An effective strategy of constructing multi-junction structure by

integrating heterojunction and homojunction to promote charge

separation and transfer efficiency of WO₃

Yanting Li¹, Zhifeng Liu^{1,2,3*}, Junwei Li^{1,2}, Mengnan Ruan^{1,2}, Zhengang Guo^{1,2} (1 School of Materials Science and Engineering, Tianjin Chengjian University, 300384, Tianjin, China. 2 Tianjin Key Laboratory of Building Green Functional Materials, 300384, Tianjin, China. 3 Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China.)

^{*} corresponding author Tel: +86 22 23085236 E-mail: tjulzf@163.com

Supplemental Informations:

Fig. S1 Schematic illustration for the fabrication process of Mo-WO₃/Fe-WO₃ homojunction photoanode

Fig. S2 LSV plots of WO₃ photoanodes with different Mo doping amounts (a) and with different Fe doping amounts (b) mearsured in $0.2 \text{ M} \text{ Na}_2\text{SO}_4$ solution under AM 1.5 G illumination

Fig. S3 XRD patterns of WO₃, Mo-WO₃ and Mo-WO₃/Fe-WO₃ homojunction. Bottom peaks are standard positions of SnO_2 (red) and WO₃ (green)

Fig. S4 EDS elemental analysis spectrum and corresponding elemental mapping images of W, O and Mo in Mo-WO₃, respectively

Fig. S5 Incident photon conversion efficiencies (IPCEs) plots of WO₃, Mo-WO₃/Fe-WO₃, Mo-WO₃/Bi₂S₃ and Mo-WO₃/Fe-WO₃/Bi₂S₃ photoanodes

Fig. S6 (a) Schematic diagram of SPV measurement configuration. (b) The equivalent circuit of electrochemical impedance spectroscopy

Fig. S7 XRD pattern of Mo-WO₃/Fe-WO₃/Bi₂S₃. Bottom peaks are standard positions of SnO₂, WO₃ and Bi₂S₃

Fig. S8 High resolution XPS spectra of (a) W 4f, (b) O 1s, (c) Fe 2p, (d) Mo 3d and S 2s and (e) Bi 4f and S 2p for Mo-WO₃/Fe-WO₃/Bi₂S₃ composite

Fig. S9 (a) UV-Vis absorption spectrum of Mo-WO₃/Fe-WO₃/Bi₂S₃. (b) IPCEs plots. (c) Time-dependent photocurrent density curves of WO₃, Mo-WO₃/Fe-WO₃, Mo-WO₃/Bi₂S₃ and Mo-WO₃/Fe-WO₃/Bi₂S₃ photoanodes measured at 1.23V vs. RHE under simulated sunlight illumination for 7200 s

Fig. S10 LSV curves of WO₃, Mo-WO₃/Fe-WO₃, Mo-WO₃/Bi₂S₃ and Mo-WO₃/Fe-WO₃/Bi₂S₃ photoanodes measured in 0.2 M Na₂SO₄ electrolyte solution with the addition of 0.1 M Na₂SO₃

Tab. S1 The flat band potential (V_{FB}) and carrier density (N_d) of WO₃, Mo-WO₃, Fe-WO₃ and Mo-WO₃/Fe-WO₃ photoanodes

Tab. S2 EIS fitted parameters extracted from Nyquist plots of WO₃, Mo-WO₃, Fe-WO₃ and Mo-WO₃/Fe-WO₃ photoanodes

Tab. S3 The flat band potential (V_{FB}) and carrier density (N_d) of Mo-WO₃/Bi₂S₃ and Mo-WO₃/Fe-WO₃/Bi₂S₃ photoanodes

Tab. S4 EIS fitted parameters extracted from Nyquist plots of Mo-WO₃/Bi₂S₃ and Mo-WO₃/Fe-WO₃/Bi₂S₃ photoanodes

Fig. S1 Schematic illustration for the fabrication process of Mo-WO₃/Fe-WO₃ homojunction photoanode

Fig. S2 LSV plots of WO₃ photoanodes with different Mo doping amounts (a) and with different Fe doping amounts (b) mearsured in 0.2 M Na₂SO₄ solution under AM

Fig. S3 XRD patterns of WO₃, Mo-WO₃ and Mo-WO₃/Fe-WO₃ homojunction Bottom peaks are standard positions of SnO₂ (red) and WO₃ (green)

Fig.S4 EDS elemental analysis spectrum and corresponding elemental mapping images of W, O and Mo in Mo-WO₃, respectively

Fig.S5 Incident photon conversion efficiencies (IPCEs) plots of WO₃, Mo-WO₃/Fe-WO₃, Mo-WO₃/Bi₂S₃ and Mo-WO₃/Fe-WO₃/Bi₂S₃ photoanodes

Fig. S6 (a) Schematic diagram of SPV measurement configuration. (b) The equivalent circuit of electrochemical impedance spectroscopy

Fig. S7 XRD pattern of Mo-WO₃/Fe-WO₃/Bi₂S₃. Bottom peaks are standard positions of SnO₂, WO₃ and Bi₂S₃

Fig. S8 High resolution XPS spectra of (a) W 4f, (b) O 1s, (c) Fe 2p, (d) Mo 3d and S 2s and (e) Bi 4f and S 2p for Mo-WO₃/Fe-WO₃/Bi₂S₃ composite

Fig. S9 (a) UV-Vis absorption spectrum of Mo-WO₃/Fe-WO₃/Bi₂S₃. (b) IPCEs plots.
(c) Time-dependent photocurrent density curves of WO₃, Mo-WO₃/Fe-WO₃, Mo-WO₃/Bi₂S₃ and Mo-WO₃/Fe-WO₃/Bi₂S₃ photoanodes measured at 1.23V vs. RHE under simulated sunlight illumination for 7200 s

Fig. S10 LSV curves of WO₃, Mo-WO₃/Fe-WO₃, Mo-WO₃/Bi₂S₃ and Mo-WO₃/Fe-WO₃/Bi₂S₃ photoanodes measured in 0.2 M Na₂SO₄ electrolyte solution with the addition of 0.1 M Na₂SO₃

Sample	V _{FB} (V vs RHE)	N _d (cm ⁻³)			
WO ₃	0.62	5.30×10 ¹⁹			
Mo-WO ₃	0.56	1.19×10 ¹⁹			
Fe-WO ₃	0.69	1.46×10 ¹⁹			
Mo-WO ₃ /Fe-WO ₃	0.65	1.65×10^{20}			

Tab. S1 The flat band potential (V_{FB}) and carrier density (N_d) of WO₃, Mo-WO₃, Fe-WO₃ and Mo-WO₃/Fe-WO₃ photoanodes

Tab. S2 EIS fitted parameters extracted from Nyquist plots of WO₃, Mo-WO₃, Fe-

WO₃ and Mo-WO₃/Fe-WO₃ photoanodes

Sample	$R_s \left(\frac{\Omega \ cm^2}{2} \right)$	R_{ct} (Ωcm^2)	CPE(F/cm ²)
WO ₃	25	1752	2.10×10 ⁻³
Mo-WO ₃	28	1598	1.12×10 ⁻⁴
Fe-WO ₃	28	1407	2.67×10 ⁻⁴
Mo-WO ₃ /Fe-WO ₃	24	487	1.08×10 ⁻³

Tab. S3 The flat band potential (V_{FB}) and carrier density (N_d) of Mo-WO₃/Bi₂S₃ and Mo-WO₃/Fe-WO₃/Bi₂S₃ photoanodes

Sample	V _{FB} (V vs RHE)	N _d (cm ⁻³)
Mo-WO ₃ /Bi ₂ S ₃	0.50	1.77×10 ²²
Mo-WO ₃ /Fe-WO ₃ /Bi ₂ S ₃	0.59	3.62×10 ²²

Tab. S4 EIS fitted parameters extracted from Nyquist plots of Mo-WO₃/Bi₂S₃ and

Mo-WO₃/Fe-WO₃/Bi₂S₃ photoanodes

Sample	$R_s (\Omega cm^2)$	R_{ct} (Ωcm^2)	CPE(F/cm ²)
Mo-WO ₃ /Bi ₂ S ₃	26	334	9.00×10 ⁻⁴
Mo-WO ₃ /Fe-WO ₃ /Bi ₂ S ₃	22	238	6.94×10 ⁻⁴