Supporting Information for

Conductive hydrogel composites with autonomous self-healing properties

Xiaohui Li, a,b Xia Huang, a,b Hatice Mutlu, b Sharali Malik c and Patrick Theato *a,b

- a. Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr.18, D-76131 Karlsruhe, Germany
- b. Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III (IBG 3), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- c. Institute of Quantum Materials and Technology, Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, D-76131 Karlsruhe, Germany

1. Synthesis of perfluorophenyl 4-(pyren-1-yl) butanoate

Scheme S1. The synthesis route of perfluorophenyl 4-(pyren-1-yl) butanoate.

Figure S1. The ¹H-NMR (400 MHz) spectra of perfluorophenyl 4-(pyren-1-yl) butanoate in CDCl₃.

Figure S2. The ¹⁹F-NMR (377 MHz) spectra of perfluorophenyl 4-(pyren-1-yl) butanoate in CDCl₃.

2. Synthesis of N-(6-aminohexyl)-4-(pyren-1-yl) butanamide (APB)

Scheme S2. The synthesis route of *N*-(6-aminohexyl)-4-(pyren-1-yl) butanamide (APB).

Figure S3. The ¹H-NMR (400 MHz) spectra of *N*-(6-aminohexyl)-4-(pyren-1-yl) butanamide (APB) in DMSO-*d*6.

Figure S4. The FT-IR spectra of perfluorophenyl 4-(pyren-1-yl) butanoate and *N*-(6-aminohexyl)-4-(pyren-1-yl) butanamide (APB).

Figure S5. The ¹H-NMR (400 MHz) spectra of P(DMA-*co*-APB-*co*-PBA), i.e. P2, with detailed integral information.

Sample	After sonication	1 week	2 weeks	1 month	
Sample A		Théato Théato Théato			
Sample B		KIT ANK IT AK TA Théat Théat Théat Théat		AK Théata	

Figure S6. Photographs of SWCNTs aqueous suspension without and with P2, respectively sample A and B, after sonication 20 min, one week, two weeks and one month.

Figure S7. SEM image of the freeze-dried hydrogel formed at neutral pH, and micro-fibrils were highlighted in the red cycles.

Figure S8. (a) Frequency sweep measurements of hydrogels with different SWCNTs concentration (2, 4, 6, and 8 mg/mL). (b) The plateau of storage modulus G' of the hydrogels with different SWCNT concentration (2, 4, 6, and 8 mg/mL).

Figure S9. Optical microstructures of the damage site after healing for 5 s and 5 min.

Figure S10. The electrical conductivity healing efficiency within ten cut-and heal cycles.

Nr.	Hydrogel system ^a	Self-healing mechanism	Conductivity	Ref.
1	PVA/borax/FSWCNTs	Boronate ester bonding	~1.4-~4.5 × 10 ⁻⁴ S/cm	1
2	PVA/CMC-B(OH) ₂	Boronate ester bonding	~1.5-~3.7 × 10 ⁻³ S/cm	2
3	PVA/PDMA-B(OH) ₂ /SWCNTs	Boronate ester bonding	0.3-1.27 × 10 ⁻² S/cm	Present work
4	PEG/PAMAA-Fe ³⁺	Metal ion coordination	1.6-6.2 × 10 ⁻³ S/cm	3
5	PNIPAM/Lapointe/CNT	Hydrogen bonding	1.3-1.9 × 10 ⁻³ S/cm	4
6	Chitosan/PEG/PANI	Schiff base reaction	2.25-3.5× 10 ⁻³ S/cm	5

Table S1. Typical conductive and self-healable hydrogels and their corresponding conductivities.

^a FSWCNT: functionalized singgle wall carbon nanotubes; CMC: carboxymethyl cellulose; PDMA: poly(*N*,*N*-dimethyl acrylamide); PEG: Polyethylene glycol; PAMAA: poly(acrylamide-co-acrylic acid); PNIPAM: poly(*N*-isopropylacrylamide); PANI: polyanilin.

Reference

- 1 M. Liao, P. Wan, J. Wen, M. Gong, X. Wu, Y. Wang, R. Shi and L. Zhang, *Adv. Funct. Mater.*, 2017, **27**, 1703852.
- 2 H. An, Y. Bo, D. Chen, Y. Wang, H. Wang, Y. He and J. Qin, *RSC Adv.*, 2020, **10**, 11300-11310.
- 3 S. Liu, O. Oderinde, I. Hussain, F. Yao and G. Fu, *Polymer*, 2018, **144**, 111-120.
- 4 Z. Deng, T. Hu, Q. Lei, J. He, P. X. Ma and B. Guo, *ACS Appl. Mater. Interfaces*, 2019, **11**, 6796-6808.
- 5 X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu and P. X. Ma, *Biomaterials*, 2017, **122**, 34-47.