Supporting Information

A Universal and Facile Approach to Suppress Dendrite Formation for Zn and Li Metal Anode

Jin Cao1,2, Dongdong Zhang1,2, Xinyu Zhang3*, Montree Sawangphruk 4, Jiaqian Qin2*, and Riping Liu3

1International Graduate Program of Nanoscience & Technology, Chulalongkorn University, Thailand

2Research Unit of Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand

3State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China

4Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand

*Corresponding Author. Fax: +66 2611 7586
E-mail: jiaqian.q@chula.ac.th (J. Q.), xyzhang@ysu.edu.cn (X. Z.)
Scheme. S1 Schematic illustration of material fabrication processes.

Fig. S1 Voltage profiles of galvanostatic Zn plating/stripping for different separator, (a) GF/GO0.2 separator and (b) GF/GO0.5 separator.
Fig. S2 Surface images of pristine Zn foil.

Fig. S3 SEM images of the Zn dendrites in GF separator at 2 mA cm⁻².

Fig. S4 (a) The oxidation profiles of the zinc-titanium half-batteries (left) with the GF separator and (right) the GF/GO1 separator between 0 and 0.3 V (vs Zn/Zn²⁺); (b) EIS plots of zinc-titanium half-batteries using the GF/GO1 and GF separator.
Fig. S5 Voltage profiles of the initial Zn plating on Ti foil in zinc-titanium half-batteries with the GF separator and the GF/GO1 separator at 5 mA cm\(^{-2}\).

Fig. S6 SEM images of GF/GO1 separator (a) (b); GF (c) and GO (d).
Fig. S7 Wettability test of GF (a) and GF/GO1 (b) separator.
Table. S1 Porosity and electrolyte uptake of GF and GF/GO separator.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Porosity (%)</th>
<th>Electrolyte uptake (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF separator</td>
<td>1232</td>
<td>13214</td>
</tr>
<tr>
<td>GF/GO1 separator</td>
<td>1473</td>
<td>15891</td>
</tr>
</tbody>
</table>

Fig. S8 (a) The Nyquist plots of the GF and GF/GO1 separator at room temperature; (b) The ionic conductivity of GF and GF/GO1 separator.

Fig. S9 XRD patterns of prepared MnO$_2$ cathode material before and after ball milling.
Fig. S10 SEM images of MnO$_2$ before (a-b) and after (c-d) ball milling.

Fig. S11 SEM images of MnO$_2$ (a) and (b) after coating.
Fig. S12 (a) Rate performances and (b) the electrochemical impedance spectra of Zn/MnO$_2$ cells using different separators.
Table. S2 The R_s, R_{sf} and R_{ct} of the Zn-symmetric batteries and Zn//MnO$_2$ batteries with different separator.

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>R_s (Ω)</th>
<th>R_{sf} (Ω)</th>
<th>R_{ct} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn-symmetric batteries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GF separator</td>
<td>6.084</td>
<td>83.158</td>
<td>2733</td>
</tr>
<tr>
<td>GF/GO1 separator</td>
<td>4.513</td>
<td>21.918</td>
<td>657.3</td>
</tr>
<tr>
<td>Zn//MnO$_2$ batteries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GF separator</td>
<td>5.812</td>
<td>11.821</td>
<td>565.2</td>
</tr>
<tr>
<td>GF/GO1 separator</td>
<td>3.419</td>
<td>7.133</td>
<td>305.9</td>
</tr>
</tbody>
</table>

Fig. S13 Electrochemical impedance spectra of (a) Zn-symmetric batteries with GF/GO1 separator and (b) GF separator after cycling; Electrochemical impedance spectra of (c) Zn/MnO$_2$ full batteries GF/GO1 separator and (d) GF separator after cycling.
Fig. S14 (a) Cycling performance of the Zn/MnO₂ full batteries using different separators at a current density of 0.5 A g⁻¹ and (b) the capacity retention rate of other zinc ion batteries using different cathode materials after cycles.
Fig. S15 $i(v)/v^{1/2} - v^{1/2}$ plot in different voltage of GF/GO1 separator Zn/MnO$_2$ cell in (a) charge and (b) discharge.
Fig. S16: (a) CV curves of GF separator Zn/MnO$_2$ cell at different scan rate; (b) b values of GF separator MnO$_2$/Zn cell at different peaks, calculated based on multi-rate CV results; (c) Capacitive charge storage contribution at the scan rate of 1.0 mV s$^{-1}$.
Fig. S17 (a) Voltage profiles of different Li-symmetric cells with GF/GO1 separator and GF separator during Li plating/stripping using step-up current densities; (b) Voltage profiles in first ten cycles.