Supporting Information

Observation of Transition Cascades in Sheared Liquid Crystalline Polymers

Ryan J. Fox¹, M. Gregory Forest¹², Stephen J. Picken³, and Theo J. Dingemans¹*

¹Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3050, United States

²Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, United States

³Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands

AUTHOR INFORMATION

Corresponding Author

*E-mail: tjd@unc.edu
Figure S1. (a) 2D SAXS pattern of an aligned 2.8 wt.% PBDT solution and (b) 1D azimuthal intensity integrated over the q-range between $q = 0.05 - 0.13$ Å$^{-1}$ and fit with the Maier-Saupe orientation distribution function. The monodomain was prepared by alignment within a magnetic field, and after removal from the field, the monodomain alignment remained due to confinement within the narrow, cylindrical capillary. The calculated order parameter is $S_{eq} = 0.886 \pm 0.002$.

REFERENCES