Electronic Supplementary Information (ESI) for

Effects of sodium chloride on rheological behaviour of the Gemini-like Surfactants

Xinxin Li,ab Pengxiang Wang,ab Xiaoyu Hou,ab Fang Wang,ab Han Zhao,ab Bobo Zhou,ab Hongwen Zhang,ab Hongbin Yang,ab and Wanli Kang,abc

a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, P. R. China
b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
c Kazakh-British Technical University, Almaty 050000, Kazakhstan

*Corresponding Author: Wanli Kang, email: kangwanli@upc.edu.cn

Additional Results

![Viscosity-shear rate graph](image_url)
Fig.S1 Steady rheological curves of 15 mM EAPA solutions at different NaCl concentrations and 25 °C
Fig. S2 Variation in surface tension with concentration of p-EAPA at 25 °C (a: C(NaCl)=0 mM, b: C(NaCl)=50 mM, c: C(NaCl)=100 mM, d: C(NaCl)=200 mM, e: C(NaCl)=300 mM.)

The C(NaCl) refers to the NaCl concentration of 15 mM p-EAPA, and different concentrations of p-EAPA were obtained by diluting 15 mM p-EAPA.

The minimum average area per surfactant molecule A_{min} was calculated by Gibbs adsorption equation:

$$\Gamma_{\text{max}} = -\frac{1}{2.303 nRT}(\frac{\partial \gamma}{\partial \log C})_T$$

$$A_{\text{min}} = \frac{1}{N_A \Gamma_{\text{max}}}$$

where, Γ_{max} (µmol/m2) is the saturated adsorption amounts of the surfactants, $(\partial \gamma/\partial \log C)_T$ is the slope of the surface tension curve, $R = 8.31$ J / (mol·K), $T = 298.15$ K, $N_A = 6.02 \times 10^{23}$, n is a constant which depends on the number of species constituting the surfactant and which are adsorbed at the interface. And n takes 2 for an ionic surfactant where the surfactant ion and the counterion are univalent, while n takes 3 for Gemini surfactants. Therefore, n takes 3 in this research.

The length l_c(cm) and volume V(cm3) of hydrophobic chain of surfactants was obtained by characteristic parameters of surfactants:

$$l_c = (1.50 + 1.265 n_c) \times 10^{-8}$$
$$V = (27.4 + 26.9 n_c) \times 10^{-24}$$

Where n_c is the number of carbon atoms in hydrophobic chain of surfactants and takes 21 according to the structure of UC$_{22}$AMPM.
According to the A_{min}, lc and v, the packing parameter p can be calculated by $p=V/A_{\text{min}}lc$. And the calculated results were listed in the Table.S1.

Table.S1 The Surface parameters of p-EAPA system at different NaCl concentrations and 25 °C

<table>
<thead>
<tr>
<th>C(NaCl)/mM</th>
<th>lc(nm)</th>
<th>V(nm3)</th>
<th>A_{min}(nm2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0.653</td>
<td>0.3232</td>
</tr>
<tr>
<td>50</td>
<td>2.8065</td>
<td></td>
<td>0.623</td>
<td>0.3388</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>0.5923</td>
<td>0.578</td>
<td>0.3651</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td>0.503</td>
<td>0.4196</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td>0.459</td>
<td>0.4598</td>
</tr>
</tbody>
</table>