pyrone  $28° (27 mg, 0.11 mmol, 1.0 equiv), [1,1-
bis(diphenylphosphino)ferrocene]-dichloropalladium(ll) (8.3 mg, 0.01 mmol, 10 mol%), and tripotassium
phosphate (72 mg, 0.34 mmol, 3 equiv) in tetrahydrofuran (1.1 mL) and water (0.11 mL) was stirred at 23
°C for 12 h. The crude residue was purified by flash-column chromatography on silica gel (3:1,
hexanes:ethyl acetate) to provide indole—pyrone Me-7i (17 mg, 0.07 mmol, 60%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): Rr=0.12 (UV/KMnO,)

'H NMR (400 MHz, CDCls) & 7.59 (dd, J = 5.2, 2.1 Hz, 1H), 7.45 (dd, J = 6.7, 2.1 Hz, 1H), 7.24 (d, J = 9.0 Hz,
1H), 7.06 (d, J = 2.4 Hz, 1H), 6.92 (dd, J = 8.9, 2.5 Hz, 1H), 6.55 (s, 1H), 6.37 (dd, J = 6.6, 5.1 Hz, 1H), 3.85 (s,
3H), and 3.68 (s, 3H).

13C NMR (151 MHz, CDCls) & 160.8, 154.5, 151.9, 142.3, 135.2, 134.3, 127.9, 121.9, 113.3, 110.6, 106.6,
103.9, 102.4, 56.1, and 31.8.

IR (Diamond-ATR, neat) Vmax: = 3102 (w), 2932 (m), 2834 (w), 1718 (s), 1622 (m), 1519 (w), 1482 (m), 1453
(w), 1218 (s), 1140 (m), 1102 (m), 1032 (w), and 778 (m).

HRMS (ESI): calcd for ([M+H], C1sH14NQOs)*: 256.0968, found: 256.0967.

mp: 134-140 °C.

S32



Pyrone remodeling strategy to access diverse heterocyclic cores— Supporting Information

3.19 Synthesis of indole—pyrone Me-7j
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On the basis of the procedure developed by Chattopadhyay et al.,*! an oven-dried vial was charged with
bis(pinacolato)diboron (81 mg, 0.32 mmol, 1.0 equiv), (1,5-cyclooctadiene)(methoxy)iridium(l) dimer (9.0
mg, 0.01 mmol, 3.0 mol%), ligand L'* (7.0 mg, 0.02 mmol, 7 mol%), potassium tert-butoxide (4.0 mg, 0.03
mmol, 9 mol%). A solution of indole Me-S41 (58 mg, 0.31 mmol, 1.0 equiv) in tetrahydrofuran (1.5 mL)
was added and the resulting mixture was heated in a preheated (80 °C) heating block. After 18 h, the
reaction mixture was cooled to 23 °C, filtered through a silica gel plug eluting with ethyl acetate (5 mL),
and the filtrate was concentrated in vacuo. The crude residue (~0.25 mmol of Me-S42) was used directly
in the next step without further purification. Note: The amount of Me-542 in the crude residue was
determined by H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard.

Following General Procedure B, a mixture of crude indole boronate ester Me-S42 (assuming 0.25 mmol,
1.2 equiv), 3-triflyloxy-2-pyrone $28° (46 mg, 0.19 mmol, 1.0 equiv), [1,1-
bis(diphenylphosphino)ferrocene]-dichloropalladium(Il) (15 mg, 0.02 mmol, 10 mol%), and tripotassium
phosphate (128 mg, 0.60 mmol, 3 equiv) in tetrahydrofuran (2 mL) and water (0.2 mL) was stirred at 23 °C
for 12 h. The crude residue was purified by flash-column chromatography on silica gel (2:1, hexanes:ethyl
acetate) to provide indole—pyrone Me-7j (36 mg, 0.13 mmol, 67%) as a yellow solid.

TLC (1:1, hexanes:ethyl acetate): R¢= 0.37 (UV/KMnO,)

H NMR (600 MHz, CDCl) & 7.79 — 7.75 (m, 1H), 7.71 = 7.67 (m, 1H), 7.59 (dd, J = 5.1, 2.2 Hz, 1H), 7.47 (dd,
J=6.6,2.2 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 6.82 (s, 1H), 6.39 (dd, J = 6.6, 5.1 Hz, 1H), 3.98 (s, 3H), and 3.67
(s, 3H).

13C NMR (151 MHz, CDCls) & 168.2, 160.6, 152.0, 142.4, 137.2, 136.6, 130.0, 126.1, 125.5, 121.2, 119.4,
116.6, 106.5, 105.7, 52.3, and 35.7.

IR (Diamond-ATR, neat) Vmax: = 3415 (s), 3105 (w), 3026 (w), 2952 (w), 2850 (w), 1701 (s), 1620 (w), 1587
(w), 1437 (w), 1358 (w), 1276 (s), 1202 (m), 1141 (m), 1109 (w), 1089 (w), 787 (w), and 752 (w).

HRMS (ESI): calcd for ([M+H], C16H14NQ4)*: 284.0923, found: 284.0925.

mp: 154-158 °C.

S33



Pyrone remodeling strategy to access diverse heterocyclic cores— Supporting Information

3.20 Synthesis of indole—pyrone Me-7m
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Following General Procedure C, a mixture of indole boronate ester Me-527** (88 mg, 0.34 mmol, 1.2 equiv),
3-bromo-2-pyrone $45' (80 mg, 0.29 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocene]-
dichloropalladium(ll) (22 mg, 0.03 mmol, 10 mol%), and potassium carbonate (79 mg, 0.57 mmol, 2 equiv)
in tetrahydrofuran (3 mL) and water (0.3 mL) was stirred at 70 °C for 3 h. The crude residue was purified
by flash-column chromatography on silica gel (8:1, hexanes:ethyl acetate) to provide indole—pyrone Me-
7m (79 mg, 0.24 mmol, 84%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): Rf=0.32 (UV/KMnO,)

H NMR (600 MHz, CDCl3) 6 7.76 (d, J = 2.7 Hz, 1H), 7.73 (d, J = 2.6 Hz, 1H), 7.65 - 7.61 (m, 1H), 7.39 - 7.34
(m, 3H), 7.30—7.26 (m, 1H), 7.16 — 7.12 (m, 1H), 7.01 - 6.97 (m, 2H), 6.69 (s, 1H), 3.85 (s, 3H), 3.76 (s, 3H).
13C NMR (151 MHz, CDCls) & 160.5, 160.1, 147.4, 143.8, 138.8, 134.8, 127.6, 127.4, 125.8, 122.8, 121.2,
121.02,120.99, 120.1, 114.9, 109.8, 104.5, 55.6, and 31.7.

IR (Diamond-ATR, neat) Vmax: = 3054 (w), 2933 (w), 2838 (w), 1715 (s), 1610 (w), 1514 (m), 1465 (w), 1284
(w), 1250 (m), 1177 (m), 830 (w), and 750 (w).

HRMS (ESI): calcd for ([M+H], C21H1sNQOs)*: 332.1281, found: 332.1284.

mp: 105-110 °C.

S34



Pyrone remodeling strategy to access diverse heterocyclic cores— Supporting Information

3.21 Synthesis of indole—pyrone Me-7n
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Following General Procedure C, a mixture of indole boronate ester Me-527** (46 mg, 0.18 mmol, 1.2 equiv),
3-bromo-2-pyrone S47 (48 mg, 0.15 mmol, 1.0 equiv), [1,1’-bis(diphenylphosphino)ferrocene]-
dichloropalladium(ll) (12 mg, 0.02 mmol, 10 mol%), and potassium carbonate (41 mg, 0.30 mmol, 2 equiv)
in tetrahydrofuran (1.5 mL) and water (0.2 mL) was stirred at 70 °C for 3 h. The crude residue was purified
by flash-column chromatography on silica gel (12:1, hexanes:ethyl acetate) to provide indole—pyrone Me-
7n (18 mg, 0.05 mmol, 32%) as a yellow solid.

TLC (3:1, hexanes:ethyl acetate): Ry = 0.47 (UV/KMnO,)

1H NMR (600 MHz, CDCl3) & 7.85 (d, J = 2.7 Hz, 1H), 7.77 (d, J = 2.7 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.65 —
7.62 (m, 1H), 7.58 (d, J = 8.2 Hz, 2H), 7.40 — 7.35 (m, 1H), 7.31 = 7.27 (m, 1H), 7.16 — 7.12 (m, 1H), 6.70 (s,
1H), and 3.76 (s, 3H).

13C NMR (151 MHz, CDCls) § 160.0, 148.9, 142.5, 139.0, 137.1, 134.4, 130.9 (q, J = 32.6 Hz), 127.6, 126.53,
126.52 (q,J=3.4 Hz), 124.0 (q, J = 272.0 Hz), 123.0, 121.8, 121.1, 120.2, 120.2, 109.9, 104.8, and 31.8.

19 NMR (376 MHz, CDCl3) 6 -61.87.

IR (Diamond-ATR, neat) Vmax: = 3059 (w), 2924 (m), 2851 (w), 1724 (s), 1617 (w), 1466 (w), 1326 (s), 1167
(w), 1120 (m), 1069 (m), and 839 (w).

HRMS (ESI): calcd for ([M+H], C21H1sF3sNOs)*: 370.1049, found: 370.1044.

mp: 162-169 °C.
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4 Synthesis of other N-Heterocyclic—-Pyrone adducts

4.1 Synthesis of pyrrole—pyrone Boc-S50
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boc TTO—\ / THF/H,0 N
23 oC, 12 h Boc
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An oven-dried vial was charged with a magnetic stirring bar, pyrrole boronic acid S49 (100 mg, 0.47 mmol,
1.2 equiv), 3-triflyloxy-2-pyrone  S28° (100 mg, 0.41 mmol, 1.0 equiv), [1,1-
bis(diphenylphosphino)ferrocene]-dichloropalladium(ll) (31 mg, 0.04 mmol, 10 mol%), and tripotassium
phosphate (252 mg, 1.19 mmol, 3 equiv). The vial was flushed with nitrogen and sealed with a septum cap.
Tetrahydrofuran (4.5 mL) and water (0.5 mL) were added sequentially and the resulting mixture was stirred
at 23 °C. After 12 h, the mixture was diluted with saturated aqueous ammonium chloride solution (5 mL).
The layers were separated, the aqgueous layer was extracted with ethyl acetate (3x5 mL) and the combined
organic extracts were washed with saturated aqueous sodium chloride solution (5 mL). The washed
organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo. The crude
residue was purified by flash column chromatography on silica gel (3:1, hexanes:ethyl acetate) to provide
pyrrole—pyrone Boc-S50 (105 mg, 0.40 mmol, 99%) as a yellow oil.

TLC (3:1, hexanes:ethyl acetate): Ry = 0.40 (UV/KMnO,)

H NMR (700 MHz, CDCls) § 7.47 (dd, J = 5.1, 2.2 Hz, 1H), 7.38 — 7.35 (m, 1H), 7.25 (dd, J = 6.5, 2.2 Hz, 1H),
6.26 —6.22 (m, 2H), 6.21 — 6.19 (m, 1H), and 1.49 (s, 9H).

13C NMR (176 MHz, CDCl3) 6 161.3, 150.6, 148.9, 138.2, 127.9, 124.5, 123.4, 115.6, 110.6, 106.2, 84.2, and
27.8.

IR (Diamond-ATR, neat) Vmax: = 3106 (w), 3058 (w), 2981 (m), 2935 (w), 1719 (s), 1477 (w), 1313 (s), 1147
(s), 1103 (m), 1086 (m), 1062 (w), 847 (w), 769 (w), and 729 (s).

HRMS (ESI): calcd for ([M+H], C14H1sNQ4)*: 262.1074, found: 262.1076.
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4.2 Synthesis of 7-azaindole—pyrone S53
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An oven-dried flask was charged with a magnetic stirring bar and 7-azaindole $51 (515 mg, 2.08 mmol, 1.0
equiv). The flask was flushed with nitrogen and sealed with a septum. Tetrahydrofuran (20 mL) was added
and the resulting solution was cooled to —78 °C. To the reaction mixture was added dropwise a n-
butyllithium solution (2.5 M in hexanes, 1.6 mL, 4.00 mmol, 2.0 equiv) and the resulting solution was
allowed to gradually warm to 0 °C. After 30 min, to the mixture was added dropwise 2-isopropoxy-4,4,5,5-
tetramethyl-1,3,2-dioxaborolane (0.8 mL, 4.00 mmol, 2.0 equiv) at 0 °C. After 30 min, the reaction mixture
was allowed to warm to 23 °C and diluted with water (20 mL). The layers were separated, the aqueous
layer was extracted with ethyl acetate (3x15 mL). The combined organic extracts were washed with
saturated aqueous sodium chloride solution (30 mL) and the organic layer was dried over sodium sulfate,
filtered, and the filtrate was concentrated in vacuo. The crude residue (~1.22 mmol of S52) was used
directly in the next step without further purification. Note: The amount of $52 in the crude residue was
determined by H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard.

An oven-dried vial was charged with a magnetic stirring bar, crude 7-azaindole boronate ester $52
(assuming 1.22 mmol, 1.2 equiv), 3-triflyloxy-2-pyrone $28° (240 mg, 0.98 mmol, 1.0 equiv), [1,1’-
bis(diphenylphosphino)ferrocene]-dichloropalladium(Il) (73 mg, 0.10 mmol, 10 mol%), and tripotassium
phosphate (640 mg, 3.02 mmol, 3 equiv). The vial was flushed with nitrogen and sealed with a septum cap.
Tetrahydrofuran (10 mL) and water (1 mL) were added sequentially and the resulting mixture was stirred
at 23 °C. After 12 h, the mixture was diluted with saturated aqueous ammonium chloride solution (10 mL).
The layers were separated, the aqueous layer was extracted with ethyl acetate (3x10 mL) and the
combined organic extracts were washed with saturated aqueous sodium chloride solution (10 mL). The
combined organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo.
The crude residue was purified by flash column chromatography on silica gel (5:1, hexanes:ethyl acetate)
to provide 7-azaindole—pyrone S53 (185 mg, 0.54 mmol, 55%) as a yellow oil.

TLC (3:1, hexanes:ethyl acetate): Rf=0.32 (UV/KMnO,)

1H NMR (700 MHz, CDCls) 6 8.36 — 8.33 (m, 1H), 7.99 — 7.94 (m, 1H), 7.93 — 7.89 (m, 1H), 7.57 — 7.53 (m,
1H), 7.12 - 7.08 (m, 1H), 6.97 (s, 1H), 6.42 — 6.36 (m, 1H), 5.71 (s, 2H), 3.70 — 3.65 (m, 2H), 0.94 — 0.87 (m,
2H), and -0.07 (s, 9H).

13C NMR (176 MHz, CDCls) & 160.7, 151.3, 149.9, 144.2, 141.7, 133.9, 129.1, 120.5, 120.0, 117.2, 106.7,
105.0, 71.1, 66.5, 18.0, and -1.4.

IR (Diamond-ATR, neat) Vimax: = 3050 (w), 2952 (m), 2894 (m), 1718 (s), 1626 (w), 1572 (w), 1429 (w), 1318
(w), 1246 (m), 1158 (w), 1073 (s), 859 (m), 835 (s), and 773 (s).

HRMS (ESI): calcd for ([M+H], C18H23N205Si)*: 343.1472, found: 343.1468.
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4.3 Synthesis of pyrazole-pyrone S55
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An oven-dried vial was charged with a magnetic stirring bar, pyrazole boronate ester $54° (90 mg, 0.34
mmol, 1.1 equiv), 3-triflyloxy-2-pyrone S28°® (76 mg, 0.31 mmol, 1.0 equiv), [1,1-
bis(diphenylphosphino)ferrocene]-dichloropalladium(Il) (25 mg, 0.03 mmol, 10 mol%), and tripotassium
phosphate (195 mg, 0.92 mmol, 3 equiv). The vial was flushed with nitrogen and sealed with a septum cap.
Tetrahydrofuran (3 mL) and water (0.3 mL) were added sequentially and the resulting mixture was stirred
at 23 °C. After 12 h, the mixture was diluted with saturated aqueous ammonium chloride solution (3 mL).
The layers were separated, the aqueous layer was extracted with ethyl acetate (3x3 mL) and the combined
organic extracts were washed with saturated aqueous sodium chloride solution (3 mL). The washed
organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo. The crude
residue was purified by flash column chromatography on silica gel (3:1—>1:1, hexanes:ethyl acetate) to
provide pyrazole—pyrone S55 (28 mg, 0.12 mmol, 40%) as an off-white solid.

TLC (1:1, hexanes:ethyl acetate): Ry= 0.43 (UV/KMnO,)

H NMR (400 MHz, CDCl3) § 12.18 (br s, 1H), 7.84 — 7.74 (m, 1H), 7.61 (dd, J = 5.2, 2.1 Hz, 1H), 6.89 (s, 1H),
and 6.56 — 6.45 (m, 1H).

13CNMR (151 MHz, CDCls) 6 160.9, 151.6, 143.8 (g, J = 38.7 Hz), 138.3, 121.3 (q, J = 268.7 Hz), 116.4, 107.2,
and 101.3 (q, / = 2.2 Hz). (Missing one carbon signal)

19 NMR (376 MHz, CDCl3) 6 -61.46.

IR (Diamond-ATR, neat) Vmax: = 3305 (s), 3136 (w), 3048 (w), 2925 (w), 1722 (s), 1566 (w), 1541 (w), 1496
(w), 1389 (w), 1265 (s), 1235 (w), 1159 (s), 1144 (m), 1112 (m), 971 (s), 818 (w), and 769 (m).

HRMS (ESI): calcd for ([M+H], CoHeFsN,0,)*: 231.0376, found: 231.0374.

mp: 166-170 °C.
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4.4 Synthesis of aniline—pyrone S57
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An oven-dried vial was charged with a magnetic stirring bar, aniline boronate ester $56*° (347 mg, 1.58
mmol, 1.1 equiv), 3-triflyloxy-2-pyrone S28° (351 mg, 1.44 mmol, 1.0 equiv), [1,1-
bis(diphenylphosphino)ferrocene]-dichloropalladium(Il) (103 mg, 0.14 mmol, 10 mol%), and tripotassium
phosphate (920 mg, 4.33 mmol, 3 equiv). The vial was flushed with nitrogen and sealed with a septum cap.
Tetrahydrofuran (14 mL) and water (1.4 mL) were added sequentially and the resulting mixture was stirred
at 23 °C. After 12 h, the mixture was diluted with saturated aqueous ammonium chloride solution (15 mL).
The layers were separated, the aqueous layer was extracted with ethyl acetate (3x15 mL) and the
combined organic extracts were washed with saturated aqueous sodium chloride solution (20 mL). The
washed organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo.
The crude residue was purified by flash column chromatography on silica gel (1:1, hexanes:ethyl acetate)
to provide aniline—pyrone S57 (249 mg, 1.33 mmol, 92%) as a yellow solid.

TLC (1:1, hexanes:ethyl acetate): R¢= 0.35 (UV/KMnO,)

H NMR (700 MHz, CDCl3) § 7.56 (dd, J = 5.1, 2.2 Hz, 1H), 7.42 (dd, J = 6.7, 2.3 Hz, 1H), 7.23 - 7.17 (m, 1H),
7.12-7.05 (m, 1H), 6.85-6.80 (m, 1H), 6.76 (d, J = 8.0 Hz, 1H), 6.41 — 6.32 (m, 1H), and 3.92 (br s, 2H).
3CNMR (176 MHz, CDCls) 6 161.5, 151.2, 145.2, 142.9, 131.1, 130.1, 128.9, 122.0, 119.2, 117.4, and 106.9.
IR (Diamond-ATR, neat) Vmax: = 3425 (s), 3366 (s), 3242 (w), 3098 (w), 3034 (w), 1702 (s), 1624 (m), 1555
(w), 1494 (w), 1453 (w), 1343 (w), 1090 (w), 968 (w), 785 (m), and 753 (m).

HRMS (ESI): calcd for ([M+H], C11H10NO,)*: 188.0706, found: 188.0703.

mp: 145-148 °C.

S39



Pyrone remodeling strategy to access diverse heterocyclic cores— Supporting Information

5 Synthesis of pyrido[1,2-a]indoles

5.1 Synthesis of pyrido[1,2-alindole 8a
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Following General Procedure D, a solution of indole—pyrone 7a (1.3 g, 6.16 mmol, 1.0 equiv) in
dichloromethane (60 mL) and methanol (60 mL) was treated with a solution of sodium methoxide (25 wt%
in MeOH, 1.7 mL, 7.43 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at the same
temperature for 10 min. The crude residue was purified by flash column chromatography on silica gel
(12:1, hexanes:ethyl acetate) to provide pyrido[1,2-alindole 8a (895 mg, 3.98 mmol, 65%) as a red solid.
The characterization data of 8a were in full agreement with the values reported in Section 2.3 of the SI.

Recrystallization (ethyl acetate/dichloromethane) of the product gave crystals suitable for X-ray diffraction
(see Section 11)
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5.2  Synthesis of pyrido[1,2-alindole 8a from indole—pyrone Boc-7a

(@)

S N\ //

N‘ CHZCIleeOH
Boc 55°C,12h

. 8a
Boc-7a (13%)

A vial was charged with a magnetic stirring bar and indole—pyrone Boc-7a (32 mg, 0.10 mmol, 1.0 equiv).
Dichloromethane (1 mL) and methanol (1 mL) were added sequentially and the resulting solution was
treated with a solution of sodium methoxide (25 wt% in MeOH, 0.03 mL, 0.13 mmol, 1.2 equiv) at 23 °C.
The resulting mixture was heated in a preheated (55 °C) heating block with stirring for 12 h. The mixture
was then cooled to 23 °C, and diluted with saturated aqueous ammonium chloride solution (1 mL). The
layers were separated, the aqueous layer was extracted with dichloromethane (3x2 mL) and the combined
organic extracts were washed with saturated aqueous sodium chloride solution (2 mL). The washed
organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo. The crude
residue was purified by flash column chromatography on silica gel (12:1, hexanes:ethyl acetate) to provide
pyrido[1,2-alindole 8a (3.0 mg, 0.01 mmol, 13%) as a red solid. The characterization data of 8a were in full
agreement with the values reported in Section 2.3 of the SI.
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5.3 One-pot synthesis of pyrido[1,2-alindole 8a from 3-triflyloxy-2-pyrone S28
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S27 S28 8a
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An oven-dried vial was charged with a magnetic stirring bar, indole boronate ester $277 (56 mg, 0.23 mmol,
1.2 equiv), 3-triflyloxy-2-pyrone  $28° (50 mg, 0.21 mmol, 1.0 equiv), [1,1-
bis(diphenylphosphino)ferrocene]-dichloropalladium(Il) (15 mg, 0.02 mmol, 10 mol%), and tripotassium
phosphate (126 mg, 0.59 mmol, 3 equiv). The vial was flushed with nitrogen and sealed with a septum cap.
Tetrahydrofuran (2 mL) and water (0.2 mL) were added sequentially and the resulting mixture was stirred
at 23 °C. After 12 h, to the mixture was added a solution of sodium methoxide (25 wt% in MeOH, 0.15 mL,
0.66 mmol, 3.0 equiv) at 23 °C. After 10 min, the reaction mixture was diluted with saturated aqueous
ammonium chloride solution (2 mL). The layers were separated, the aqueous layer was extracted with
ethyl acetate (3x3 mL) and the combined organic extracts were washed with saturated aqueous sodium
chloride solution (3 mL). The washed organic layer was dried over sodium sulfate, filtered, and the filtrate
was concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel
(15:1, hexanes:ethyl acetate) to provide pyrido[1,2-alindole 8a (15 mg, 0.07 mmol, 33%) as a red solid.
The characterization data of 8a were in full agreement with the values reported in Section 2.3 of the SI.
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5.4 Synthesis of pyrido[1,2-alindole 8b

Me

©\/S_ZL_) NaOMe COzMe
CH2C|2/MGOH
23 °C, 10 min
e (60%)

Following General Procedure D, a solution of indole—pyrone 7b (23 mg, 0.10 mmol, 1.0 equiv) in
dichloromethane (1 mL) and methanol (1 mL) was treated with a solution of sodium methoxide (25 wt%
in MeOH, 0.03 mL, 0.13 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at the same
temperature for 10 min. The crude residue was purified by flash column chromatography on silica gel
(15:1, hexanes:ethyl acetate) to provide pyrido[1,2-alindole 8b (15 mg, 0.06 mmol, 60%) as a red solid.

TLC (5:1, hexanes:ethyl acetate): R=0.52 (UV/KMnO,)

'H NMR (400 MHz, CDCls) & 8.39 (dd, J = 7.1, 1.3 Hz, 1H), 7.87 = 7.79 (m, 2H), 7.47 — 7.41 (m, 1H), 7.39 (dd,
J=6.7,1.1 Hz, 1H), 7.37 - 7.31 (m, 1H), 6.39 (t, J = 6.8 Hz, 1H), 3.99 (s, 3H), and 2.54 (s, 3H).

13C NMR (151 MHz, CDCls) & 167.4, 130.5, 128.9, 128.7, 128.0, 126.7, 123.2, 123.1, 120.7, 119.2, 110.0,
105.1, 101.4, 52.3, and 10.5.

IR (Diamond-ATR, neat) Vmax: = 3346 (s), 3057 (w), 2949 (m), 2923 (w), 2867 (w), 1720 (s), 1604 (w), 1527
(w), 1463 (m), 1346 (w), 1269 (s), 1238 (w), 1194 (m), 1144 (w), 1082 (w), and 738 (s).

HRMS (ESI): calcd for ([M], C1sH13NO2)*: 239.0941, found: 239.0941.

mp: 54-57 °C.
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5.5 Synthesis of pyrido[1,2-alindole 8c

NPhth NPhth
®) NaOMe
o — 7 o CO,Me
N \ /) CH,Cl,/MeOH )
ALY
N 55 °C. 10 min NN
N —
7c (45%) 8c

Following General Procedure D, a solution of indole—pyrone 7c¢ (28 mg, 0.07 mmol, 1.0 equiv) in
dichloromethane (0.75 mL) and methanol (0.75 mL) was treated with a solution of sodium methoxide (25
wt% in MeOH, 0.02 mL, 0.09 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was heated at 55 °C with
stirring and held at this temperature for 10 min. The crude residue was purified by flash column
chromatography on silica gel (3:1, hexanes:ethyl acetate) to provide pyrido[1,2-alindole 8c (13 mg, 0.04
mmol, 45%) as a red solid.

TLC (3:1, hexanes:ethyl acetate): Ry= 0.47 (UV/KMnO,)

H NMR (500 MHz, CDCls) & 8.43 (dd, J = 7.0, 1.2 Hz, 1H), 8.09 — 8.05 (m, 1H), 7.86 — 7.83 (m, 1H), 7.81 (dd,
J=5.4,3.1 Hz, 2H), 7.69 (dd, J = 5.5, 3.0 Hz, 2H), 7.48 (dd, J = 6.7, 1.2 Hz, 1H), 7.45 — 7.41 (m, 1H), 7.36 —
7.30 (m, 1H), 6.45 (t, J = 6.9 Hz, 1H), 4.12 (s, 3H), 3.99 — 3.92 (m, 2H), and 3.53 — 3.46 (m, 2H).

13C NMR (151 MHz, CDCls) 6 168.5, 167.2, 133.9, 132.4, 130.3, 129.2, 129.1, 128.2, 127.9, 123.7, 123.2,
123.0,121.0,119.3,110.1, 105.5, 102.3, 52.9, 38.7, and 24.5.

IR (Diamond-ATR, neat) Vmax: = 3094 (w), 3057 (w), 2950 (w), 2929 (w), 2853 (w), 1708 (s), 1528 (w), 1466
(w), 1392 (m), 1349 (w), 1271 (m), 1194 (w), 1115 (w), 741 (m), and 719 (m).

HRMS (ESI): calcd for ([M+H], C24H1sN204)*: 399.1339, found: 399.1338.

mp: 180-182 °C.
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5.6 Synthesis of tetracyclic lactam 8d from pyrido[1,2-a]indole 8c

NPhth
NH
H2NNH2'H20
\ COzMe —_— A\ (@]
MeOH N\
NN 23°C, 2 h —
8c (75%) 8d

An oven-dried vial was charged with a magnetic stirring bar and pyrido[1,2-alindole 8c (18 mg, 0.045
mmol, 1.0 equiv). The vial was flushed with nitrogen and sealed with a septum cap. Methanol (2 mL) was
added and the resulting solution was treated with hydrazine monohydrate (0.01 mL, 0.20 mmol, 4.0 equiv)
at 23 °C. After 2 h, the reaction mixture was diluted with saturated aqueous ammonium chloride solution
(1 mL) and dichloromethane (2 mL). The layers were separated, the aqueous layer was extracted with
dichloromethane (3x2 mL) and the combined organic extracts were washed with saturated aqueous
sodium chloride solution (2 mL). The washed organic layer was dried over sodium sulfate, filtered, and the
filtrate was concentrated in vacuo. The crude residue was purified by flash column chromatography on
silica gel (5% methanol in ethyl acetate) to provide the tetracyclic lactam 8d (8 mg, 0.03 mmol, 75%) as a
carrot orange solid.

TLC (100% ethyl acetate): Rs = 0.46 (UV/KMnOQ.,)

H NMR (400 MHz, CDCls) & 8.44 (d, J = 7.1 Hz, 1H), 7.94 — 7.88 (m, 2H), 7.74 (d, J = 8.5 Hz, 1H), 7.48 — 7.42
(m, 1H), 7.39 — 7.31 (m, 1H), 6.59 — 6.51 (m, 2H), 3.77 — 3.69 (m, 2H), 3.33 — 3.26 (m, 2H).

3¢ NMR (151 MHz, CDCls) § 169.7, 134.4, 130.0, 129.5, 128.7, 128.3, 128.2, 123.5, 120.6, 118.4, 110.4,
106.6, 104.4, 42.7, and 26.9.

IR (Diamond-ATR, neat) Vmax: = 3279 (s), 3203 (s), 3053 (m), 2924 (m), 2851 (w), 1719 (w), 1649 (s), 1613
(w), 1525 (w), 1462 (m), 1397 (w), 1353 (m), 1334 (m), and 739 (m).

HRMS (ESI): calcd for ([M+H], C1sH13N>0)*: 237.1022, found: 237.1024.

mp: 222-225 °C.
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5.7 Synthesis of pyrido[1,2-alindoles 8e and 8¢’

OAc OH
0
Q NaOMe
A O — A\ o . O\ CO,Me
\ // CHyCl/MeOH N\
N 55 °C, 10 min — NN
H
7e 8e (42%) 8e’ (19%)

Following General Procedure D, a solution of indole—pyrone 7e (30 mg, 0.10 mmol, 1.0 equiv) in
dichloromethane (1 mL) and methanol (1 mL) was treated with a solution of sodium methoxide (25 wt%
in MeOH, 0.03 mL, 0.13 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was heated at 55 °C with
stirring for 10 min. The crude residue was purified by flash column chromatography on silica gel (8:1—2:1,
hexanes:ethyl acetate) to provide pyrido[1,2-a]indole 8e (10 mg, 0.04 mmol, 42%) as a dark red solid and
pyrido[1,2-a]indole 8¢’ (5 mg, 0.02 mmol, 19%) as a red oil, in order of elution.

Data for pyrido[1,2-a]indole 8e:

TLC (3:1, hexanes:ethyl acetate): Rr=0.29 (UV/KMnO,)

H NMR (400 MHz, CDCl3) § 8.50 (d, J = 6.9 Hz, 1H), 7.95 (d, J = 6.9 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 7.75 (d,
J=8.0 Hz, 1H), 7.51 — 7.44 (m, 1H), 7.42 — 7.35 (m, 1H), 6.56 (t, J = 6.9 Hz, 1H), 4.80 — 4.73 (m, 2H), and
3.46 — 3.39 (m, 2H).

13C NMR (176 MHz, CDCl;) & 168.8, 133.0, 129.49, 129.46, 128.9, 128.2, 124.0, 121.0, 120.2, 118.5, 110.5,
106.5, 103.9, 69.1, and 26.4.

IR (Diamond-ATR, neat) Vmax: = 3085 (w), 3055 (w), 2924 (s), 2854 (w), 1694 (s), 1604 (w), 1519 (m), 1461
(m), 1412 (w), 1387 (w), 1344 (m), 1274 (w), 1248 (m), 1093 (w), and 738 (w).

HRMS (ESI): calcd for ([M+H], C1sH12NO,)*: 238.0863, found: 238.0850.

mp: 171-176 °C.

Data for pyrido[1,2-alindole 8e’:

TLC (1:1, hexanes:ethyl acetate): Rf=0.39 (UV/KMnO,)

H NMR (700 MHz, CDCl3) 6 8.44 (d, J = 7.0 Hz, 1H), 7.88 — 7.83 (m, 2H), 7.48 (d, J = 6.6 Hz, 1H), 7.46 — 7.42
(m, 1H), 7.38 = 7.34 (m, 1H), 6.43 (t, J = 6.8 Hz, 1H), 3.99 (s, 3H), 3.98 — 3.94 (m, 2H), 3.40 (t, J = 6.5 Hz, 2H),
and 2.31 (brs, 1H).

13C NMR (176 MHz, CDCls) 6 167.7, 130.3, 129.4, 129.3, 128.5, 128.2, 123.6, 122.7, 121.1, 119.3, 110.2,
105.4, 102.7, 63.3, 52.7, and 28.2.

IR (Diamond-ATR, neat) Vmax: = 3384 (s), 2924 (s), 2854 (m), 1718 (s), 1527 (w), 1464 (m), 1438 (w), 1346
(w), 1268 (s), 1196 (m), 1146 (w), 1085 (w), 1042 (w), and 740 (s).

HRMS (ESI): calcd for ([M+H], C16H1sNQOs)*: 270.1125, found: 270.1123.
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5.8 Synthesis of pyrido[1,2-alindole 8f

CO,M
A NaOMe \ 2vie
N\ / N\
CH2CI2/MeOH —
Me

23 °C, 10 min

Iz

8f
(55%)

Following General Procedure D, a solution of indole—pyrone 7f (24 mg, 0.11 mmol, 1.0 equiv) in
dichloromethane (1 mL) and methanol (1 mL) was treated with a solution of sodium methoxide (25 wt%
in MeOH, 0.03 mL, 0.13 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at 23 °C for 10
min. The crude residue was purified by flash column chromatography on silica gel (12:1—8:1,
hexanes:ethyl acetate) to provide pyrido[1,2-alindole 8f (14 mg, 0.06 mmol, 55%) as a red solid.

TLC (8:1, hexanes:ethyl acetate): R¢=0.50 (UV/KMnO,)

1H NMR (700 MHz, CDCl3) 6 8.92 (d, J = 7.1 Hz, 1H), 7.81 (d, J = 6.7 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.44 (br
s, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.07 (d, J = 7.1 Hz, 1H), 6.47 (t, J = 7.0 Hz, 1H), 4.00 (s, 3H), and 2.93 (s, 3H).
13C NMR (176 MHz, CDCls) & 166.1, 133.4, 132.0, 130.7, 128.7, 128.5, 123.5, 123.4, 123.1, 120.1, 119.1,
106.0, 95.7, 52.2, and 21.6.

IR (Diamond-ATR, neat) Vmax: = 3150 (w), 3049 (w), 2950 (m), 2850 (w), 1710 (s), 1597 (w), 1523 (m), 1436
(w), 1342 (m), 1264 (s), 1205 (s), 1133 (s), 797 (m), and 736 (s).

HRMS (ESI): calcd for ([M+H], C1sH14NO,)*: 240.1019, found: 240.1017.

mp: 115-118 °C.
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5.9 Synthesis of pyrido[1,2-alindole 8g

_ NaOMe B \ COaMe
\ / ) N\
1 ,4-dioxane N CH2CI2/MeOH -
23°C, 18 h H 23°C, 10 min
Boc-7g 79 (91%) 89

An oven-dried vial was charged with a magnetic stirring bar and indole—pyrone Boc-7g (78 mg, 0.2 mmol,
1.0 equiv). A hydrogen chloride solution (4 M in 1,4-dioxane, 4 mL) was added and stirring of the resulting
mixture was continued at 23 °C. After 18 h, the mixture was diluted with saturated aqueous sodium
bicarbonate solution (4 mL) and ethyl acetate (2 mL). The layers were separated, the aqueous layer was
extracted with dichloromethane (3x3 mL) and the combined organic extracts were washed with saturated
aqueous sodium chloride solution (5 mL). The washed organic layer was dried over sodium sulfate, filtered,
and the filtrate was concentrated in vacuo. The crude residue was purified by flash column
chromatography on silica gel (3:1, hexanes:ethyl acetate) to provide an inseparable mixture of Boc cleaved
indole—pyrone 7g (~0.015 mmol) and unreacted Boc-7g in a ratio of 2:1, which was directly used in the
next step without further purification.

Following General Procedure D, a solution of indole—pyrone 7g (assuming 0.015 mmol) in dichloromethane
(0.15 mL) and methanol (0.15 mL) was treated with a solution of sodium methoxide (25 wt% in MeOH, 5
pL, 0.02 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at 23 °C for 10 min. The crude
residue was purified by flash column chromatography on silica gel (12:1—8:1, hexanes:ethyl acetate) to
provide pyrido[1,2-alindole 8g (4 mg, 0.013 mmol, 91%) as a red solid.

TLC (5:1, hexanes:ethyl acetate): Ry = 0.41 (UV/KMnO,)

H NMR (700 MHz, CDCl3) & 8.44 (d, J = 6.9 Hz, 1H), 7.97 (d, J = 1.9 Hz, 1H), 7.87 (d, J = 6.7 Hz, 1H), 7.73 (d,
J=8.7Hz, 1H), 7.38 (dd, J = 8.7, 1.8 Hz, 1H), 7.29 (br s, 1H), 6.57 (t, J = 6.9 Hz, 1H), and 4.00 (s, 3H).

13C NMR (176 MHz, CDCls) & 165.7, 134.1, 131.5, 129.7, 128.8, 128.1, 123.5, 123.4, 120.5, 117.3, 111.7,
106.9, 94.3, and 52.4.

IR (Diamond-ATR, neat) Vmax: = 3091 (w), 2950 (w), 2924 (m), 2853 (w), 1713 (s), 1599 (w), 1516 (w), 1462
(m), 1435 (w), 1345 (w), 1266 (s), 1228 (w), 1200 (m), 1131 (m), 1054 (w), 768 (w), and 639 (w).

HRMS (ESI): calcd for ([M+H], C14H11BrNO;)*: 303.9968, found: 303.9973.

mp: 118-128 °C.
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5.10 Synthesis of pyrido[1,2-alindole 8g from indole—pyrone Boc-7g

Q Br.
Br O NaOMe N COzMe
—»
N \_7 CH,Cl,/MeOH N _\
Boc 55°C,12h
Boc-7
oc-7g (30%) 8g

A vial was charged with a magnetic stirring bar and Boc protected indole—pyrone Boc-7g (39 mg, 0.10
mmol, 1.0 equiv). Dichloromethane (1 mL) and methanol (1 mL) were added sequentially and the resulting
solution was treated with a solution of sodium methoxide (25 wt% in MeOH, 0.03 mL, 0.13 mmol, 1.2
equiv) at 23 °C. The resulting mixture was heated in a preheated (55 °C) heating block with stirring for 12
h. The mixture was then cooled to 23 °C, and diluted with saturated agueous ammonium chloride solution
(1 mL). The layers were separated, the aqueous layer was extracted with dichloromethane (3x2 mL) and
the combined organic extracts were washed with saturated aqueous sodium chloride solution (2 mL). The
washed organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo.
The crude residue was purified by flash column chromatography on silica gel (15:1, hexanes:ethyl acetate)
to provide pyrido[1,2-a]indole 8g (9.0 mg, 0.03 mmol, 30%) as a red solid. The characterization data of 8g
were in full agreement with the values reported in Section 5.9.
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5.11 Synthesis of pyrido[1,2-alindole 8h

NN / CH2CI2/MeOH

H 23 °C, 10 min

7h (87%)

Following General Procedure D, a solution of indole—pyrone 7h (25 mg, 0.1 mmol, 1.0 equiv) in
dichloromethane (1 mL) and methanol (1 mL) was treated with a solution of sodium methoxide (25 wt%
in MeOH, 0.03 mL, 0.13 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at 23 °C for 10
min. The crude residue was purified by flash column chromatography on silica gel (12:1—>8:1,
hexanes:ethyl acetate) to provide pyrido[1,2-alindole 8h (23 mg, 0.09 mmol, 87%) as a red solid.

TLC (5:1, hexanes:ethyl acetate): Rr=0.39 (UV/KMnO,)

'H NMR (400 MHz, CDCls) 6 8.46 (d, J = 6.8 Hz, 1H), 7.83 (dd, J = 6.8, 1.1 Hz, 1H), 7.49 (d, J = 8.3 Hz, 1H),
7.43 (s, 1H), 7.26 (br s, 1H), 6.79 (d, J = 7.7 Hz, 1H), 6.55 (t, J = 7.0 Hz, 1H), 4.04 (s, 3H), and 4.02 (s, 3H).
13C NMR (151 MHz, CDCls) & 166.1, 153.7, 132.0, 130.7, 128.9, 128.6, 121.5, 121.4, 120.9, 106.6, 103.4,
102.5,92.1, 55.7, and 52.3.

IR (Diamond-ATR, neat) Vmax: = 3090 (w), 2997 (w), 2949 (m), 2840 (w), 1712 (s), 1577 (m), 1534 (w), 1498
(m), 1458 (m), 1382 (w), 1258 (s), 1203 (m), 1130 (w), 1054 (w), and 761 (m).

HRMS (ESI): calcd for ([M+H], C1sH14NQOs)*: 256.0968, found: 256.0962.

mp: 136-139 °C.
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5.12 Synthesis of pyrido[1,2-alindole 8i

0
MeO 0] NaOMe MeO A CO,Me
) T \
N CH,Cly/MeOH N_
H 23°C, 10 min
7i 8i

(89%)

Following General Procedure D, a solution of indole—pyrone 7i (52 mg, 0.22 mmol, 1.0 equiv) in
dichloromethane (2 mL) and methanol (2 mL) was treated with a solution of sodium methoxide (25 wt%
in MeOH, 0.06 mL, 0.26 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at 23 °C for 10
min. The crude residue was purified by flash column chromatography on silica gel (15:1, hexanes:ethyl
acetate) to provide pyrido[1,2-alindole 8i (49 mg, 0.19 mmol, 89%) as a red solid.

TLC (5:1, hexanes:ethyl acetate): Rr=0.22 (UV/KMnO,)

1H NMR (600 MHz, CDCl3) 6 8.46 (d, J = 6.5 Hz, 1H), 7.84 (d, J = 6.7 Hz, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.29 (br
s, 1H), 7.23 (d, J = 2.5 Hz, 1H), 6.99 — 6.94 (m, 1H), 6.53 (t, J = 7.1 Hz, 1H), 4.00 (s, 3H), and 3.92 (s, 3H).
13C NMR (151 MHz, CDCls) & 166.1, 157.2, 134.0, 131.1, 131.0, 128.8, 124.8, 119.9, 111.8, 111.3, 106.1,
101.2, 94.4, 55.8, and 52.2.

IR (Diamond-ATR, neat) Vmax: = 3426 (w), 3102 (w), 2995 (w), 2950 (m), 2833 (w), 1708 (s), 1610 (s), 1517
(w), 1460 (m), 1436 (m), 1313 (m), 1266 (s), 1221 (m), 1195 (s), 1162 (s), 1143 (s), 1060 (m), and 767 (w).
HRMS (ESI): calcd for ([M+H], C1sH14NQOs)*: 256.0968, found: 256.0970.

mp: 144-146 °C.
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5.13 Synthesis of pyrido[1,2-alindole 8j and carbazole 8}’

COzMe
NaOMe
CO Me
CH.ClLMeOH 2
22S CO,Me"—

MeO,C 55°C,12h MeO,C
7j 8j (6%) 8j’ (29%)

Following General Procedure D, a solution of indole—pyrone 7j (25 mg, 0.093 mmol, 1.0 equiv) in
dichloromethane (1 mL) and methanol (1 mL) was treated with a solution of sodium methoxide (25 wt%
in MeOH, 0.03 mL, 0.13 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was heated at 55 °C with
stirring for 12 h. The crude residue was purified by preparative thin layer chromatography on silica gel
(12:1, hexanes:ethyl acetate) to provide carbazole 8j’ (7.5 mg, 0.026 mmol, 29%) as a pale yellow solid and
pyrido[1,2-alindole 8j (1.5 mg, 0.005 mmol, 6%) as a red solid, in order of elution.

Data for carbazole 8j’:

TLC (5:1, hexanes:ethyl acetate): Ry = 0.46 (UV/KMnO,)

1H NMR (700 MHz, CDCl5) & 11.20 (br's, 1H), 8.28 (d, J = 7.6 Hz, 2H), 8.14 (dd, J = 7.6 Hz, 2H), 7.31 (t, /= 7.6
Hz, 2H), and 4.07 (s, 6H).

13C NMR (176 MHz, CDCls) & 167.4, 134.0, 128.4, 125.7, 124.0, 119.4, 112.6, and 52.3.

IR (Diamond-ATR, neat) Vimax: = 3461 (m), 3439 (m), 3002 (w), 2953 (w), 2924 (w), 2850 (w), 1703 (s), 1600
(w), 1495 (w), 1435 (m), 1265 (s), 1207 (s), 1144 (s), 752 (m), and 732 (w).

HRMS (ESI): calcd for ([M+H], C16H14NQ4)*: 284.0917, found: 284.0920.

mp: 140-144 °C.

Data for pyrido[1,2-al]indole 8;j:

TLC (5:1, hexanes:ethyl acetate): Ry = 0.44 (UV/KMnO,)

H NMR (700 MHz, CDCls) 6 9.41 (d, J = 7.3 Hz, 1H), 8.08 — 8.05 (m, 1H), 7.90 — 7.85 (m, 2H), 7.57 (br's, 1H),
7.41 (t,J = 7.6 Hz, 1H), 6.53 (t, J = 7.0 Hz, 1H), 4.06 (s, 3H), and 4.00 (s, 3H).

13C NMR (226 MHz, CDCls) 6 168.5, 165.9, 134.4, 134.0, 131.9, 129.3, 126.6, 126.4, 125.0, 122.4, 120.1,
118.1, 106.4, 96.2, 52.8, and 52.3.

IR (Diamond-ATR, neat) Vmax: = 2951 (w), 2924 (m), 2853 (w), 1712 (s), 1599 (w), 1495 (w), 1435 (m), 1327
(w), 1261 (s), 1207 (s), and 756 (m).

HRMS (ESI): calcd for ([M+H], C16H14NQ4)*: 284.0917, found: 284.0914.

mp: 124-128 °C.
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5.14 Synthesis of pyrido[1,2-alindole 8k

0] COzMe

0] NaOMe

: N/

N CHZCIleeOH
H Br 55°C, 10 min

(29%)

Following General Procedure D, a solution of indole—pyrone 7k (15 mg, 0.05 mmol, 1.0 equiv) in
dichloromethane (0.5 mL) and methanol (0.5 mL) was treated with a solution of sodium methoxide (25
wt% in MeOH, 15 uL, 0.06 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was heated at 55 °C with
stirring for 10 min. The crude residue was purified by flash column chromatography on silica gel (30:1,
hexanes:ethyl acetate) to provide pyrido[1,2-alindole 8k (4.5 mg, 0.015 mmol, 29%) as a red solid.

TLC (5:1, hexanes:ethyl acetate): Ry = 0.54 (UV/KMnO,)

1H NMR (700 MHz, CDCl3) & 8.68 — 8.65 (m, 1H), 7.91 — 7.87 (m, 3H), 7.48 — 7.44 (m, 1H), 7.44 (br s, 1H),
7.41—7.37 (m, 1H), and 4.04 (s, 3H).

13C NMR (226 MHz, CDCls) 6 164.9, 131.5, 131.3, 130.0, 129.3, 128.9, 124.2, 121.6, 121.4, 121.2, 110.4,
100.0, 96.0, and 52.6.

IR (Diamond-ATR, neat) Vmax: = 3073 (w), 2950 (w), 2922 (m), 2851 (w), 1720 (s), 1511 (w), 1453 (m), 1437
(w), 1411 (w), 1331 (w), 1259 (s), 1201 (s), 1154 (w), 787 (m), and 729 (w).

HRMS (ESI): calcd for ([M+H], C14H11BrNO;)*: 303.9968, found: 303.9976.

mp: 163-167 °C.
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5.15 Synthesis of pyrido[1,2-alindole 8|

0] COzMe

O NaOMe

: Y/,

N CHZCIleeOH
H Ph 55°C, 10 min

(66%)

Following General Procedure D, a solution of indole—pyrone 7l (23 mg, 0.08 mmol, 1.0 equiv) in
dichloromethane (0.8 mL) and methanol (0.8 mL) was treated with a solution of sodium methoxide (25
wt% in MeOH, 25 uL, 0.11 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was heated at 55 °C with
stirring for 10 min. The crude residue was purified by flash column chromatography on silica gel (30:1,
hexanes:ethyl acetate) to provide pyrido[1,2-alindole 81 (16 mg, 0.05 mmol, 66%) as a red solid.

TLC (5:1, hexanes:ethyl acetate): Rf=0.39 (UV/KMnO,)

H NMR (400 MHz, CDCls) & 8.75 —8.70 (m, 1H), 8.22 —8.17 (m, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.88 (d, /= 8.0
Hz, 1H), 7.70 — 7.62 (m, 2H), 7.54 — 7.48 (m, 2H), 7.47 — 7.33 (m, 4H), and 4.04 (s, 3H).

13C NMR (151 MHz, CDCl3) & 165.9, 137.3, 132.4, 130.5, 129.9, 129.7, 129.3, 127.7, 126.5, 126.0, 124.0,
121.4, 120.7, 120.6, 120.5, 110.5, 94.8, and 52.4.

IR (Diamond-ATR, neat) Vmax: = 3055 (w), 3033 (w), 2949 (w), 2925 (w), 2852 (w), 1713 (s), 1605 (w), 1456
(m), 1411 (w), 1336 (w), 1283 (m), 1245 (s), 1132 (w), 1060 (w), 789 (m), 732 (m), and 695 (m).

HRMS (ESI): calcd for ([M+H], C2oH1sNO,)*: 302.1176, found: 302.1171.

mp: 160-163 °C.
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5.16 Synthesis of pyrido[1,2-alindole 8m

0 A\ COaMe
(0]
O A\ N\
N \_/ NaOMe =
—
H
CHQC|2/MGOH
55 °C, 30 min
7m OMe (64%) 8m OMe

Following General Procedure D, a solution of indole—pyrone 7m (23 mg, 0.07 mmol, 1.0 equiv) in
dichloromethane (0.7 mL) and methanol (0.7 mL) was treated with a solution of sodium methoxide (25
wt% in MeOH, 20 uL, 0.09 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was heated at 55 °C with
stirring for 30 min. The crude residue was purified by flash column chromatography on silica gel (10:1,
hexanes:ethyl acetate) to provide pyrido[1,2-alindole 8m (15 mg, 0.05 mmol, 64%) as a red solid.

TLC (5:1, hexanes:ethyl acetate): R¢= 0.35 (UV/KMnO,)

H NMR (600 MHz, CDCl5)  8.64 (s, 1H), 8.15 — 8.12 (m, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H),
7.56 (d, J = 8.6 Hz, 2H), 7.45 — 7.40 (m, 1H), 7.39 — 7.31 (m, 2H), 7.03 (d, J = 8.6 Hz, 2H), 4.04 (s, 3H), and
3.88 (s, 3H).

13C NMR (151 MHz, CDCls) 6 166.0, 159.5, 132.4, 130.4, 129.9, 129.8, 127.7, 125.3, 123.9, 121.4, 120.64,
120.57,120.4, 114.8, 110.5, 94.6, 55.6, and 52.4. (Missing one carbon signal)

IR (Diamond-ATR, neat) Vmax: = 3051 (w), 2999 (w), 2950 (m), 2908 (w), 2836 (w), 1712 (s), 1607 (w), 1505
(m), 1455 (m), 1333 (w), 1279 (w), 1245 (s), 1179 (m), 1132 (w), 1052 (w), 827 (m), 787 (m), and 747 (w).
HRMS (ESI): calcd for ([M+H], C21H1sNQOs)*: 332.1281, found: 332.1266.

mp: 141-145 °C.
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5.17 Synthesis of pyrido[1,2-alindole 8n

0 A\ COaMe
(0]
O \ N\
N \S/ NaOMe =
H —>
CHQC|2/MGOH
55 °C, 10 min
7n CF3 (72%) 8n CF3

Following General Procedure D, a solution of indole—pyrone 7n (6 mg, 0.017 mmol, 1.0 equiv) in
dichloromethane (0.35 mL) and methanol (0.35 mL) was treated with a solution of sodium methoxide (25
wt% in MeOH, 5 pL, 0.022 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was heated at 55 °C with
stirring for 10 min. The crude residue was purified by flash column chromatography on silica gel (30:1,
hexanes:ethyl acetate) to provide pyrido[1,2-alindole 8n (4.5 mg, 0.012 mmol, 72%) as a red solid.

TLC (5:1, hexanes:ethyl acetate): Rr= 0.57 (UV/KMnO,)

H NMR (600 MHz, CDCls) & 8.67 (d, J = 1.7 Hz, 1H), 8.10 (d, J = 1.7 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 7.86
(d, J=8.1Hz, 1H), 7.77 - 7.69 (m, 4H), 7.46 — 7.42 (m, 1H), 7.40 — 7.33 (m, 2H), and 4.03 (s, 3H).

13C NMR (151 MHz, CDCls) & 165.7, 140.8, 132.2, 130.6, 130.0, 129.7 (g, J = 32.6 Hz), 128.7, 126.6, 126.5,
126.3 (q, J = 3.9 Hz), 124.31 (g, J = 272.0 Hz), 124.26, 121.5, 121.1, 120.8, 119.0, 110.4, 95.5, and 52.5.

19 NMR (376 MHz, CDCl3) 6 -61.61.

IR (Diamond-ATR, neat) Vmax: = 3055 (w), 2952 (w), 2927 (w), 2852 (w), 1714 (s), 1614 (m), 1456 (m), 1433
(w), 1323 (s), 1248 (s), 1203 (m), 1165 (m), 1113 (s), 1072 (m), 836 (m), 789 (m), and 733 (m).

HRMS (ESI): calcd for ([M+H], C21H1sF3sNO,)*: 370.1049, found: 370.1048.

mp: 165-169 °C.
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5.18 Synthesis of pyrido[1,2-alindole 8o

\
N CH2CI2/EtOH N -
H 75°C,1h

7
a (49%) 8o

A vial was charged with a magnetic stirring bar and indole—pyrone 7a (20 mg, 0.10 mmol, 1.0 equiv).
Dichloromethane (1 mL) and ethanol (1 mL) were added sequentially and the resulting solution was
treated with sodium ethoxide (34 mg, 0.50 mmol, 5.0 equiv) at 23 °C. The resulting mixture was heated in
a preheated (75 °C) heating block with stirring for 1 h. The mixture was then cooled to 23 °C, and diluted
with saturated aqueous ammonium chloride solution (1 mL). The layers were separated, the aqueous layer
was extracted with dichloromethane (3x2 mL) and the combined organic extracts were washed with
saturated aqueous sodium chloride solution (2 mL). The washed organic layer was dried over sodium
sulfate, filtered, and the filtrate was concentrated in vacuo. The crude residue was purified by flash column
chromatography on silica gel (8:1, hexanes:ethyl acetate) to provide pyrido[1,2-alindole 8o (11 mg, 0.05
mmol, 49%) as a red solid.

TLC (5:1, hexanes:ethyl acetate): Rr= 0.57 (UV/KMnO,)

H NMR (700 MHz, CDCl3) 6 8.52 (d, J = 7.1 Hz, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.88 — 7.85 (m, 2H), 7.44 — 7.40
(m, 1H), 7.37 (br s, 1H), 7.35 — 7.31 (m, 1H), 6.55 (t, J = 6.8 Hz, 1H), 4.48 (g, J = 7.2 Hz, 2H), and 1.48 (t, J =
7.1 Hz, 3H).

13C NMR (151 MHz, CDCls) 6 165.5, 133.5, 130.1, 129.6, 129.3, 129.0, 123.9, 121.3, 120.9, 120.6, 110.4,
106.4, 94.4, 61.3, and 14.6.

IR (Diamond-ATR, neat) Vmax: = 3053 (w), 2980 (w), 2926 (w), 2854 (w), 1707 (s), 1607 (w), 1519 (w), 1461
(m), 1343 (w), 1263 (s), 1198 (s), 1145 (m), 1128 (m), 1058 (m), 773 (m), and 742 (m).

HRMS (ESI): calcd for ([M+H], C1sH14NO)*: 240.1019, found: 240.1035.

mp: 64—-66 °C.
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5.19 Synthesis of pyrido[1,2-alindole 8p

NaO’Pr A\ COZPr
) N\
N CH2CI2/’PrOH —
H 75°C,5h
7a 8p

(12%, 18% brsm)

A vial was charged with a magnetic stirring bar and indole—pyrone 7a (21 mg, 0.10 mmol, 1.0 equiv).
Dichloromethane (1 mL) and isopropanol (1 mL) were added sequentially and the resulting solution was
treated with sodium isopropoxide (41 mg, 0.50 mmol, 5.0 equiv) at 23 °C. The resulting mixture was heated
in a preheated (75 °C) heating block with stirring for 5 h. The mixture was then cooled to 23 °C, and diluted
with saturated aqueous ammonium chloride solution (1 mL). The layers were separated, the aqueous layer
was extracted with dichloromethane (3x2 mL) and the combined organic extracts were washed with
saturated aqueous sodium chloride solution (2 mL). The washed organic layer was dried over sodium
sulfate. The dried solution was filtered, and the filtrate was concentrated in vacuo. The crude residue was
purified by flash column chromatography on silica gel (8:1—3:1, hexanes:ethyl acetate) to provide
pyrido[1,2-alindole 8p (3 mg, 0.01 mmol, 12%, 18% brsm) as a red solid and unreacted indole—pyrone 7a
(7.5 mg, 0.04 mmol) as a yellow solid, in order of elution.

TLC (5:1, hexanes:ethyl acetate): Rr=0.52 (UV/KMnO,)

H NMR (700 MHz, CDCl3) 6 8.52 (d, J = 6.9 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.88 — 7.84 (m, 2H), 7.44 — 7.40
(m, 1H), 7.36 (br's, 1H), 7.35 —7.31 (m, 1H), 6.55 (t, J = 6.8 Hz, 1H), 5.36 (hept, J = 6.4 Hz, 1H), and 1.46 (d,
J=6.3 Hz, 6H).

13C NMR (176 MHz, CDCls) & 165.1, 133.4, 132.2, 130.1, 129.5, 129.1, 128.8, 123.8, 121.2, 120.54, 120.47,
110.4, 106.3, 94.7, 68.8, and 22.2.

IR (Diamond-ATR, neat) Vmax: = 3054 (w), 2979 (m), 2925 (w), 2852 (w), 1708 (s), 1606 (w), 1520 (w), 1462
(m), 1339 (w), 1263 (s), 1200 (m), 1107 (m), 1054 (w), 774 (w), and 743 (m).

HRMS (ESI): calcd for ([M+H], C16H1sNO,)*: 254.1176, found: 254.1173.

mp: 76-81 °C.
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6 Synthesis of carbazoles

6.1 Synthesis of carbazole 15a

NaOMe
CH2C|2/MGOH
QS%D SNy g ¥
\_7 then ag. HCI N CO,Me
23 °C, 10 min Me
Me-7a (78%) 15a

Following General Procedure E, a solution of indole—pyrone Me-7a (24 mg, 0.11 mmol, 1.0 equiv) in
dichloromethane (1 mL) and methanol (1 mL) was treated with a solution of sodium methoxide (25 wt%
in MeOH, 0.03 mL, 0.13 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at 23 °C for 10
min. Subsequently, aqueous hydrogen chloride solution (1 M, 0.3 mL, 0.3 mmol, 3.0 equiv) was added and
stirring of the biphasic mixture was continued at 23 °C for 10 min. The crude residue was purified by flash
column chromatography on silica gel (12:1, hexanes:ethyl acetate) to provide carbazole 15a (20 mg, 0.08
mmol, 78%) as a white solid.

TLC (5:1, hexanes:ethyl acetate): Rr= 0.57 (UV/KMnO,)

H NMR (700 MHz, CDCl3) & 8.25 (dd, J = 7.6, 1.4 Hz, 1H), 8.12 — 8.08 (m, 1H), 7.90 (dd, J = 7.5, 1.3 Hz, 1H),
7.55 —7.51 (m, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.31 — 7.27 (m, 1H), 7.25 (t, J = 7.6 Hz, 1H), 4.03 (s, 3H), and
3.91 (s, 3H).

13C NMR (176 MHz, CDCls) & 168.3, 142.7, 139.2, 128.5, 126.6, 125.5, 124.1, 122.5, 120.1, 119.9, 118.3,
115.3, 109.5, 52.4, and 33.5.

IR (Diamond-ATR, neat) Vimax: = 3053 (w), 2990 (w), 2949 (m), 2841 (w), 1714 (s), 1577 (w), 1487 (m), 1465
(m), 1440 (m), 1410 (m), 1312 (w), 1261 (s), 1202 (s), 1139 (s), 1068 (m), and 748 (s).

HRMS (ESI): calcd for ([M+H], C1sH14NO,)*: 240.1025, found: 240.1029.

mp: 49-52 °C.
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6.2 Synthesis of carbazole 15b

NaOMe
CHQC|2/M€OH
@MD SNy e ¥
\_7 then aq. HCl N CO,Me
55 °C, 10 min Ph
Ph-7a (83%) 15b

Following General Procedure E, a solution of indole—pyrone Ph-7a (30 mg, 0.10 mmol, 1.0 equiv) in
dichloromethane (1 mL) and methanol (1 mL) was treated with a solution of sodium methoxide (25 wt%
in MeOH, 0.03 mL, 0.13 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at 23 °C for 10
min. Subsequently, aqueous hydrogen chloride solution (1 M, 0.3 mL, 0.3 mmol, 3.0 equiv) was added and
the biphasic mixture was heated at 55 °C with stirring for 10 min. The crude residue was purified by flash
column chromatography on silica gel (15:1, hexanes:ethyl acetate) to provide carbazole 15b (26 mg, 0.086
mmol, 83%) as a white solid.

TLC (5:1, hexanes:ethyl acetate): Rr= 0.61 (UV/KMnO,)

'H NMR (700 MHz, CDCls) & 8.29 (dd, J = 7.7, 1.4 Hz, 1H), 8.15 (d, J = 7.7 Hz, 1H), 7.78 (dd, J = 7.5, 1.3 Hz,
1H), 7.60 — 7.55 (m, 2H), 7.46 — 7.40 (m, 4H), 7.37 — 7.31 (m, 3H), and 3.20 (s, 3H).

13C NMR (176 MHz, CDCls) 6 168.1, 142.6, 140.1, 138.2, 129.9, 128.0, 127.6, 126.8, 126.6, 125.8, 123.8,
123.0, 120.9, 120.2, 119.6, 116.6, 110.5, and 51.6.

IR (Diamond-ATR, neat) Vmax: = 3058 (w), 2948 (w), 2926 (w), 2853 (w), 1718 (s), 1595 (w), 1500 (m), 1453
(m), 1422 (s), 1280 (s), 1224 (w), 1205 (m), 1135 (s), 750 (s), and 699 (w).

HRMS (ESI): calcd for ([M+H], C2oH1sNO,)*: 302.1181, found: 302.1181.

mp: 111-114 °C.
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6.3 Synthesis of carbazoles 15c and 9

NaOMe NaOMe
CH,Cl,/MeOH CH,Cl,/MeOH
O O 23 °C, 10 min A 23°C 10 min O O
N CO;Me then aq. HCI N \ / then aq. HCI N CO,Me
SEM 55 °C, <1 min SEM 55°C,2h H

Procedure for the synthesis of carbazole 15c¢

Following General Procedure E, a solution of indole—pyrone SEM-7a (24 mg, 0.07 mmol, 1.0 equiv) in
dichloromethane (0.7 mL) and methanol (0.7 mL) was treated with a solution of sodium methoxide (25
wt% in MeOH, 0.02 mL, 0.09 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at 23 °C for
10 min. Subsequently, aqueous hydrogen chloride solution (1 M, 0.2 mL, 0.2 mmol, 3.0 equiv) was added
and the biphasic mixture was heated at 55 °C with stirring for <1 min. The crude residue was purified by
flash column chromatography on silica gel (15:1, hexanes:ethyl acetate) to provide carbazole 15¢ (20 mg,
0.056 mmol, 80%) as a pale yellow oil.

TLC (5:1, hexanes:ethyl acetate): R¢= 0.50 (UV/KMnO,)

'H NMR (700 MHz, CDCls) & 8.24 (dd, J = 7.7, 1.4 Hz, 1H), 8.09 (d, J = 7.6 Hz, 1H), 7.84 (dd, J = 7.6, 1.4 Hz,
1H), 7.55 (d, J = 8.2 Hz, 1H), 7.52 — 7.48 (m, 1H), 7.32 — 7.27 (m, 2H), 5.95 (s, 2H), 4.01 (s, 3H), 3.16 — 3.12
(m, 2H), 0.76 —0.70 (m, 2H), and -0.18 (s, 9H).

13C NMR (176 MHz, CDCls) 6 168.4, 142.1, 136.9, 128.1, 126.7, 126.1, 123.8, 123.0, 120.5, 120.2, 119.3,
117.4, 110.0, 73.9, 65.3, 52.6, 17.6, and -1.5.

IR (Diamond-ATR, neat) Vmax: = 3056 (w), 2951 (m), 2896 (w), 1718 (s), 1456 (w), 1305 (w), 1261 (m), 1200
(s), 1141 (m), 1079 (s), 835 (m), and 749 (s).

HRMS (ESI): calcd for ([M+Na], C20H2sNNaOsSi)*: 378.1501, found: 378.1501.

Procedure for the synthesis of carbazole 9

Following General Procedure E, a solution of indole—pyrone SEM-7a (20 mg, 0.06 mmol, 1.0 equiv) in
dichloromethane (0.6 mL) and methanol (0.6 mL) was treated with a solution of sodium methoxide (25
wt% in MeOH, 15 pL, 0.07 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at 23 °C for 10
min. Subsequently, aqueous hydrogen chloride solution (1 M, 0.2 mL, 0.2 mmol, 3.0 equiv) was added and
the biphasic mixture was heated at 55 °C with stirring for 2 h. The crude residue was purified by flash
column chromatography on silica gel (12:1, hexanes:ethyl acetate) to provide carbazole 9 (10.5 mg, 0.05
mmol, 80%) as an off-white solid.

TLC (3:1, hexanes:ethyl acetate): Rr=0.73 (UV/KMnO,)

H NMR (700 MHz, CDCls) & 9.93 (br s, 1H), 8.27 (d, J = 7.6 Hz, 1H), 8.12 — 8.06 (m, 2H), 7.53 (d, J = 8.1 Hz,
1H), 7.50 — 7.46 (m, 1H), 7.31 - 7.24 (m, 2H), and 4.03 (s, 3H).

13C NMR (176 MHz, CDCls) 6 168.0, 140.2, 139.8, 127.5, 126.7, 125.6, 124.8, 122.6, 120.5, 120.1, 118.6,
111.7,111.2, and 52.1.

IR (Diamond-ATR, neat) Vmax: = 3440 (s), 3061 (w), 3038 (w), 2951 (w), 2924 (w), 2850 (w), 1692 (s), 1603
(w), 1494 (m), 1435 (m), 1300 (m), 1267 (s), and 1223 (s).

HRMS (ESI): calcd for ([M+H], C14H12NO,)*: 226.0863, found: 226.0864.

mp: 133-135 °C.
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6.4 Synthesis of carbazole 15d
NaOMe

O CH,Cl,/MeOH
MeO A O 23°C,10min  MeO O

N7 o

! then aq. HCI N COyMe
Me 23 °C, 10 min Me
Me-7i (75%) 15d

Following General Procedure E, a solution of indole—pyrone Me-7i (15 mg, 0.06 mmol, 1.0 equiv) in
dichloromethane (0.6 mL) and methanol (0.6 mL) was treated with a solution of sodium methoxide (25
wt% in MeOH, 20 pL, 0.09 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at 23 °C for 10
min. Subsequently, aqueous hydrogen chloride solution (1 M, 0.2 mL, 0.2 mmol, 3.0 equiv) was added and
the biphasic mixture was continued to stir at 23 °C for 10 min. The crude residue was purified by flash
column chromatography on silica gel (15:1, hexanes:ethyl acetate) to provide carbazole 15d (12 mg, 0.04
mmol, 75%) as a white solid.

TLC (5:1, hexanes:ethyl acetate): Ry=0.29 (UV/KMnO,)

'H NMR (600 MHz, CDCls) & 8.19 (dd, J = 7.7, 1.2 Hz, 1H), 7.87 (dd, J = 7.5, 1.3 Hz, 1H), 7.56 (d, J = 2.5 Hz,
1H), 7.36 (d, J = 8.8 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.16 (dd, J = 8.8, 2.6 Hz, 1H), 4.01 (s, 3H), 3.94 (s, 3H),
and 3.88 (s, 3H).

13C NMR (151 MHz, CDCls) & 168.3, 154.4, 139.8, 137.8, 128.6, 125.4, 124.2, 122.9, 117.8, 115.7, 115.3,
110.3, 103.0, 56.2, 52.3, and 33.6.

IR (Diamond-ATR, neat) Vmax: = 2994 (w), 2949 (m), 2832 (w), 1714 (s), 1493 (m), 1436 (w), 1261 (m), 1197
(s), 1138 (s), 1067 (w), and 744 (w).

HRMS (ESI): calcd for ([M+H], C16H1sNQOs)*: 270.1125, found: 270.1123.

mp: 108-111 °C.
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6.5 Synthesis of carbazole 15e

NaOMe
CH2C|2/M€OH
23 °C, 10 min
\ /
then aq. HCI COZMe
MeO,C 55°C,10min  MeO,C 'V'e
Me-7j (68%) 15e

Following General Procedure E, a solution of indole—pyrone Me-7j (26 mg, 0.09 mmol, 1.0 equiv) in
dichloromethane (1 mL) and methanol (1 mL) was treated with a solution of sodium methoxide (25 wt%
in MeOH, 0.03 mL, 0.13 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was stirred at 23 °C for 10
min. Subsequently, aqueous hydrogen chloride solution (1 M, 0.3 mL, 0.3 mmol, 3.0 equiv) was added and
the biphasic mixture was heated at 55 °C with stirring for 10 min. The crude residue was purified by flash
column chromatography on silica gel (5:1, hexanes:ethyl acetate) to provide carbazole 15e (19 mg, 0.06
mmol, 68%) as a white solid.

TLC (3:1, hexanes:ethyl acetate): R¢=0.63 (UV/KMnO,)

'H NMR (600 MHz, CDCls) & 8.21 (dd, J = 7.7, 1.3 Hz, 2H), 7.95 (dd, J = 7.6, 1.3 Hz, 2H), 7.30 (t, J = 7.6 Hz,
2H), 4.03 (s, 6H), and 3.71 (s, 3H).

13C NMR (151 MHz, CDCl5) & 167.8, 142.2, 129.5, 125.3, 124.1, 119.7, 116.2, 52.4, and 39.5.

IR (Diamond-ATR, neat) Vimax: = 3004 (w), 2960 (w), 2931 (w), 1721 (s), 1584 (w), 1489 (w), 1428 (m), 1263
(s), 1202 (m), 1147 (m), 1087 (m), and 738 (m).

HRMS (ESI): calcd for ([M+H], C17H16NQ,4)*: 298.1074, found: 298.1077.

mp: 163-166 °C.
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6.6 Synthesis of carbazole 15f

OMe
(0]
o NaOMe
\ CH,Cl,/MeOH
N N\ // 55 °C, 10 min
Y —»
Me then aq. HCI O
55 °C, 10 min O
N CO,Me
OMe 0 \
(47%) Ve
Me-7m 15f

Following General Procedure E, a solution of indole—pyrone Me-7m (16 mg, 0.05 mmol, 1.0 equiv) in
dichloromethane (0.5 mL) and methanol (0.5 mL) was treated with a solution of sodium methoxide (25
wt% in MeOH, 15 uL, 0.07 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was heated at 55 °C with
stirring for 10 min. Subsequently, aqueous hydrogen chloride solution (1 M, 0.15 mL, 0.15 mmol, 3.0 equiv)
was added and the biphasic mixture was heated at 55 °C with stirring for 10 min. The crude residue was
purified by flash column chromatography on silica gel (8:1, hexanes:ethyl acetate) to provide carbazole
15f (8 mg, 0.02 mmol, 47%) as a white solid.

TLC (5:1, hexanes:ethyl acetate): Rf=0.39 (UV/KMnO,)

'H NMR (700 MHz, CDCls) & 8.41 — 8.38 (m, 1H), 8.13 (d, J = 7.7 Hz, 1H), 8.10 — 8.08 (m, 1H), 7.67 — 7.63
(m, 2H), 7.55 — 7.51 (m, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.29 (t, J = 7.4 Hz, 1H), 7.05 — 7.00 (m, 2H), 4.04 (s,
3H), 3.93 (s, 3H), and 3.88 (s, 3H).

13C NMR (176 MHz, CDCls) & 168.3, 159.0, 143.1, 138.4, 133.7, 131.6, 128.4, 127.5, 126.8, 126.2, 122.7,
122.0, 120.2, 120.0, 115.5, 114.4, 109.6, 55.6, 52.5, and 33.5.

IR (Diamond-ATR, neat) Vmax: = 2996 (w), 2949 (m), 2836 (w), 1715 (s), 1518 (w), 1482 (m), 1463 (m), 1436
(w), 1253 (s), 1221 (w), 1200 (m), 1182 (w), 1069 (w), 830 (w), and 748 (w).

HRMS (ESI): calcd for ([M+H], C22H20NOs)*: 346.1443, found: 346.1442.

mp: 95-104 °C.
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6.7 Synthesis of carbazole 15g

CF
1) 3
0 NaOMe
\ CH2C|2/MGOH
N\ 7 55 °C, 10 min
1 é
Me then ag. HCI O
55 °C, 10 min O
N CO,Me
CF 0, .
3 (53%) Vo
Me-7n 159

Following General Procedure E, a solution of indole—pyrone Me-7n (20 mg, 0.05 mmol, 1.0 equiv) in
dichloromethane (0.5 mL) and methanol (0.5 mL) was treated with a solution of sodium methoxide (25
wt% in MeOH, 15 uL, 0.07 mmol, 1.2 equiv) at 23 °C, and the resulting mixture was heated at 55 °C with
stirring for 10 min. Subsequently, aqueous hydrogen chloride solution (1 M, 0.15 mL, 0.15 mmol, 3.0 equiv)
was added and the biphasic mixture was heated at 55 °C with stirring for 10 min. The crude residue was
purified by flash column chromatography on silica gel (15:1, hexanes:ethyl acetate) to provide carbazole
15g (11 mg, 0.03 mmol, 53%) as a white solid.

TLC (5:1, hexanes:ethyl acetate): Ry = 0.34 (UV/KMnO,)

1H NMR (400 MHz, CDCl3) & 8.46 (d, J = 2.0 Hz, 1H), 8.17 —8.10 (m, 2H), 7.83 (d, J = 7.9 Hz, 2H), 7.73 (d, J =
8.8 Hz, 2H), 7.59 — 7.53 (m, 1H), 7.51 — 7.47 (m, 1H), 7.35 — 7.29 (m, 1H), 4.06 (s, 3H), and 3.95 (s, 3H).

13C NMR (151 MHz, CDCls) & 168.0, 144.6, 143.2, 139.1, 130.2, 129.1 (q, J = 32.6 Hz), 127.7, 127.5, 127.1,
126.4,126.0 (q, J = 3.9 Hz), 124.5 (q, J = 272.0 Hz), 122.6, 122.5, 120.34, 120.27, 115.8, 109.8, 52.6, and
33.6.

19 NMR (376 MHz, CDCl3) 6 -61.47.

IR (Diamond-ATR, neat) Vimax: = 3054 (w), 2952 (m), 2926 (m), 2853 (w), 1719 (s), 1616 (w), 1483 (w), 1324
(s), 1253 (m), 1201 (m), 1164 (m), 1121 (s), 1068 (m), 838 (w), 784 (w), and 748 (w).

HRMS (ESI): calcd for ([M+H], C22H17F3sNO,)*: 384.1206, found: 384.1206.

mp: 117-120 °C.
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7 Synthesis of other N-heterocyclic cores

7.1 Synthesis of indolizine 11

I
\ / dloxane N \ / CHZCI2/MeOH N Y

23°C. 12 h 23°C. 10 min —

Boc-S50 S50 11

(92%)

An oven-dried vial was charged with a magnetic stirring bar and pyrrole—pyrone Boc-S50 (70 mg, 0.27
mmol, 1.0 equiv). A hydrogen chloride solution (4 M in 1,4-dioxane, 4 mL) was added and the resulting
mixture was stirred at 23 °C. After 12 h, the mixture was diluted with saturated aqueous sodium
bicarbonate solution (4 mL) and ethyl acetate (2 mL). The layers were separated, the aqueous layer was
extracted with dichloromethane (3x3 mL) and the combined organic extracts were washed with saturated
aqueous sodium chloride solution (5 mL). The washed organic layer was dried over sodium sulfate, filtered,
and the filtrate was concentrated in vacuo. The crude residue was purified by flash column
chromatography on silica gel (5:1, hexanes:ethyl acetate) to provide an inseparable mixture of Boc cleaved
pyrrole—pyrone S50 (~0.075 mmol) and unreacted Boc-S50 in a ratio of 11:1, which was used directly in
the next step without further purification.

A vial was charged with a magnetic stirring bar and pyrrole—pyrone S50 (assuming 0.075 mmol, 1.0 equiv).
Dichloromethane (0.75 mL) and methanol (0.75 mL) were added sequentially and the resulting solution
was treated with a solution of sodium methoxide (25 wt% in MeOH, 0.02 mL, 0.09 mmol, 1.2 equiv) at 23
°C. After 10 min, the mixture was diluted with saturated agueous ammonium chloride solution (0.5 mL).
The layers were separated, the aqueous layer was extracted with dichloromethane (3x2 mL) and the
combined organic extracts were washed with saturated aqueous sodium chloride solution (2 mL). The
washed organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo.
The crude residue was purified by flash column chromatography on silica gel (15:1, hexanes:ethyl acetate)
to provide indolizine 11 (12 mg, 0.07 mmol, 92%) as a bright yellow oil.

TLC (5:1, hexanes:ethyl acetate): Rr= 0.57 (UV/KMnO,)

1H NMR (400 MHz, CDCls) 6 8.12 — 8.07 (m, 1H), 7.60 — 7.55 (m, 1H), 7.41 — 7.36 (m, 1H), 7.12 — 7.07 (m,
1H), 6.93 - 6.88 (m, 1H), 6.53 (t, J = 6.9 Hz, 1H), and 3.97 (s, 3H).

13C NMR (151 MHz, CDCls) & 166.3, 129.9, 129.7, 123.5, 120.9, 115.2, 113.4, 108.9, 101.7, and 52.1.

IR (Diamond-ATR, neat) Vmax: = 3131 (w), 3102 (w), 2997 (w), 2950 (m), 2847 (w), 1709 (s), 1543 (w), 1435
(w), 1352 (w), 1308 (m), 1283 (s), 1196 (s), 1050 (w), and 746 (m).

HRMS (ESI): calcd for ([M+H], C10H10NO,)*: 176.0706, found: 176.0704.
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7.2 Synthesis of indolizine 11 from pyrrole—pyrone Boc-S50

0)

—»
N\
l\{ \_/ CH,Cl,/MeOH —
Boc 55°C,12h
Boc-S50 1

(17%)

A vial was charged with a magnetic stirring bar and pyrrole—pyrone Boc-S50 (14 mg, 0.05 mmol, 1.0 equiv).
Dichloromethane (0.5 mL) and methanol (0.5 mL) were added sequentially and the resulting solution was
treated with a solution of sodium methoxide (25 wt% in MeOH, 15 uL, 0.07 mmol, 1.2 equiv) at 23 °C. The
resulting mixture was heated in a preheated (55 °C) heating block with stirring for 12 h. The mixture was
then cooled to 23 °C, and diluted with saturated aqueous ammonium chloride solution (0.5 mL). The layers
were separated, the aqueous layer was extracted with dichloromethane (3x1 mL) and the combined
organic extracts were washed with saturated aqueous sodium chloride solution (1 mL). The washed
organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo. The crude
residue was purified by flash column chromatography on silica gel (8:1, hexanes:ethyl acetate) to provide
indolizine 11 (1.5 mg, 0.01 mmol, 17%) as a bright yellow oil. The characterization data of 11 were in full
agreement with the values reported in Section 7.1.
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7.3  Synthesis of pyrido[3,2-b]indolizine 12

A
\ NaOMe
z N N

\
\ /
N N CHZCIZ CHZCIZIMeOH

SEM 45°C,2h 55 °C, 10 min
R= H, CH,OH

S53 S58 12 (40% over
2 steps)

A vial was charged with a magnetic stirring bar and SEM protected 7-azaindole—pyrone S53 (35 mg, 0.1
mmol, 1.0 equiv). Dichloromethane (2 mL) was subsequently added and the resulting solution was treated
with trifluoroacetic acid (0.08 mL, 1.0 mmol, 10 equiv) at 23 °C. The resulting mixture was heated in a
preheated (45 °C) heating block with stirring for 2 h. The mixture was then cooled to 23 °C, and diluted
with saturated aqueous sodium bicarbonate solution (2 mL). The layers were separated, the aqueous layer
was extracted with dichloromethane (3x2 mL) and the combined organic extracts were washed with
saturated aqueous sodium chloride solution (2 mL). The washed organic layer was dried over sodium
sulfate, filtered, and the filtrate was concentrated in vacuo. NMR analysis of the crude residue indicated
the presence of both hemiaminal and free (NH)-7-azaindole—pyrone S58, which was used directly in the
next step without further purification.

A vial was charged with a magnetic stirring bar and crude 7-azaindole—pyrone S58 (assuming 0.1 mmaol).
Dichloromethane (1 mL) and methanol (1 mL) were added sequentially and the resulting solution was
treated with a solution of sodium methoxide (25 wt% in MeOH, 0.03 mL, 0.13 mmol, 1.2 equiv) at 23 °C.
The resulting mixture was heated in a preheated (55 °C) heating block with stirring for 10 min. The mixture
was then cooled to 23 °C, and diluted with saturated agueous ammonium chloride solution (1 mL). The
layers were separated, the aqueous layer was extracted with dichloromethane (3x2 mL) and the combined
organic extracts were washed with saturated aqueous sodium chloride solution (2 mL). The washed
organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo. The crude
residue was purified by flash column chromatography on silica gel (5:1, hexanes:ethyl acetate) to provide
pyrido[3,2-blindolizine 12 (9 mg, 0.04 mmol, 40% over 2 steps) as a red solid.

TLC (3:1, hexanes:ethyl acetate): R¢= 0.35 (UV/KMnO,)

H NMR (700 MHz, CDCls) & 9.01 — 8.96 (m, 1H), 8.47 — 8.43 (m, 1H), 8.17 (dd, J = 8.0, 1.5 Hz, 1H), 7.94 (dd,
J=6.8, 1.3 Hz, 1H), 7.39 (dd, J = 8.0, 4.5 Hz, 1H), 7.29 (s, 1H), 6.62 (t, J = 6.9 Hz, 1H), and 4.01 (s, 3H).

13C NMR (176 MHz, CDCls) & 165.8, 141.5, 141.1, 132.9, 131.0, 129.2, 128.4, 122.4, 120.3, 120.0, 106.9,
92.2,and 52.3.

IR (Diamond-ATR, neat) Vmax: = 3097 (w), 2950 (w), 2926 (w), 2852 (w), 1715 (s), 1571 (w), 1534 (w), 1514
(w), 1437 (m), 1406 (m), 1314 (w), 1271 (s), 1201 (s), 799 (w), and 760 (m).

HRMS (ESI): calcd for ([M+H], C13H11N20,)*: 227.0815, found: 227.0810.

mp: 108-110 °C.
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7.4  Synthesis of 3-azaindolizine 13

@)

CF
CFsm_zL_O) NaOMe *N,_/C0aMe
! —> N
N-y' N7 CH,Cl,/MeOH N _\
H 55 °C, 10 min
S55 13

(65%)

A vial was charged with a magnetic stirring bar and pyrazole—pyrone $55 (13 mg, 0.06 mmol, 1.0 equiv).
Dichloromethane (0.6 mL) and methanol (0.6 mL) were added sequentially and the resulting solution was
treated with a solution of sodium methoxide (25 wt% in MeOH, 0.02 mL, 0.09 mmol, 1.2 equiv) at 23 °C.
The resulting mixture was heated in a preheated (55 °C) heating block with stirring for 10 min. The mixture
was then cooled to 23 °C, and diluted with saturated agueous ammonium chloride solution (1 mL). The
layers were separated, the aqueous layer was extracted with dichloromethane (3x2 mL) and the combined
organic extracts were washed with saturated aqueous sodium chloride solution (2 mL). The washed
organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo. The crude
residue was purified by flash column chromatography on silica gel (3:1, hexanes:ethyl acetate) to provide
3-azaindolizine 13 (9 mg, 0.04 mmol, 65%) as a white solid.

TLC (5:1, hexanes:ethyl acetate): R¢=0.30 (UV/KMnO,)

H NMR (400 MHz, CDCls) & 8.67 (d, J = 6.9 Hz, 1H), 8.08 (d, J = 7.2 Hz, 1H), 7.40 (s, 1H), 7.02 (t, J = 7.1 Hz,
1H), and 4.02 (s, 3H).

13C NMR (151 MHz, CDCls) 6 164.4, 145.8 (q, J = 38.1 Hz), 139.2, 133.1, 129.8, 121.9, 121.5 (g, J = 269.8
Hz), 112.9,98.3 (q, /= 2.8 Hz), and 52.8.

19 NMR (376 MHz, CDCl3) 6 -61.16.

IR (Diamond-ATR, neat) Vmax: = 3178 (w), 3099 (w), 3038 (w), 2956 (w), 2850 (w), 1721 (s), 1552 (w), 1503
(w), 1438 (w), 1416 (w), 1290 (m), 1227 (m), 1165 (s), 1125 (s), 793 (w), and 754 (w).

HRMS (ESI): calcd for ([M+H], C1oHsF3sN20,)*: 245.0532, found: 245.0539.

mp: 108-110 °C.
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7.5 Synthesis of 1-naphthylamine 14

Q NaOMe OO
(0] >

I CH,Cl,/MeOH
NH N 2356210 min NH, CO,Me
S57 14
(67%)

A vial was charged with a magnetic stirring bar and aniline—pyrone S57 (19 mg, 0.1 mmol, 1.0 equiv).
Dichloromethane (1 mL) and methanol (1 mL) were added sequentially and the resulting solution was
treated with a solution of sodium methoxide (25 wt% in MeOH, 0.03 mL, 0.13 mmol, 1.2 equiv) at 23 °C.
After 10 min, the reaction mixture was concentrated in vacuo. The crude residue was purified by flash
column chromatography on silica gel (2:1, hexanes:ethyl acetate) to provide 1-naphthylamine 14 (13.5 mg,
0.07 mmol, 67%) as a yellow oil. Note: 1-Naphthylamine 14 decomposes quickly both upon concentration
and exposure to acidic conditions.

TLC (1:1, hexanes:ethyl acetate): R=0.52 (UV/KMnO,)

H NMR (400 MHz, CDCls) & 7.74 — 7.65 (m, 2H), 7.43 = 7.39 (m, 2H), 7.26 — 7.21 (m, 1H), 6.91 (t, J = 7.3 Hz,
1H), 3.82 (s, 3H), and 2.60 (br s, 2H).

H NMR (600 MHz, C¢Dg) 6 7.85 (dd, J = 8.1, 1.6 Hz, 1H), 7.55 (dd, J = 8.1, 1.5 Hz, 1H), 7.14 — 7.09 (m, 2H),
7.00-6.97 (m, 1H), 6.57 — 6.53 (m, 1H), 3.36 (s, 3H), and 1.80 (br s, 2H).

13C NMR (151 MHz, C¢Ds) 6 166.5, 153.7, 148.5, 133.3, 132.0, 130.9, 128.4, 128.0, 126.6, 126.5, 123.9, and
51.6.

IR (Diamond-ATR, neat) Vmax: = 3359 (s), 3060 (w), 3027 (w), 3002 (w), 2952 (m), 2851 (w), 1716 (s), 1604
(w), 1484 (w), 1436 (w), 1253 (s), 1024 (w), and 758 (m).

HRMS (ESI): calcd for ([M+H], C12H12NO,)*: 202.0863, found: 202.0862.

S70



Pyrone remodeling strategy to access diverse heterocyclic cores— Supporting Information

8 Pyrido[1,2-a]indole Derivatization

8.1 Synthesis of benzoyl pyrido[1,2-alindole 16

o)
Ph
A\ FOMe  gc alc
Ve - \CO:Me
—_— CHQC'Q N \
0 — 23 °C, 75 min _
8a (61%) 16

A flame-dried microwave vial was charged with a magnetic stirring bar and taken into a N»-filled glovebox
where aluminum chloride (27 mg, 0.20 mmol, 2.0 equiv) was added. The vial was sealed with a septum
cap, taken out of the glovebox, and anhydrous dichloromethane (1 mL) was added under N». The resulting
mixture was cooled to 0 °C, and benzoyl chloride (14 pL, 0.12 mmol, 1.2 equiv) followed by a solution of
pyrido[1,2-alindole 8a (23 mg, 0.10 mmol, 1.0 equiv) in dichloromethane (1 mL) were added at 0 °C, and
the resulting mixture was gradually warmed to 23 °C. After 75 min, the reaction mixture was diluted with
water (2 mL). The layers were separated, the aqueous layer was extracted with ethyl acetate (3x2 mL) and
the combined organic extracts were washed with saturated aqueous sodium chloride solution (3 mL). The
washed organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo.
The crude residue was purified by Yamazen automated flash column chromatography on silica gel
(3:1—>1:3, hexanes:ethyl acetate) to provide benzoyl pyrido[1,2-alindole 16 (20 mg, 0.06 mmol, 61%) as a
yellow oil.

TLC (3:1, hexanes:ethyl acetate): R¢=0.30 (UV/KMnO,)

H NMR (700 MHz, CDCls) & 8.62 (dd, J = 7.0, 1.2 Hz, 1H), 7.95 — 7.90 (m, 1H), 7.90 — 7.86 (m, 2H), 7.69 (dd,
J=6.9,1.2 Hz, 1H), 7.67 — 7.62 (m, 1H), 7.58 — 7.54 (m, 1H), 7.49 — 7.44 (m, 2H), 7.41 — 7.36 (m, 2H), 6.84
(t, /=6.9 Hz, 1H), and 3.58 (s, 3H).

13C NMR (151 MHz, CDCls) 6 191.8, 166.6, 140.6, 134.9, 132.2, 130.2, 129.8, 129.4, 129.3, 128.7, 127.7,
125.5,124.7,122.1, 121.4, 110.4, 109.4, 106.7, and 52.2.

IR (Diamond-ATR, neat) Vmax: = 3057 (w), 3029 (m), 2950 (m), 2849 (w), 1724 (s), 1623 (m), 1499 (s), 1464
(s), 1403 (w), 1337 (w), 1275 (s), 1224 (s), 1199 (m), 1146 (w), 1090 (w), 760 (m), 745 (m), and 707 (m).
HRMS (ESI): calcd for ([M+H], C21H16NOs)*: 330.1125, found: 330.1126.
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8.2 Synthesis of pyrido[1,2-al]indole malonate 17

EtO,C._ _CO,Et

\l[\lrz F102C_co,Et
2
A\ CO-Me Cu(acac),
N \ - N COzMe
PhMe

= 110°C, 4 h NN

—

An oven-dried vial was charged with a magnetic stirring bar and pyrido[1,2-a]indole 8a (11 mg, 0.05 mmol,
1.0 equiv). The vial was flushed with nitrogen and sealed with a septum cap. A solution of diethyl 2-
diazomalonate (12 mg, 0.06 mmol, 1.2 equiv) in toluene (1.5 mL) was subsequently added and the resulting
solution was treated with copper(ll) acetylacetonate (0.7 mg, 0.003 mmol, 5 mol%) at 23 °C. The resulting
mixture was then heated to 110 °C and held at this temperature. After 4 h, the reaction mixture was cooled
to 23 °C and was directly poured onto a pre-packed silica gel column and the mixture was purified by flash
column chromatography (3:1, hexanes:ethyl acetate) to provide pyrido[1,2-a]indole malonate 17 (18 mg,
0.05 mmol, 96%) as a red solid.

TLC (5:1, hexanes:ethyl acetate): Rr=0.13 (UV/KMnO,)

H NMR (700 MHz, CDCl3) & 8.46 (d, J = 7.0 Hz, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.64 (d,
J=6.9 Hz, 1H), 7.43 - 7.38 (m, 1H), 7.35—7.31 (m, 1H), 6.49 (t, J = 6.9 Hz, 1H), 5.78 (s, 1H), 4.27 - 4.17 (m,
4H), 3.97 (s, 3H), and 1.23 (t, J = 7.1 Hz, 6H).

13C NMR (176 MHz, CDCls) 6 169.5, 167.1, 130.4, 130.0, 129.6, 129.2, 128.6, 124.0, 122.0, 121.3, 121.1,
110.1, 106.0, 98.2, 61.6, 52.8, 50.3, and 14.2.

IR (Diamond-ATR, neat) Vimax: = 3095 (w), 2982 (m), 2956 (w), 2933 (w), 2854 (w), 1718 (s), 1526 (w), 1465
(w), 1305 (w), 1266 (s), 1193 (m), 1180 (s), 1032 (w), and 743 (m).

HRMS (ESI): calcd for ([M+H], C21H22NQg)*: 384.1442, found: 384.1436.

mp: 91-95 °C.
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8.3  Synthesis of tetracyclic lactone 18

Ph—<o| Ph o

COzMe

\ BPhs

—_— N\ @]
N §\ DCE N \

80 °C, 14 h _

A flame-dried vial was charged with a magnetic stirring bar, pyrido[1,2-a]indole 8a (24 mg, 0.11 mmol, 1.0
equiv), and styrene oxide (36 puL, 0.32 mmol, 3.0 equiv). The vial was taken into a N,-filled glovebox where
triphenyl borane (26 mg, 0.11 mmol, 1.0 equiv) and N>-sparged (30 min) 1,2-dichloroethane (0.5 mL) were
added sequentially at 23 °C. The resulting mixture was heated at 80 °C with stirring. After 14 h, the reaction
mixture was cooled to 23 °C and filtered through a silica plug eluting with ethyl acetate and concentrated
in vacuo. The crude residue was purified by flash column chromatography on silica gel (5:1—>3:1,
hexanes:ethyl acetate) followed by preparative thin layer chromatography on silica gel (5:1,
dichloromethane:ethyl acetate) to provide tetracyclic lactone 18 (9.7 mg mg, 0.03 mmol, 29%) as a dark
red solid.

Recrystallization (ethyl acetate/hexanes) of the product gave crystals suitable for X-ray diffraction (see
Section 11)

TLC (3:1, hexanes:ethyl acetate): Rf=0.20 (UV/KMnO,)

'H NMR (600 MHz, Acetone) 6 9.05 (dd, J = 7.0, 1.0 Hz, 1H), 8.23 (d, J = 8.2 Hz, 1H), 7.99 (dd, J = 6.9, 1.1
Hz, 1H), 7.40 — 7.21 (m, 8H), 6.77 (t, J = 6.9 Hz, 1H), 4.98 — 4.91 (m, 2H), and 4.86 — 4.82 (m, 1H).

13C NMR (151 MHz, Acetone) 6 168.1, 142.1, 134.1, 131.5, 130.9, 130.5, 129.4, 129.3, 128.9, 127.7, 124.6,
121.8, 120.8, 119.6, 112.0, 107.4, 106.7, 73.4, and 44.1.

IR (Diamond-ATR, neat) Vimax: = 3059 (w), 3028 (w), 2927 (w), 2853 (w), 1700 (s), 1520 (m), 1460 (m), 1343
(m), 1255 (m), 1100 (w), and 742 (m).

HRMS (ESI): calcd for ([M+Na], C21H1sNNaO,)*: 336.0995, found: 336.0999.

mp: 180-182 °C.
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8.4 Synthesis of chloro pyrido[1,2-alindole 19

Cl
\__FoMe HCI \CO:Me
\ — >
N - DMSO N\
23°C,1h —
8a (42%) 19

An oven-dried vial was charged with a magnetic stirring bar and pyrido[1,2-a]indole 8a (23 mg, 0.10 mmol,
1.0 equiv). The vial was flushed with nitrogen and sealed with a septum cap. Dimethyl sulfoxide (1 mL) was
subsequently added and the resulting solution was treated with an aqueous hydrogen chloride solution
(12 M, 0.4 mL) at 23 °C. After 1 h, the reaction mixture was diluted with saturated aqueous sodium
bicarbonate solution (1 mL) and diethyl ether (2 mL). The layers were separated, the aqueous layer was
extracted with diethyl ether (3x2 mL) and the combined organic extracts were washed with saturated
aqueous sodium chloride solution (3 mL). The washed organic layer was dried over sodium sulfate, filtered,
and the filtrate was concentrated in vacuo. The crude residue was purified by flash column
chromatography on silica gel (5:1—3:1, hexanes:ethyl acetate) to provide chloro pyrido[1,2-alindole 19
(11 mg, 0.042 mmol, 42%) as a red solid.

Recrystallization (ethyl acetate/hexanes) of the product gave crystals suitable for X-ray diffraction (see
Section 11)

TLC (5:1, hexanes:ethyl acetate): R¢=0.26 (UV/KMnO,)

H NMR (700 MHz, CDCls) & 8.40 (dd, J = 7.1, 1.0 Hz, 1H), 7.86 (dd, J = 8.3, 3.6 Hz, 2H), 7.52 — 7.47 (m, 1H),
7.41-7.36 (m, 2H), 6.52 (t, J = 6.9 Hz, 1H), and 4.03 (s, 3H).

13C NMR (176 MHz, CDCls) & 166.7, 128.2, 127.6, 127.4, 127.3, 126.9, 124.3, 122.9, 121.9, 118.7, 110.2,
106.5, 95.8, and 52.6.

IR (Diamond-ATR, neat) Vimax: = 3054 (w), 2949 (m), 2925 (w), 2852 (w), 1724 (s), 1519 (w), 1461 (m), 1435
(w), 1345 (m), 1277 (s), 1232 (m), 1196 (m), 1180 (m), and 738 (s).

HRMS (ESI): calcd for ([M+H], C14H11CINO,)*: 260.0473, found: 260.0476.

mp: 67-70 °C.
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8.5 Synthesis of tricyclic indole 20

H, (balloon)

\ COzMe Pd/C \ COZMe
—>
N _\ EtOAc N
60 °C,1h
8a (78%) 20

A flame-dried vial was charged with a magnetic stirring bar, pyrido[1,2-alindole 8a (23 mg, 0.1 mmol, 1.0
equiv), and palladium on carbon (10 wt.%, 11 mg, 0.01 mmol, 0.1 equiv). The vial was flushed with nitrogen
and sealed with a septum cap. Anhydrous ethyl acetate (2 mL) was subsequently added and the resulting
mixture was sparged with hydrogen gas for 5 min. The reaction mixture was then heated at 60 °C under
H, atmosphere while stirring. After 1 h, the reaction mixture was cooled to 23 °C and was filtered through
a Celite® plug eluting with ethyl acetate (5 mL), and the filtrate was concetrated in vacuo. The crude
residue was purified by Yamazen automated flash column chromatography on silica gel (20:1—3:1,
hexanes:ethyl acetate) to provide tricyclic indole 20 (18 mg, 0.08 mmol, 78%) as a yellow oil.

TLC (3:1, hexanes:ethyl acetate): R¢=0.50 (UV/KMnO,)

H NMR (600 MHz, CDCls) & 7.58 — 7.53 (m, 1H), 7.30 — 7.27 (m, 1H), 7.19 — 7.15 (m, 1H), 7.12 — 7.07 (m,
1H), 6.41 - 6.39 (m, 1H), 4.10 — 4.05 (m, 3H), 3.78 (s, 3H), 2.34 - 2.27 (m, 1H), 2.26 — 2.19 (m, 1H), 2.17 —
2.11 (m, 1H), and 2.08 — 2.00 (m, 1H).

13C NMR (151 MHz, CDCl5) & 173.1, 136.4, 132.8, 128.0, 121.2, 120.3, 120.1, 109.0, 99.7, 52.5, 42.1, 40.9,
24.4, and 21.3.

IR (Diamond-ATR, neat) Vimax: = 3050 (w), 3023 (w), 2950 (m), 2869 (w), 1733 (s), 1456 (m), 1366 (w), 1313
(m), 1261 (w), 1207 (m), 1164 (s), 1026 (w), and 748 (m).

HRMS (ESI): calcd for ([M+H], C24H1sNO,)*: 230.1176, found: 230.1178.
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8.6 Synthesis of boronate ester 21

CO,Me

YV

[Ir]
\ CO-Me Conditions A or B \

N\ - N

—

Bpin
8a 21

Table S2. Optimization of C—H borylation of pyrido[1,2-a]indole 8a.

Entry mmol 8a Conditions A or B, Temp. 8a:21 (% qNMR yield 21)

1 0.0479 A, 23—80 °C 2.79:1.00

2 0.0444 B, 23—80 °C 1.00 : 3.15 (20%), not very clean

3 0.0453 A, 100 °C 1.00 : 1.55 (33%)

4 0.0462 B, 60 °C no SM (52%), fairly clean

5 0.102 B, 60 °C 40% isolated (see below for details)

gNMR yields (entries 2—4) were determined by using 1,2,3-trimethoxybenzene as an internal standard.

Condition A’: In a Ny-filled glovebox, a flame-dried vial was charged with a magnetic stirring bar, (1,5-
cyclooctadiene)(methoxy)iridium(l) dimer (4.0 mol%), 4,4’-di-tert-butyl-2,2’-dipyridyl (8.0 mol%), N,-
sparged (30 min) tetrahydrofuran (0.25 mL), and pinacolborane (1.1 equiv). The resulting mixture was
brought out of the glovebox and was stirred at 23 °C for 10 min. A solution of pyrido[1,2-alindole 8a (1.0
equiv) in tetrahydrofuran (0.25 mL) was subsequently added and the resulting mixture was heated in a
preheated (indicated temperature) heating block. After 16 h, the reaction mixture was cooled to 23 °C and
was filtered through a Celite® plug eluting with ethyl acetate, and the filtrate was concetrated in vacuo.
The crude residue was analyzed by quantitative NMR spectroscopy.

Condition B: A flame-dried vial was charged with a magnetic stirring bar and bis(pinacolato)diboron (1.0
equiv) and taken into a N-filled glovebox. An aliquot (0.2 mL) of a stock solution (3 mg [Ir]/2 mL of THF)
of (1,5-cyclooctadiene)(methoxy)iridium(l) dimer (1.0 mol%) and 3,4,7,8-tetramethyl-1,10-phenanthroline
(2.0 mol%) in tetrahydrofuran was added and the resulting mixture was heated at 80 °C with stirring for 1
h. The resulting mixture was then transferred to a separate flame-dried vial charged with a magnetic
stirring bar and pyrido[1,2-alindole 8a (1.0 equiv) at 23 °C. The catalyst vial was rinsed with additional
tetrahydrofuran (0.2 mL) and the resulting mixture was heated in a preheated (indicated temperature)
heating block. After 16 h, the reaction mixture was cooled to 23 °C and was filtered through a Celite® plug
eluting with ethyl acetate, and the filtrate was concetrated in vacuo. The crude residue was analyzed by
quantitative NMR spectroscopy.

During our optimization efforts for the borylation of pyrido[1,2-alindole 8a, we focused mainly on
screening conditions A and B at various temperatures. Both conditions A and B did not provide any product
at lower temperatures (23 °C) and required heating to achieve conversion. Heating to 80 °C (entries 1 and
2, Table S2) provided a complex mixture of unreacted starting material, boronate ester 21, and
unidentified side products. Employing condition A at 100 °C (entry 3) further improved conversion
compared to entry 1 and provided 21 in moderate yield (33% gNMR yield). We then found that utilizing
condition B at moderately elevated temperatures (60 °C, entry 4) provided an overall cleaner reaction (as
judged by TLC and crude NMR) with full conversion and good yield (52% gNMR vyield). This optimal set of
conditions scaled well to 0.1 mmol of 8a (entry 5), once again providing full conversion and a moderate
isolated yield (40%).
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Procedure for the synthesis of boronate ester 21:

COsMe
CO,Me [Ir(OMe)CODJz N 2
A\ Meyphen, Bopin,
\ > N\
N THF —
60 °C, 12 h Bpin
8a (40%) 21

A flame-dried vial was charged with a magnetic stirring bar and bis(pinacolato)diboron (25 mg, 0.10 mmol,
1.0 equiv). The vial was flushed with nitrogen and sealed with a septum cap. An aliquot (0.5 mL) of a stock
solution (3 mg [Ir]/2.5 mL of THF) of (1,5-cyclooctadiene)(methoxy)iridium(l) dimer (1.0 mol%) and 3,4,7,8-
tetramethyl-1,10-phenanthroline (2.0 mol%) in tetrahydrofuran was subsequently added and the resulting
mixture was heated at 80 °C with stirring for 1 h. The resulting complex was then transferred to a separate
flame-dried vial charged with a magnetic stirring bar and pyrido[1,2-a]indole 8a (23 mg, 0.10 mmol, 1.0
equiv) at 23 °C. The vial that contained the complex was rinsed with additional tetrahydrofuran (0.5 mL)
and the resulting mixture was heated in a preheated (60 °C) heating block. After 12 h, the reaction mixture
was cooled to 23 °C and was directly poured onto a pre-packed silica gel column and the mixture was
purified by flash column chromatography (8:1, hexanes:ethyl acetate) to provide boronate ester 21 (14
mg, 0.04 mmol, 40%) as an orange solid. Note: Slow decomposition of 21 is observed upon prolonged
exposure to acidic conditions.

TLC (3:1, hexanes:ethyl acetate): Rr=0.60 (UV/KMnO,)

'H NMR (600 MHz, CDCl;) § 8.94 (d, J = 1.1 Hz, 1H), 8.11 (d, J = 1.1 Hz, 1H), 8.01 — 7.98 (m, 1H), 7.85 - 7.81
(m, 1H), 7.45 — 7.41 (m, 1H), 7.37 (br s, 1H), 7.35 —7.31 (m, 1H), 3.99 (s, 3H), 1.39 (s, 12H).

13C NMR (151 MHz, CDCls) 6 166.0, 136.8, 133.4, 133.2, 130.7, 129.9, 124.3, 121.1, 120.8, 119.4, 110.8,
95.7, 84.3, 52.1, and 25.0. (Missing the carbon signal directly bonded to boron, due to quadrupole
relaxation)

118 NMR (193 MHz, CDCls) & 30.5

IR (Diamond-ATR, neat) Vmax: = 3054 (w), 2978 (m), 2950 (w), 2927 (w), 2855 (w), 1715 (s), 1606 (m), 1460
(w), 1390 (s), 1339 (m), 1311 (s), 1259 (s), 1201 (s), 1141 (s), 793 (w), and 671 (w).

HRMS (ESI): calcd for ([M+H], Co0H23BNO4)*: 352.1715, found: 352.1717.

mp: 184-189 °C.
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8.7 Synthesis of biaryl compound 22

Phl
[Pd] (mol %)
Ligand (mol %) COxMe
CO,Me \
\ C82CO3 N \
N\ > _
— PhH
blue LED, time Ph
8a 22
Me Me
PPh,
@ PO PCy>
o MeO OMe
PPh2 PPh, P(‘Bu),
PPh, PPh,
iPr
Xantphos DPEphos L SPhos XPhos
Table S3. Optimization of Heck coupling.
Entry [Pd] (mol %) Ligand (mol %) Modification Time  8a:22 (% NMR yield, % brsm)?
1 Pd(PCysz), (10 mol %) None 1,4-dioxane, 100 °C, no light 16 h Mostly 8a, trace 22
2 Pd(OAc), (20 mol %) Xantphos (40 mol %) - 19h 4.67 : 1.00 (15%, 44% brsm)
3 Pd(OAc), (20 mol %) Xantphos (40 mol %) - 48 h 2.06 : 1.00 (19%, 34% brsm)
4 Pd(OAc), (50 mol %)  Xantphos (100 mol %) - 15.5h  3.40:1.00 (20%, 60% brsm)
5 Pd(OAc), (100 mol %)  Xantphos (200 mol %) - 15.5h 3.22:1.00 (22%, 77% brsm)
6b Pd(OAc), (2 mol %) Xantphos (4 mol %) - 19 h Mostly 8a, trace 22
7 Pd(OAc), (60 mol %) Xantphos (120 mol %) - 3d 1.97 : 1.00 (29%, 66% brsm)
8 Pd(OAc), (50 mol %)  Xantphos (100 mol %) 80 °C, no light 16.5h  Only unreacted 8a
9 Pd(OAc), (50 mol %) Xantphos (100 mol %) 2 LED lamps 24h  3.90:1.00 (18%, 59% brsm)
10 Pd(OAc), (20 mol %)  DPEphos (40 mol %) - 20h  6.08:1.00 (12%, 43% brsm)
1 Pd(OAc), (20 mol %) L (40 mol %) - 20h  6.10:1.00 (11%, 34% brsm)
12 Pd(OAc), (20 mol %)  SPhos (40 mol %) _ 19h  Mostly 8a, trace 22
13 Pd(OAc), (20 mol %)  XPhos (40 mol %) _ 19h  8.32:1.00 (7%)
14 Pd(OAc), (60 mol %)  Xantphos (120 mol %) 0.1 mmol scale 3d 23% isolated (91% brsm)

The reaction conditions of the initial attempts to access biaryl compound (22) and subsequent
optimization attempts of this cross-coupling are summarized in Table S3. All of the optimization attempts
(entries 1-13, Table S3) were conducted on approximately 0.04 mmol scale following the procedure
outlined below.

General procedure followed for conducting the optimization attempts:

A flame-dried vial was charged with a magnetic stirring bar, pyrido[1,2-alindole 8a (1.0 equiv), ligand
(Note: DPEPhos, L, and XPhos were all stored and added in a glovebox), and Pd-catalyst (Note: Pd(PCys),
was stored and added in a glovebox). The vial was sealed and taken into a N>-filled glvoebox where cesium
carbonate (3.0 equiv), benzene (freeze-pump-thawed 5 cycles, 0.18 M), and iodobenzene were added
sequentially. The vial was sealed, taken out of the glovebox, and the reaction mixture was stirred while
either being heated (using a preheated heating block) or irradiated with one or two Kessil AI60WE Tuna
Blue LED lamp(s) [Note: for reactions that were irradiated, compressed air was used for cooling to maintain
a temperature of 23 °C, the vial was placed 1 cm away from the lamp(s), and the entire setup was covered
with foil (see Figure S5 for details)]. After the indicated period of time (Table S3), the reaction mixture was
filtered through a Celite® plug eluting with ethyl acetate, the filtrate was concetrated in vacuo, and the
crude residue was analyzed by NMR spectroscopy.
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Our screening efforts for this reaction began by testing standard Heck coupling conditions between
pyrido[1,2-alindole 8a and iodobenzene with a Pd(0) catalyst (Pd(PCys),) in dioxane (sparged with N») at
100 °C (entry 1, Table S3). After 16 h, we mostly recovered the starting pyrido[1,2-a]indole 8a with trace
amounts of a coupled product that was later identified as biaryl compound 22. On this basis, we next
turned our attention toward investigating photo-mediated Heck-type couplings.’® We first began by
testing a Pd(OAc), (20 mol %)/Xantphos (40 mol %) catalyst system with blue LED irradtion (entry 2), which
formed biaryl coupound 22 in 15% yield (44% brsm). We observed that the yield only slightly improved
(15%—19%) when the mixture was irradiated for 48 h instead (entry 3). Next, we investigated catalyst
loading (entries 4—6) and found that as the catalyst loading increased, the yield mildly improved; however,
we were only able to obtain 22% vyield of 22 with stoichiometric quantities of Pd(OAc), (entry 5). Low
catalyst loading (entry 6) only provided trace amounts of 22. In an attempt to further improve conversion,
we performed three iterative additions of 20 mol % of catalyst over the course of three days (entry 7),
which provided the highest yield thus far (29%, 66% brsm). A control experiment (entry 8) was performed
where the mixture was heated, but not irradiated with light, which only returned the starting material and
no product. This result confirmed the necessity of light for this process. Intrigued by the necessity for blue
LED irradiation, we next irradiated the reaction mixture with two lamps instead of one, but this
unfortunately did not improve conversion or yield (entry 9). Finally, we investigated the effect of other
bidentate (entries 10 and 11) and monodentate (entries 12 and 13) phosphine ligands on this cross-
coupling; however, all of the ligands we screened did not improve the yield. From these studies, we
concluded that entry 7 (iterative addition of catalyst over three days) was the most effective set of
conditions, and we performed this reaction on 0.1 mmol scale (discussed in detail below), which furnished
the desired cross-coupled product (22) in 23% (91% brsm) isolated yield.

Reaction Set Up:

Figure S5. Reaction set up for photo-mediated Heck coupling to access 22.

reaction vial centered compressed air attached to
in front of lamp funnel for cooling

vial placed ~1 cm from lamp entire set up covered with foil while vial was irradiated
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Phl, Pd(OAc), CO,Me
A OMe  yanivhos, Cs,CO5 N
- PhH =
blue LED, 3 days Ph
8a (23%, 91% brsm) 22

A flame-dried vial was charged with a magnetic stirring bar, pyrido[1,2-a]indole 8a (24 mg, 0.11 mmol, 1.0
equiv), Xantphos (24 mg, 0.04 mmol, 0.4 equiv) and palladium(ll) acetate (5 mg, 0.02 mmol, 0.2 equiv).
The vial was then taken into a N»-filled glovebox where cesium carbonate (104 mg, 0.32 mmol, 3.0 equiv),
benzene (freeze-pump-thawed 5 cycles, 0.6 mL), and iodobenzene (18 uL, 0.16 mmol, 1.5 equiv) were
added sequentially. The vial was sealed, taken out of the glovebox, and the reaction mixture was irradiated
with a Kessil A160WE Tuna Blue LED lamp. The temperature of the reaction system was maintained at 23
°C by cooling with a compressed air set up, and the vial distance from the lamp was about 1 cm. After 24
h, the reaction mixture was treated with a second portion of Xantphos (24 mg, 0.04 mmol, 0.4 equiv),
palladium(ll) acetate (5 mg, 0.02 mmol, 0.2 equiv), and benzene (0.1 mL), and the stirring was continued
under irradiation. After an additional 24 h, the mixture was once again treated with a third portion of
Xantphos (24 mg, 0.04 mmol, 0.4 equiv), palladium(Il) acetate (5 mg, 0.02 mmol, 0.2 equiv), and benzene
(0.1 mL), and stirring was continued under the same conditions. After a total of 3 d, the reaction mixture
was filtered through a Celite® plug eluting with ethyl acetate (5 mL), and the filtrate was concetrated in
vacuo. The crude residue was purified by preparative thin layer chromatography on silica gel (3:1,
hexanes:ethyl acetate) to provide biaryl compound 22 (7.4 mg, 0.02 mmol, 23%; 91% brsm) as a red oil
and unreacted 8a (18 mg, 0.08 mmol, 75%) as a red solid, in order of elution.

TLC (3:1, hexanes:ethyl acetate): Ry= 0.60 (UV/KMnO,)

1H NMR (600 MHz, CDCls) 6 7.90 — 7.87 (m, 1H), 7.84 — 7.80 (m, 1H), 7.64 — 7.56 (m, 4H), 7.54 — 7.50 (m,
2H), 7.30 - 7.26 (m, 1H), 6.90 — 6.85 (m, 1H), 6.54 — 6.50 (m, 1H), 6.37 — 6.34 (m, 1H), and 4.03 (s, 3H).
13C NMR (151 MHz, CDCls) & 166.1, 145.4, 136.1, 135.0, 131.0, 130.5, 130.0, 129.3, 128.9, 128.7, 123.2,
120.9, 119.8,119.2, 115.3, 109.3, 96.1, and 52.3.

IR (Diamond-ATR, neat) Vimax: = 3058 (w), 2950 (m), 2925 (m), 2853 (w), 1714 (s), 1543 (w), 1446 (w), 1274
(w), 1246 (s), 1204 (m), 1129 (m), 791 (w), 768 (w), and 702 (w).

HRMS (ESI): calcd for ([M+H], C2oH1sNO,)*: 302.1176, found: 302.1180.

S80



Pyrone remodeling strategy to access diverse heterocyclic cores— Supporting Information

9 Formal Synthesis of Fascaplysin Congeners

9.1 Synthesis of carboxylic acid S59

A COo,Me KOH A CO-.H
—»
N _\ EtOH N ~\
reflux, 7 h
8a S59
(99%)

A round-bottomed flask was charged with a magnetic stirring bar and pyrido[1,2-a]indole 8a (589 mg, 2.62
mmol, 1.0 equiv). A solution of potassium hydroxide (3 g, 53.5 mmol, 20 equiv) in ethanol (26 mL) was
added and the resulting mixture was heated at 80 °C. After 7 h, the reaction mixture was cooled to 23 °C,
and diluted with water (20 mL) and diethyl ether (30 mL). The layers were separated and the organic layer
was washed with water (2x20 mL). The combined aqueous layers were acidified with glacial acetic acid
(1.5 mL) and the resulting mixture was extracted with ethyl acetate (3x20 mL). The combined organic
extracts were washed with saturated aqueous sodium chloride solution (50 mL) and the washed organic
layer was dried over sodium sulfate, filtered, and the filtrate was concentrated in vacuo to provide
carboxylic acid S59 (546 mg, 2.60 mmol, 99%) as a red solid.

TLC (100% ethyl acetate): R¢= 0.57 (UV/KMnOQ,)

H NMR (400 MHz, DMSO) & 13.12 (br s, 1H), 9.16 = 9.11 (m, 1H), 8.31 — 8.25 (m, 1H), 7.86 — 7.79 (m, 2H),
7.42 —7.35 (m, 1H), 7.33 = 7.28 (m, 1H), 7.26 (br s, 1H) and 6.70 (t, J = 6.9 Hz, 1H).

3CNMR (151 MHz, DMSO) 6 166.2, 132.8, 130.3, 129.3, 129.14, 129.07, 123.5, 120.4, 120.0, 111.5, 107.8,
106.4, and 93.7.

IR (Diamond-ATR, neat) Vmax: = 3054 (s), 2923 (s), 2852 (m), 2607 (m), 1671 (s), 1615 (w), 1519 (w), 1445
(w), 1296 (m), 1207 (w), 907 (w), 768 (m), and 743 (m).

HRMS (ESI): calcd for ([M+H], C13H10NO,)*: 212.0706, found: 212.0697.

mp: Decomposed at 236 °C.
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9.2 Synthesis of amine 23

DPPA, Et;N
THF
COZH 23 OC, 1 h \ NH2
—
\ then Hzo \
80°C,1h
S59 23
(94%)

\
N

—

An oven-dried vial was charged with a magnetic stirring bar and carboxylic acid $59 (74 mg, 0.35 mmol,
1.0 equiv). Tetrahydrofuran (3.5 mL) was subsequently added and the resulting solution was treated with
triethylamine (0.12 mL) and diphenylphosphoryl azide (0.08 mL, 0.37 mmol, 1.05 equiv) in a sequential
fashion, at 23 °C. After 1 h, water (0.6 mL) was added and the resulting mixture was heated at 80 °C. After
an additional 1 h, the reaction mixture was cooled to 23 °C and was diluted with saturated aqueous sodium
carbonate solution (3 mL). The layers were separated, the aqueous layer was extracted with ethyl acetate
(3x3 mL) and the combined organic extracts were washed with saturated aqueous sodium chloride
solution (3 mL). The washed organic layer was dried over sodium sulfate. The dried solution was filtered,
and the filtrate was concentrated in vacuo. The crude residue was purified by flash column
chromatography onssilica gel (5:1, hexanes:ethyl acetate) to provide amine 23 (60 mg, 0.33 mmol, 94%) as
a yellow solid.

TLC (5:1, hexanes:ethyl acetate): Rr=0.17 (UV/KMnO,)

H NMR (700 MHz, Acetone) § 8.09 (d, J = 6.9 Hz, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.29
—7.24 (m, 1H), 7.22 = 7.18 (m, 1H), 6.77 (br s, 1H), 6.45 (t, J = 7.0 Hz, 1H), 6.15 (d, J = 7.0 Hz, 1H), and 5.14
(brs, 2H).

13C NMR (176 MHz, Acetone) & 139.2, 132.6, 131.3, 129.5, 123.0, 121.2, 120.1, 114.9, 111.6, 110.2, 99.2,
and 88.9.

IR (Diamond-ATR, neat) Vmax: = 3456 (s), 3375 (s), 3217 (m), 3104 (w), 3045 (m), 2924 (m), 2853 (w), 1615
(m), 1544 (s), 1513 (w), 1465 (w), 1320 (m), 1228 (w), 760 (m), and 732 (s).

HRMS (ESI): calcd for ([M+H], C12H11N2)*: 183.0917, found: 183.0915.

mp: 138-143 °C.
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9.3 Synthesis of 12H-pyrido[1,2-a:3,4-b]diindole 24

X

(1-2 equiv) @
Conditions ©\/b
[catalyst (10 mol%),
23 ligand (20 mol%) 24

base (3 equiv)
solvent (0.1 M)]

Table S4. Initial discovery and optimization of the domino reaction.

Entry Conditions Modification Comments
1 X = Cl, Pd(OAc),, PCys, K3PO4, NMP, RT to 110 °C, 12 h polar-solvent negligible 24, very messy
2 X = Cl, Pd(OAc),, PCys, NaOBu, PhMe, RT to 110 °C, 15h  non-polar solvent 16% 24 + complex mix (S60)
3 X = Cl, Pd(OAc),, PCys, NaOBu, PhMe, 110 °C, 8 h shorter rxn time 15% 24, same as above
4 X = Br, Pd(OAc),, PCy;, NaOBu, PhMe, 100 °C, 20 h X =Br 7% 24 (14% brsm), 49% conv.?
5 X =1, Pd(OAc),, PCys, NaOBu, PhMe, 100 °C, 20 h X=1 21% 24 (31% brsm), 67% conv.?
6 X = Cl, Pd(OAc),, PCys, Cs,CO3, PhMe, 100 °C, 8 h Base = Cs,CO3 recovered ~50% 23
7 X =1, Pd(OAc),, XPhos, NaOBu, PhMe, 100 °C, 16 h Ligand = Xphos 6% 24 + complex mix (S60)2
8 X =1, Pd(OAc),, DavePhos, NaO'Bu, PhMe, 100 °C, 16 h Ligand = DavePhos 15% 24 + complex mix (S60)2
9 X =1, Pd(OAc),, RuPhos, NaO'Bu, PhMe, 100 °C, 16 h Ligand = RuPhos 14% 24 + complex mix (S60)@
10 X =1, Pd(OAc),, SPhos, NaOBu, PhMe, 100 °C, 16 h Ligand = SPhos 13% 24 + complex mix (S60)?
1 X =1, Pd(OAc),, PPhg, NaOBu, PhMe, 100 °C, 16 h Ligand = PPhg 4% 24 + 61% 23 + complex mix (S60)4
12 X =1, Pd(OAc),, P'Bug, NaO'Bu, PhMe, 100 °C, 16 h Ligand = PBu; 5% 24 + 65% 23 + complex mix (S60)?
13 X =1, PdCl,dppf, dppf, NaOBu, PhMe, 100 °C, 12 h bidentate ligand 10% 24, 28% S60 (much cleaner)?
14 X =1, PdCl,dppf, dppf, NaOBu, THF, 100 °C, 15 h THF 15% 24, 39% S607
15 X = Cl, PdCl,dppf, dppf, NaOBu, PhMe, 100 °C, 15 h dppf + X =Cl 99% S607
16 X = Br, PdCl,dppf, dppf, NaOBu, PhMe, 100 °C, 15 h dppf + X = Br 12% 24, 51% S607
17 X = Cl, PdCl,dppf, dppf, NaOBu, PhMe, 100 °C, 24 h excess cat. + ligand 4% 24, 92% S60
18 X = Cl, Pd(OAc),, dppf, NaOBu, PhMe, 100 °C, 18 h Pd(OAc),+dppf 44% 24, 31% S60
19 X = Cl, Pd(OAc),, dppf, NaOBu, PhMe, 100 °C, 24 h longer rxn time 18% 24 + complex mix (S60)
20 X = Br, Pd(OAc),, dppf, NaOBu, PhMe, 100 °C, 24 h X =Br 56% 24, 26% S60
21 X = Br, Pd(OAc),, dppf, PivOH, Cs,CO3, PhMe, 100 °C, 18 h  PivOH + Cs,CO4 25% 24, 52% S60
22 X = Br, Pd(OAc),, dppf, NaOBu, PhMe, H,0, 100 °C, 24 h PhMe/H,O 30% 24, 17% S60
23 X =1, Pd(OAc),, dppf, NaOBu, PhMe, 100 °C, 24 h X=1 33% 24
24 X = Br, Pd(OAc),, dppe, NaO'Bu, PhMe, 100 °C, 18 h dppe 11% 24 + complex mix (S60)
25 X = Br, Pd(OAc),, dppp, NaOBu, PhMe, 100 °C, 19 h dppp 13% 24 + 32% S60
26 X = Br, Pd(OAc),, dppb, NaO'Bu, PhMe, 100 °C, 18 h dppb 6% 24 + complex mix (S60)
27 X = Br, Pd(OAc),, dppm, NaOBu, PhMe, 100 °C, 19 h dppm no reaction
28 X = Br, Pd(OAc),, dppBz, NaOBu, PhMe, 100 °C, 19 h dppBz no reaction
29 X = Br, Pd(OAc),, (R)-BINAP, NaO'Bu, PhMe, 100 °C, 20 h BINAP 10% 24 + complex mix (S60)
30 X = Br, Pd(OAc),, dppf, NaOBu, PhMe, 100 °C, 24 h 0.1 mmol scale 55% 24, 12% S60

%jeld determined by 'H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard.
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The reaction conditions of the initial attempts to access the pentacyclic 12H-pyrido[1,2-a:3,4-b]diindole
(24) and subsequent optimization of this domino reaction are summarized in Table S4. All the optimization
attempts (except for entry 30) were conducted on a 0.04 mmol scale following the procedure given below.

General optimization procedure for the synthesis of 24:

An oven-dried vial was charged with a magnetic stirring bar, amine 23 (1.0 equiv), catalyst (10 mol%),
ligand (20 mol%), and base (3.0 equiv). The vial was flushed with nitrogen and sealed with a septum cap.
A solution of 1,2-dihalobenzene (1-2 equiv) in anhydrous solvent (0.1 M) was subsequently added and the
resulting mixture was heated in a preheated (indicated temperature) heating block with stirring for 8—24
h. The reaction mixture was then cooled to 23 °C, and was filtered through a Celite® plug eluting with ethyl
acetate, and the filtrate was concetrated in vacuo. The crude residue was either analyzed by NMR
spectroscopy or purified by flash column chromatography on silica gel to obtain an isolated yield of 24.

We commenced our investigation on the basis of the work reported by Ackermann and co-workers,*’
describing a domino reaction between aniline derivatives and 1,2-dihalobenzene to construct a wide
variety of carbazole heterocyclic cores. While attempting our envisioned transformation under the
previously reported reaction conditions, we found that the polarity of the solvent played a major role in
the outcome of the desired domino N—H/C—H activation process; we identified non-polar solvents such as
toluene to give the desired product 24 in 16% yield whereas we observed negligible formation of 24 when
the reaction was conducted in polar solvents like NMP (entries 1-2). Hence, we decided to proceed with
our optimization using toluene as the solvent. We next surveyed other alternative 1,2-dihalobenzene
coupling partners and also explored other basic conditions (entries 3—6). A slightly better result was
observed with 1,2-diiodobenzene in the presence of sodium tert-butoxide as the base (entry 5). These two
variables were kept constant for the next set of attempted conditions. Next, a variety of monodentate
ligands were screened, but unfortunately, none proved to enhance the yield (entries 7-12).

Interestingly, when the reaction was carried out in the presence of a bidentate catalyst system, Pd(dppf)Cl,
+ dppf, the formation of other undesired side-products were significantly minimized, which was validated
by 'H NMR analysis (entry 13). While the net yield of the desired product 24 was still unimproved, the yield
of the initial C-N bond forming event was significantly enhanced, which was observed when 1,2-
dichlorobenzene (DCB) was used as the coupling partner (entry 15). Although we did not observe the
presence of desired pentacyclic compound 24, the intermediate biaryl amine S60 was formed almost
guantitatively (entry 15), thereby supporting the hypothesis of dppf facilitating the initial C—N bond
forming event. We then explored several variations, such as increasing catalyst loading, prolonging
reaction time, and screening other 1,2-dihalobenzenes (14-17); however, these all proved unfruitful in
improving the yield of 24. As the second step of the domino reaction involves C—H functionalization to
construct the final C—C bond to complete the pentacyclic framework of 24, we presumed this proceeds
through a Concerted Metalation-Deprotonation (CMD) type mechanism. Assuming the advantageous role
of dppf in promoting the initial amination process, we chose to combine this ligand with a suitable
precatalyst that could favor the subsequent C—H functionalization event. Hence, we chose to return to
Pd(OAc),, which is typically employed as a precatalyst to faciliate CMD-type processes.'® To our benefit,
when the reaction was conducted with a combination of Pd(OAc)2 + dppf catalyst system, the pentacyclic
compound (24) was isolated in 44% yield (entry 18) and we observed a further elevation in the yield when
1,2-dibromobenzene was used as the coupling partner (entry 20). With this promising result, other variants
such as different solvent conditions, alternate bases, and other bidendate ligands were explored (entries
21-29). To our dismay, no attempted variations proved to be beneficial. Hence, we adopted the best
yielding reaction conditions (entry 20), and repeated the domino reaction on a 0.1 mmol scale, which gave
24 in 55% yield (entry 30, see below for procedure).
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Synthesis of 12H-pyrido[1,2-a:3.4-b'ldiindole 24:
Cr
Br
Pd(OAc),, dppf
N NH, NaOBu
\ > +
N — PhMe
100 °C, 24 h

23 24 (55%) 12%)

An oven-dried vial was charged with a magnetic stirring bar, amine 23 (18 mg, 0.10 mmol, 1.0 equiv),
catalyst (2.5 mg, 0.01 mmol, 10 mol%), ligand (12 mg, 0.02 mmol, 20 mol%), and base (29 mg, 0.30 mmol,
3.0 equiv). The vial was flushed with nitrogen and sealed with a septum cap. A solution of 1,2-
dibromobenzene (50 mg, 0.21 mmol, 2.0 equiv) in toluene (1 mL) was subsequently added and the
resulting mixture was heated in a preheated (100 °C) heating block. After 24 h, the reaction mixture was
cooled to 23 °C and was directly poured onto a pre-packed silica gel column, and the mixture was purified
by flash column chromatography on silica gel (30:1—8:1, hexanes:ethyl acetate) to provide aryl amine S60
(4 mg, 0.01 mmol, 12%) as a bright yellow oil and 12H-pyrido[1,2-a:3,4-b"|diindole 24 (14 mg, 0.06 mmol,
55%) as a yellow solid, in order of elution.

Data for aryl amine S60:

TLC (5:1, hexanes:ethyl acetate): Rr=0.52 (UV/KMnO,)

H NMR (600 MHz, DMSO) & 8.45 (d, J = 6.9 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 7.77 = 7.73 (m, 1H), 7.72 - 7.65
(m, 2H), 7.36 — 7.28 (m, 2H), 7.26 — 7.20 (m, 2H), 7.06 — 7.01 (m, 1H), 6.77 (s, 1H), 6.52 (t, J = 7.0 Hz, 1H),
and 6.20 (d, J = 7.0 Hz, 1H).

13C NMR (151 MHz, DMSO) 6 140.4, 134.2, 133.2, 131.6, 130.0, 128.5, 127.9, 124.6, 124.3, 122.6, 120.3,
119.6, 118.0, 117.3, 111.4, 108.3, 103.6, and 89.5.

IR (Diamond-ATR, neat) Vmax: = 3388 (s), 3055 (m), 2955 (w), 2924 (w), 2853 (w), 1591 (m), 1543 (s), 1505
(m), 1463 (m), 1322 (m), and 734 (s).

HRMS (ESI): calcd for ([M+H], C1sH14BrN>)*: 337.0335, found: 337.0334.

Data for 12H-pyrido[1.2-a:3.4-b'ldiindole 24:

TLC (5:1, hexanes:ethyl acetate): R¢= 0.37 (UV/KMnO,)

H NMR (600 MHz, DMSO) & 12.19 (s, 1H), 8.60 (dd, J = 7.2, 1.8 Hz, 1H), 8.24 (d, J = 8.3 Hz, 1H), 8.03 (d, J =
7.9 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 8.1 Hz, 1H), 7.38 — 7.31 (m, 3H), 7.30 — 7.25 (m, 1H), 7.24 —
7.19 (m, 1H), and 6.99 (s, 1H).

13C NMR (151 MHz, DMSO) & 138.2, 130.8, 128.4, 128.3, 123.8, 123.3, 122.3, 120.1, 119.7, 119.6, 119.5,
117.9,111.6,111.4,111.1, 102.8, and 88.7. (Missing one carbon signal)

IR (Diamond-ATR, neat) Vmax: = 3413 (s), 3391 (s), 3054 (w), 2956 (w), 2923 (s), 2853 (m), 1708 (w), 1543
(w), 1518 (w), 1479 (w), 1462 (w), 1439 (m), 1358 (w), 1320 (m), 1221 (w), and 738 (s).

HRMS (ESI): calcd for ([M+H], C1sH13N2)*: 257.1073, found: 257.1071.

mp: 227-229 °C.
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10 H and 3C NMR comparison of 12H-pyrido[1,2-a:3,4-b"]diindole 24 with reported values

10.1 'H NMR comparison of 12H-pyrido[1,2-a:3,4-b"]diindole 24 with reported values

'H NMR comparison in DMSO-ds of our synthetic 12H-pyrido[1,2-a:3,4-b'|diindole (24) with Gribble’s
data®®

24
Gribble’s data®® Our synthetic data A (ppm)
(DMSO-de) (600 MHz, DMSO-d)
12.20 (s, 1H) 12.19 (s, 1H) 0.01
8.60 (d, 1H) 8.60 (dd, J= 7.2, 1.8 Hz, 1H) 0
8.23 (d, 1H) 8.24 (d, J = 8.3 Hz, 1H) 0.01
8.03 (d, 1H) 8.03 (d, J = 7.9 Hz, 1H) 0
7.83 (d, 1H) 7.83 (d, J=8.0 Hz, 1H) 0
7.59 (d, 1H) 7.60 (d, J = 8.1 Hz, 1H) 0.01
7.38—7.31 (m, 3H)
7.38-7.17 (m, 5H) 7.30 - 7.25 (m, 1H) -
7.24-7.19 (m, 1H)
6.99 (s, 1H) 6.99 (s, 1H) 0
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10.2 'H NMR comparison of 12H-pyrido[1,2-a:3,4-b]diindole 24 with reported values

13C NMR comparison in DMSO-ds of our synthetic 12H-pyrido[1,2-a:3,4-b"]diindole (24) with Gribble’s
data.’Similar to the previously reported data, we also observed a missing carbon signal.

i
N\ O
24
Gribble’s data®® Our synthetic data AS (ppm)
(DMSO-ds) (151 MHz, DMSO-ds)
138.2 138.2 0
130.8 130.8 0
128.4 128.4 0
128.3 128.3 0
123.8 123.8 0
123.3 123.3 0
122.3 122.3 0
120.1 120.1 0
119.7 119.7 0
119.6 119.6 0
119.5 119.5 0
117.9 117.9 0
111.6 111.6 0
1114 1114 0
1111 1111 0
102.8 102.8 0
88.8 88.7 0.1

S87



Pyrone remodeling strategy to access diverse heterocyclic cores— Supporting Information

11 X-Ray Crystallographic Data

X-ray crystallographic data for pyrido[1,2-a]indole 8a, tetracyclic lactone 18, and chloro pyrido[1,2-
alindole 19 (along with their .cif files) are provided along with this supporting information. The X-ray

structures in the main manuscript and shown below were visualized using CYLview.?

pyrido[1,2-a]indole 8a

tetracyclic lactone 18

chloro pyrido[1,2-alindole 19

Chemical formula

Formula weight
Temperature (K)

Wavelength (A)

Crystal system

Space group

a(A)

b (A)

c(A)

a (%)

B(°)

v ()

V (A3)

z

Densitiy (Mg m™3)

Absorption coefficient (mm)
F(000)

Crystal size (mm?3)

Theta range for data collection (°)
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 74.0°
Absorption correction

Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F2

Final R indices [I>2sigma(l)]

R indices (all data)

Extinction coefficient

Largest diff. Peak and hole (e.A?)

Ci14H11NO;

225.24

100(2)

1.54184

Monoclinic

P21/n

5.04510(10)

13.6147(3)

15.6358(3)

90

93.956(2)

90

1071.43(4)

4

1.396

0.764

472

0.240x0.190x 0.170
4.310 to 74.502

-6<=h<=6, -16<=k<=17,
-18<=I<=19

12038

2171 [R(int) = 0.1153]
99.1%

Semi-empirical from equivalents
1.00000 and 0.78460
Full-matrix least-squares on F?
2171 /0/ 156

1.071

R1=0.0561, wR2 = 0.1650
R1=0.0573, wR2 = 0.1667
0.012(3)

0.304 and -0.345

C21H15N02

313.34

100(2)

1.54184

Triclinic

P-1

10.1840(3)

11.0563(3)

14.3733(3)

69.266(2)

87.583(2)

89.765(2)

1512.13(7)

4

1.376

0.709

656

0.170 x 0.150 x 0.090
3.291to 74.475
-12<=h<=12, -13<=k<=13,
-17<=Ik=17

59212

6158 [R(int) = 0.0499]
99.7 %

Semi-empirical from equivalents
1.00000 and 0.88354
Full-matrix least-squares on F?
6158 /0/433

1.038

R1=0.0366, wR2 = 0.0924
R1=0.0390, wR2 = 0.0941
n/a

0.234 and -0.238

C14H10CINO;

259.68

100(2)

1.54184

Monoclinic

P21/n

8.64150(10)

14.2584(3)

9.2288(2)

90

97.831(2)

90

1126.51(4)

4

1.531

2.942

536

0.140 x 0.080 x 0.050
5.749 to 74.442
-10<=h<=10, -17<=k<=17,
11<=I<=8

12636

2301 [R(int) = 0.0436]
99.8 %

Semi-empirical from equivalents
1.00000 and 0.60173
Full-matrix least-squares on F?
2301/0/ 164

1.064

R1=0.0350, wR2 = 0.0951
R1=0.0379, wR2 = 0.0971
n/a

0.240 and -0.363
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a) pyrido[1,2-alindole 8a

\ COzMe
N\

—

8a

Figure S6. CYLview rendering of pyrido[1,2-a]indole 8a

This crystal structure has been deposited at the Cambridge Crystallographic Data Center under CCDC
2034052.
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b) tetracyclic lactone 18

Ph

Figure S7. CYLview rendering of tetracyclic lactone 18

This crystal structure has been deposited at the Cambridge Crystallographic Data Center under CCDC
2034054.
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a) chloro pyrido[1,2-alindole 19

Cl

\
N\

—

CO,Me

19

Figure S8. CYLview rendering of chloro pyrido[1,2-a]indole 19

This crystal structure has been deposited at the Cambridge Crystallographic Data Center under CCDC
2034053.
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12 !H and 3C NMR Spectra
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