Supporting Information

Amino-functionalized MOF derived porous Fe$_3$O$_4$/N-doped C encapsulated within graphene network by self-assembling for enhanced Li-ion storage

Weijuan Wang1, Daming Chen1, Hui Xu2*, Genxi Yu1, Shangqi Sun1, Wei Zhang1, Jian Chen1,*

1. Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China

2. Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China

* Corresponding author. E-mail: j.chen@seu.edu.cn (Jian Chen); xuh@ujs.edu.cn (Hui Xu)
Figure S1. SEM image of the NH$_2$-MIL-101(Fe).

Figure S2. Photograph images of the NH$_2$-MIL-101(Fe)@GO hydrogel.
Figure S3. Photograph image of the NH$_2$-MIL-101(Fe)@GO foam.

Figure S4. SEM images of (A, B) Fe$_3$O$_4$/NC@rGO-5%, (C, D) Fe$_3$O$_4$/NC@rGO-20%.
Figure S5. TGA curves of (A) Fe₃O₄/NC@rGO-10% and (B) Fe₃O₄/NC.

Figure S6. XRD pattern of the NH₂-MIL-101(Fe).
Figure S7. Galvanostatic charge/discharge curves of (A) Fe$_3$O$_4$/NC, (B) Fe$_3$O$_4$/NC@rGO-5% and (C) Fe$_3$O$_4$/NC@rGO-20% electrodes.

Figure S8. EIS of the Fe$_3$O$_4$/NC and Fe$_3$O$_4$/NC@rGO-10% electrodes.
Figure S9. Comparison of the rate capability of the Fe$_3$O$_4$/NC@rGO-10% with those of other recently reported Fe$_3$O$_4$-based electrodes.

Figure S10. Cycle performance of NC@rGO at the current density of 0.2 A g$^{-1}$.
Figure S11. (A, B) SEM images of the Fe$_3$O$_4$/NC@rGO-10% electrode after 100 cycles, (C, D) SEM images of the Fe$_3$O$_4$/NC electrode after 100 cycles.