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Section I. 

Selection of coplanar model: 

In small molecular gas phase, there is small torsions of 5-15 degrees between D and A fragments. 

However, the torsion angle in the crystalline form reduces to + /-5 ° due to the interaction between 

chains and symmetric packing.1,2 Moreover, the coplanar configuration has been suggested in other 

theoretical and experimental work.3,4 Therefore, to mimic the possible “planner form”, we have 

used co-planner structures throughout our simulations. In order to further quantify the influence of 

the torsion angle, we perform additional calculations on two representative D-A models as shown 

in Figure S1a. The optimized model on the left has a torsion angle of 18° and the other is a coplanar 

structure. Our new computational results reveal that the two polymers have identical band 

structures and similar deformation constants: 10.0 eV vs. 8.5 eV, and elastic constants: 2.08  10 

-7 J m-1 vs. 1.47  10 -7 J m-1. Within the framework of deformation potential theory, the relaxation 

time is inversely related to the electron-phonon scattering matrix element |𝑀|2 = 𝑘BT𝐸1
2/𝐶𝑖𝑖. For 

the two models, 𝐸1
2/𝐶𝑖𝑖 are calculated to be 0.770 and 0.787 eV Å, respectively, which means that 

the relaxation time can hardly be affected by the torsion. Therefore, the small twist only has minor 

effect on the electronic and final TE properties.  
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Figure S1: (a) Comparison the geometrical and band structure of the coplanar model with a 

model of ~ 15 ° torsion angle. (b)Optimized structure of tetramer and (c) the charge distributions 

of the highest-occupied-molecular-orbitals (HOMO) and lowest-unoccupied-molecular-orbitals 

(LUMO) of BTCDT 

 

Selection of DFT functionals  

We optimized the tetramer of BTCDT (Fig. S1) using M06 exchange-correlation functional5 

implemented in Gaussian 16 program6 and 6-311+G(d,p) basis set for C, S, N, and H atoms. The 

acceptor BT units were constructed antiparallel along the oligomer backbone2 thus the repeating 

unit consist of two donor units and two acceptor units. The optimized tetramer is found to be planar. 
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The length of the donor-acceptor unit is computed to be 24.33 Å, which is consistent with 

GIWAXS analysis (23.60 Å).7  

PBE, B3LYP8 and HSE06 and PBE0 with the Grimme’s DFT-D3 van der Waals dispersion 

corrections have been evaluated for the band structure calculations for BTCDT. For the ease of 

computation, we used a short unit of one acceptor and one donor fragment to evaluate the 

functionals. The PBE, HSE06, B3LYP and PBE0 results are analogous which show a 

semiconducting band structure (Fig. S2). The valence and conduction bands have similar band 

width; however, the band gaps are fairly different. BTCDT polymer was found to exhibit an optical 

band gap around 1.4 eV and 1.75 eV.9,10 Thus, DFT tends to underestimate the band gap. However, 

the electrical conductivity and Seebeck coefficient from PBE and PBE0 are identical (See Section 

III for details). Considering our main goal to be the understanding of the intrinsic TE properties 

and to achieve a balance between computational cost and accuracy, the PBE functional is therefore 

used to compute the electronic properties.  

 

 

Figure S2: Band structures of BTCDT (top) obtained from different functionals including PBE, 

HSE06, PBE0, and B3LYP.  
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Figure S3: Computed / and S of BTCDT using PBE and PBE0 functional.  

The / and Seebeck coefficient of BTCDT are computed by solving the constant time Boltzmann 

transport equations as implemented in BoltzTraP program.11,12 At carrier concentrations up to 2.0 

 1020 cm-3, the Seebeck coefficients computed from different functionals are identical. The / 

computed from different functionals are identical at lower carrier concentrations (less than 0.5  

1020 cm-3) and deviate slightly from 0.5  1020 cm-3 to 2.0  1020 cm-3. The derived hole mobility 

µ/ is 4.179  1014 cm2 V-1 s -2. Since the experimental mobility is reported to be 100 cm2 V-1 s -2 

for a fluoridated analog, the relaxation time is fitted to be 2.93  10-15 s. 

 

 

Section II. 

Tight-binding model 

Here we present a simple two-level tight-binding model to uncover the key factors determining 

the deformation potential constant. 

The second quantization Hamiltonian of the model system 

can be written as 

𝐻 = 𝜀𝑑𝑎𝑑
†𝑎𝑑 + 𝜀𝑎𝑎𝑎

†𝑎𝑎 +
𝑡𝑑𝑎

2
𝑎𝑑

†𝑎𝑎 +
𝑡𝑑𝑎
∗

2
𝑎𝑎

†𝑎𝑑, 

where 𝑎𝑎,𝑑
†

 and 𝑎𝑎,𝑑 are creation and annihilation operators 

on acceptor and donor segments, respectively. 𝜀𝑑 and 𝜀𝑎 are 

the corresponding on-site energies. 𝑡𝑑𝑎 is the hopping parameter for the hopping between the two 

segments, and it is a function of the distance between the orbital centers of the two segments, 𝑟. 

Without loss of generality, we can assume 𝑡𝑎𝑑 to be a real number, thus 𝑡𝑎𝑑 = 𝑡𝑎𝑑
∗ . 

Furthermore, we can write the final wave function of the two-level system formally as 

𝜀𝑎 

𝜀𝑑 

𝜀2 

𝜀1 
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|Ψ⟩ = 𝑐𝑑|𝜙𝑑⟩ + 𝑐𝑎|𝜙𝑎⟩, 

where |𝜙𝑑⟩ and |𝜙𝑎⟩ are orthogonal molecular orbitals at donor and acceptor sites, respectively, 

and 𝑐𝑑 and 𝑐𝑎 are the corresponding expansion coefficients, respectively. 

It is more convenient to express the eigen problem in matrix form as 

[
𝜀𝑑

1

2
𝑡𝑑𝑎

1

2
𝑡𝑑𝑎 𝜀𝑎

] (
𝑐𝑑

𝑐𝑎
) = 𝜀 (

𝑐𝑑

𝑐𝑎
). 

It is easy to obtain the eigenvalues and the eigenfunctions as follows, 

𝜀1 =
1

2
[𝜀𝑑 + 𝜀𝑎 − √(𝜀𝑑 − 𝜀𝑎)2 + 𝑡𝑑𝑎

2 ],  

𝑢1 = (
𝑐𝑑

𝑐𝑎
)
1

=
1

𝐴
(

1

𝑡𝑑𝑎
[𝜀𝑑 − 𝜀𝑎 − √(𝜀𝑑 − 𝜀𝑎)2 + 𝑡𝑑𝑎

2 ]

1
); 

𝜀2 =
1

2
[𝜀𝑑 + 𝜀𝑎 + √(𝜀𝑑 − 𝜀𝑎)2 + 𝑡𝑑𝑎

2 ],  

𝑢2 = (
𝑐𝑑

𝑐𝑎
)
2

=
1

𝐵
(

1

𝑡𝑑𝑎
[𝜀𝑑 − 𝜀𝑎 + √(𝜀𝑑 − 𝜀𝑎)2 + 𝑡𝑑𝑎

2 ]

1
). 

Here prefactors 𝐴 and 𝐵 are introduced to ensure 𝑢1 and 𝑢2 are normalized vectors. It is 

convenient to introduce 𝛼 =
𝜀𝑑−𝜀𝑎

𝑡𝑑𝑎
 and 𝛽 =

1

𝑡𝑑𝑎
√(𝜀𝑑 − 𝜀𝑎)2 + 𝑡𝑑𝑎

2 , thus 𝐴 = √(𝛼 − 𝛽)2 + 1, 

𝐵 = √(𝛼 + 𝛽)2 + 1. A very useful relation reads 𝛽2 − 𝛼2 = 1. 

Size effect 

Taking an infinite quantum well model, we can argue that the 

onsite energy of the segments can be written as 𝜀 ∝
1

𝑙2
, where 𝑙 

is the length of the segment. It is easily proven that 
𝜕𝜀

𝜕𝑙
= −2

𝜀

𝑙
. 

In addition, the hopping parameter 𝑡𝑑𝑎 should depend on the 

distance between the fragmental orbitals. Taking Harrison scaling method, we have 𝑡𝑑𝑎 ∝
4

(𝐿𝑑+𝐿𝑎)2
. Still, we can prove that 

𝜕𝑡𝑑𝑎

𝜕𝐿
= −2

𝑡𝑑𝑎

𝐿
. 

In order to calculate the local deformation of each segment, we can assume that the local elastic 

constants of donor and acceptor segments are 𝑘𝑑 and 𝑘𝑎, respectively, and the lengths of donor 

and acceptor regions are 𝐿𝑑 and 𝐿𝑎, respectively, thus 𝐿 = 𝐿𝑑 + 𝐿𝑎. Because the stress in the 

system should be equal everywhere, we have 

𝑘𝑑
𝛿𝐿𝑑

𝐿𝑑
= 𝑘𝑎

𝛿𝐿𝑎

𝐿𝑎
, or 𝛿𝐿 = 𝛿𝐿𝑑 + 𝛿𝐿𝑎 = 𝛿𝐿𝑑 (1 +

𝑘𝑑

𝑘𝑎

𝐿𝑎

𝐿𝑑
) = 𝛿𝐿𝑎 (1 +

𝑘𝑎

𝑘𝑑

𝐿𝑑

𝐿𝑎
). 

𝜀𝑑 𝜀𝑎 𝑡𝑝𝑑 

𝑘𝑎 𝑘𝑑 
𝐿𝑑 

𝐿 
𝐿𝑎 
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Deformation potential constant 

Now it is easy to derive the effective deformation potential constants for 𝜀1 and 𝜀2, 

𝐸1 =
𝑑(𝜀1,2−�̅�)

𝑑𝐿 𝐿⁄
=

𝐿

2
[∓

1

2√(𝜀𝑑−𝜀𝑎)2+𝑡𝑑𝑎
2

(2(𝜀𝑑 − 𝜀𝑎) (
𝜕𝜀𝑑

𝜕𝐿
−

𝜕𝜀𝑎

𝜕𝐿
) + 2𝑡𝑑𝑎

𝜕𝑡𝑑𝑎

𝜕𝐿
)] =

𝐿

2
[
𝜕𝜀𝑑

𝜕𝐿𝑑

1

1+
𝑘𝑑
𝑘𝑎

𝐿𝑎
𝐿𝑑

(∓
(𝜀𝑑−𝜀𝑎)

√(𝜀𝑑−𝜀𝑎)2+𝑡𝑑𝑎
2

) +
𝜕𝜀𝑎

𝜕𝐿𝑎

1

1+
𝑘𝑎
𝑘𝑑

𝐿𝑑
𝐿𝑎

(±
(𝜀𝑑−𝜀𝑎)

√(𝜀𝑑−𝜀𝑎)2+𝑡𝑑𝑎
2

) ∓
𝑡𝑑𝑎

√(𝜀𝑑−𝜀𝑎)2+𝑡𝑑𝑎
2

𝜕𝑡𝑑𝑎

𝜕𝐿
] =

−𝐿 [
𝜀𝑑𝑘𝑎

𝑘𝑎𝐿𝑑+𝑘𝑑𝐿𝑎
(∓

(𝜀𝑑−𝜀𝑎)

√(𝜀𝑑−𝜀𝑎)2+𝑡𝑑𝑎
2

) +
𝜀𝑎𝑘𝑑

𝑘𝑎𝐿𝑑+𝑘𝑑𝐿𝑎
(±

(𝜀𝑑−𝜀𝑎)

√(𝜀𝑑−𝜀𝑎)2+𝑡𝑑𝑎
2

) ∓
𝑡𝑑𝑎

√(𝜀𝑑−𝜀𝑎)2+𝑡𝑑𝑎
2

𝑡𝑑𝑎

𝐿
] =

±𝐿 [
𝜀𝑑𝑘𝑎−𝜀𝑎𝑘𝑑

𝑘𝑎𝐿𝑑+𝑘𝑑𝐿𝑎
(

𝛼

𝛽
) +

1

𝛽

𝑡𝑑𝑎

𝐿
]. 

Here 𝜀̅ =
1

2
(𝜀1 + 𝜀2) measures the position of Fermi level as the middle of the VBM and CBM. 

If 𝑘𝑑 = 𝑘𝑎, 𝐸1 = ± [
𝛼

𝛽
(𝜀𝑑 − 𝜀𝑎) +

𝑡𝑑𝑎

𝛽
] = ±√(𝜀𝑑 − 𝜀𝑎)2 + 𝑡𝑑𝑎

2 . 
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Periodic system: 

Above discussion can be further extended to infinite 

periodic system. Still assuming the hopping parameter 

between the 𝑝𝑧 orbitals of the donor and acceptor 

segments is 𝑡, the only modification is to replace the 

hopping parameter 𝑡𝑑𝑎 in previous derivations with 𝑡𝑑𝑎
eff =

𝑡𝑒𝑖𝑘𝜋 + (𝑡)𝑒−𝑖𝑘𝜋 = 2𝑡 cos 𝑘𝜋, where 𝑘 is the wave 

vector in the first Brillouin zone in the unit of 
1

𝐿
, and 𝐿 is the periodic length. Now the eigenvalue 

problem becomes 

[
𝜀𝑑 𝑡 cos 𝑘𝜋

𝑡 cos 𝑘𝜋 𝜀𝑎
] (

𝑐𝑑

𝑐𝑎
) = 𝜀 (

𝑐𝑑

𝑐𝑎
). 

Then the eigen-energies can be written as 

𝜀1 =
1

2
[𝜀𝑑 + 𝜀𝑎 − √(𝜀𝑑 − 𝜀𝑎)2 + 4𝑡2 cos2 𝑘𝜋]; 

𝜀2 =
1

2
[𝜀𝑑 + 𝜀𝑎 + √(𝜀𝑑 − 𝜀𝑎)2 + 4𝑡2 cos2 𝑘𝜋]. 

Band folding 

If two (flipped) repeated unit cells are connected to form a new unit cell, the Hamiltonian 

becomes 

𝐻 =

[
 
 
 
 
 𝜀𝑑 𝑡𝑒𝑖

𝜋

2
𝑘 0 𝑡𝑒−𝑖

𝜋

2
𝑘

𝑡𝑒−𝑖
𝜋

2
𝑘 𝜀𝑎 𝑡𝑒𝑖

𝜋

2
𝑘 0

0 𝑡𝑒−𝑖
𝜋

2
𝑘 𝜀𝑑 𝑡𝑒𝑖

𝜋

2
𝑘

𝑡𝑒𝑖
𝜋

2
𝑘 0 𝑡𝑒−𝑖

𝜋

2
𝑘 𝜀𝑎 ]

 
 
 
 
 

, 

then the eigenvalues become 

𝜀1,2 =
1

2
[𝜀𝑑 + 𝜀𝑎 ± √(𝜀𝑑 − 𝜀𝑎)2 + 16𝑡2 cos2 𝑘𝜋

2
], 

𝜀3,4 =
1

2
[𝜀𝑑 + 𝜀𝑎 ± √(𝜀𝑑 − 𝜀𝑎)2 + 16𝑡2 sin2 𝑘𝜋

2
]. 

Now the band edge appears at  point (sin
𝑘𝜋

2
= 0). All the above discussions still hold. 

Finite depth well 

For finite depth well, we can assume the potential 𝑉(𝑥) = {
−𝑉0, |𝑥| < 𝑙/2

0, |𝑥| > 𝑙/2
. Here system size is 

𝑙.  

When |𝑥| > 𝑙/2, 𝐸 = −
ℏ2𝛾2

2𝑚
, 𝜑(𝑥) ∝ 𝑒−|𝛾𝑥|. 

When  |𝑥| < 𝑙/2, 𝐸 = −𝑉0 +
ℏ2𝑘2

2𝑚
, 𝜑(𝑥) ∝ 𝑒±𝑖𝑘𝑥. 

Using the continuity of 𝜑(𝑥) and 𝜑′(𝑥) at 𝑥 = ±
𝑙

2
, we can obtain 

𝑘𝑙

2
tan (

𝑘𝑙

2
) =

𝑙

2
𝛾. 

𝜀𝑑 𝜀𝑎 𝜀𝑎 
𝑡

2
 

𝑡

2
 

𝑘𝑎 𝑘𝑑 𝑘𝑎 

𝐿𝑑 

𝐿 
𝐿𝑎 
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Now we can take the first derivate of the above equation against the system size 𝑙 and obtain 
𝜕𝑘

𝜕𝑙
[tan

𝑘𝑙

2
+

𝑘𝑙

2
(1 + tan2 𝑘𝑙

2
)] +

𝑘2

2
(1 + tan2 𝑘𝑙

2
) =

𝜕𝛾

𝜕𝑙
. 

Using the relation between 𝑘, 𝛾, and 𝐸, we can arrive at  
𝜕𝐸

𝜕𝑙
= −

2

𝑙

ℏ2𝑘2

2𝑚

1

1+
1
𝑙
2
𝛾

, or equivalently (−
1

2
)

𝑙

𝐸+𝑉0

𝜕(𝐸+𝑉0)

𝜕𝑙
=

1

1+
1

𝛾𝑙 2⁄

∈ (0,1). 

𝛾 itself is difficult to be solved, however, to the first order approximation, we can approximate 

the energy 𝐸 + 𝑉0 using the energy spectrum from the infinite depth well, namely, 𝐸 = −𝑉0 +

ℏ2𝜋2

2𝑚𝑙2
𝑛2, 𝑛 = 1,2,3,⋯, thus 𝛾𝑙 = √

2𝑚𝑉0𝑙2

ℏ2 − 𝜋2𝑛2. 

 

Long range hopping and SE coupling 

Because the conduction and valence bands of the D-A polymers often show different 

bandwidths, and this difference stems from the interaction between the second neighbor inter-

segment interactions, we have to consider this kind of interactions explicitly. 

Now Hamiltonian becomes 

𝐻 =

[
 
 
 
 
 𝜀𝑑 𝑡𝑎𝑑𝑒𝑖

𝜋

2
𝑘 2𝑠𝑑𝑑 cos 𝑘𝜋 𝑡𝑎𝑑𝑒−𝑖

𝜋

2
𝑘

𝑡𝑎𝑑𝑒−𝑖
𝜋

2
𝑘 𝜀𝑎 𝑡𝑎𝑑𝑒𝑖

𝜋

2
𝑘 2𝑠𝑎𝑎cos⁡ 𝑘𝜋

2𝑠𝑑𝑑 cos 𝑘𝜋 𝑡𝑎𝑑𝑒−𝑖
𝜋

2
𝑘 𝜀𝑑 𝑡𝑎𝑑𝑒𝑖

𝜋

2
𝑘

𝑡𝑎𝑑𝑒𝑖
𝜋

2
𝑘 2𝑠𝑎𝑎cos⁡ 𝑘𝜋 𝑡𝑎𝑑𝑒−𝑖

𝜋

2
𝑘 𝜀𝑎 ]

 
 
 
 
 

, 

where 𝑠𝑑 and 𝑠𝑎 are second neighbor inter-segment hopping parameters.  

Solving the eigen-problem and we can obtain  

𝜀1,2 =
1

2
[𝜀𝑑 + 𝜀𝑎 − (𝑠𝑎𝑎 + 𝑠𝑑𝑑) cos 𝑘𝜋 ±

√(𝜀𝑑 − 𝜀𝑎 − 2(𝑠𝑑𝑑 − 𝑠𝑎𝑎) cos 𝑘𝜋)2 + 16𝑡𝑎𝑑
2 sin2 𝑘𝜋

2
], (1) 

𝜀3,4 =
1

2
[𝜀𝑑 + 𝜀𝑎 + (𝑠𝑎𝑎 + 𝑠𝑑𝑑) cos 𝑘𝜋 ± √(𝜀𝑑 − 𝜀𝑎 − 2(𝑠𝑑𝑑 − 𝑠𝑎𝑎) cos 𝑘𝜋)2 + 16𝑡𝑎𝑑

2 cos2 𝑘𝜋

2
].  

(2) 

The transfer integral 𝑡𝑎𝑑, 𝑠𝑎𝑎, and 𝑠𝑑𝑑 are obtained by solving the equations (1) and (2) where 𝜀1⁡, 

𝜀2, 𝜀3, and 𝜀4 are taken from the DFT calculations. Finally, the SE couplings are computed with 

the as 𝑆𝐸 = 𝑠𝑎𝑎 + 𝑠𝑑𝑑. 

 

Some useful quantities: 

 

a) Gap size: 𝐸𝑔 = |(𝜀𝑑 − 𝜀𝑎) − 2(𝑠𝑑 − 𝑠𝑎)|. (at Γ point) 

b) Conduction band width: 𝐸𝑏
𝑐 =

1

2
[√𝐸𝑔

2 + 16𝑡2 − 𝐸𝑔] + (𝑠𝑑 + 𝑠𝑎). 
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c) Valence band width: 𝐸𝑏
𝑣 =

1

2
[√𝐸𝑔

2 + 16𝑡2 − 𝐸𝑔] − (𝑠𝑑 + 𝑠𝑎). 

d) Effective mass at CBM: 𝑚∗,𝑐 =
42

𝐿2

1

2𝑡2

𝐸𝑔
+

3𝑠𝑎−𝑠𝑑
2

. 

e) Effective mass at VBM: 𝑚∗,𝑣 =
42

𝐿2

1

2𝑡2

𝐸𝑔
−

3𝑠𝑎−𝑠𝑑
2

. 

Some interesting relations can be observed from the above equations. We can easily obtain that 

the conduction band width 𝐸𝑏
𝑐 is an increasing linear function of 𝑆𝐸 = 𝑠𝑑 + 𝑠𝑎. After assuming 

𝑠𝑎~𝑠𝑑, it can also be seen that the inversed effective mass at CBM is a linear function of SE. 

Although it is difficult to determine the relation between the energy gap 𝐸𝑔 and SE, we can still 

get a rough estimation that they are linearly correlated. All these can be seen clearly from Fig. 3, 

and some of them has been observed in other publications3.  
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Section III. 

 

Figure S4: Bond length differences for (a) BTCDT, (b) PTCDT, (c) DFBTCDT, and (d) DBTCDT, 

and their corresponding optimized structures are shown above. 
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Figure S5: Bond length differences for (a) BTSiDT, (b) BTNDT, (c) BTBDT, and (d) BTIDT, and 

their corresponding optimized structures are shown above. 
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Table S1: The HOMO, LUMO, band gap Eg, SE couplings, and direct nearest couplings (𝑡𝑑𝑎), 

Bader charge of the D-A polymers studied.  

 HOMO/eV LUMO/eV Eg/eV SE 

coupling 

/eV 

𝑡𝑑𝑎/eV Bader 

charge /e  

BTCDT -4.20 -3.68 0.52 0.21 0.53 0.12 

PTCDT -4.38 -3.93 0.45 0.21 0.52 0.25 

DFBTCDT -4.42 -3.79 0.63 0.20 0.72 0.40 

DBTCDT -4.34 -4.10 0.24 0.26 0.42 0.48 

BTSiDT -4.44 -3.81 0.63 0.18 0.54 0.14 

BTNDT -4.17 -3.63 0.54 0.22 0.50 0.11 

BTBDT -4.78 -3.84 0.94 0.09 0.44 0.18 

BTIDT -4.23 -3.52 0.71 0.14 0.42  

h-CDT    0.19 1.14  
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Figure S6: The band structures and corresponding Wannier function basis set localized on D and 

A fragment for (a) DFBTCDT, (b) BTSiDT, (c) BTNDT, and (d) BTBDT.

  

Figure S7: The ELF, VBM and CBM partial charge distributions, and band structures for (a) 

BTCDT, (b) PTCDT, (c) DFBTCDT, and (d) DBTCDT 
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Figure S8: The ELF, VBM and CBM partial charge distributions, and band structures for (a) 

BTSiDT, (b) BTNDT, (c) BTBDT, and (d) BTIDT. 

 

Figure S9: The contributions from D_pz and A_pz orbitals to the valance bands 

Section IV. 

The DP constant which describes the energy band shift due to the crystal lattice deformation 

is defined as 𝐸1 =
∆𝐸CB(VB)

∆𝑥 𝑥0⁄
⁡⁡. Here ∆𝐸CB(VB) is the absolute position change of band edge with the 

lattice deformation in the crystal axis 𝑥 direction (Figure S10b). The vacuum level, Evacuum is 
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treated as the energy reference. We employ vacuum energy level calibration method13 to calculate 

the absolute energy levels of valence/conduction band maximum/minimum (VBM/CBM), EVBM/ 

ECBM. The schematic illustration of the calibration method is displayed in Fig. S7. The electrostatic 

potential profiles along the crystal axis z direction were calculated from the offsets between the 

band edge positions and vacuum level estimation, namely 𝐸CBM/VBM = 𝐸CBM/VBM
0 − 𝐸vacuum , 

where 𝐸CBM/VBM
0  is the uncalibrated CBM or VBM energy level. 

The elastic constant, Cii was calculated by stretching the unit cell along the crystal axis x-

direction by ±0.5% and ± 1.0% and then fitting the total energy, E of deformed lattice concerning 

the dilation, ∆𝑥 𝑥0⁄ ⁡via the formula 
𝐸−𝐸0

𝑥0𝑦𝑧
=

𝐶ii

2
(
∆𝑥

𝑥0
)
2

. Figure S10a displays the fitting for Cii. 

 

 

Figure S10: (a) The total energy with respect to dilations for BTCDT in the crystal axis x direction. 

The solid black lines are the parabolic fittings of data points. (b) The band energy shifts concerning 

dilations for BTCDT in the crystal axis x direction. The valence band maximum (VBM) (purple) 

and conduction band minimum (CBM) (blue) are used to obtain the DP constants of holes and 

electrons, respectively. The energies are all calibrated to the vacuum level during the lattice 

deformations. The solid lines are the linear fittings of data points. 
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Figure S11: The schematic illustration of the calibration method: the electrostatic potential 

profiles for BTCDT in the crystal axis z direction. 

Table S2: Changes in the site energy (fragmental orbital levels which comprise the valence band) 

in each D-A polymer upon a 1% lattice stretch. 

 Ground* 0.1% tensile     

 EHOMO 

(A) 

EHOMO 

(D) 

EHOMO 

(A) 

EHOMO 

(D) 

EHOMO 

(D)- 

EHOMO 

(A) 

ref relative 100*(ref + 

relative) 

BTCDT -6.786 -5.368 -6.794 -5.406 1.419 0.022 0.030 5.29 

PTCDT -7.227 -5.341 -7.235 -5.383 1.886 0.024 0.034 5.823 

DFBTCDT -7.257 -5.362 -7.262 -5.407 1.895 0.025 0.039 6.435 

DBTCDT -6.337 -5.201 -6.34 -5.246 1.136 0.027 0.044 7.061 

BTSiDT -6.793 -5.618 -6.797 -5.637 1.175 0.011 0.015 2.612 

BTNDT -6.789 -5.340 -6.799 -5.384 1.448 0.027 0.034 6.108 

BTBDT -6.816 -5.647 -6.827 -5.663 1.169 0.013 0.005 1.918 

BTIDT -6.791 -5.193 -6.800 -5.249 1.598 0.033 0.047 8.00 

a 𝐷 = 𝐸HOMO
′ (𝐷) − 𝐸HOMO(𝐷), b 𝐴 = 𝐸HOMO

′ (𝐴) − 𝐸HOMO(𝐴), c ref =
(𝐷+𝐴)

2
, d relative =

|𝐷 − 𝐴|, *Ground: Ground-state before lattice stretch. 
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Figure S12: (a) Molecular orbital scheme of the donor acceptor interaction changes, under 

uniform lattice strain. (b) E1 from DFT comparing with site energies changes from TB.  

Table S3: The computed DP constants, elastic constants, power factor, Seebeck coefficients, 

electrical conductivity, mobility, and relaxation time for the D-A copolymers. 

 E1 cii 

(10-7 J 

m-1) 

Nopt  

(1020 

cm-3) 

(S2σ)max 

 (10-3 W cm-

1 K-2) 

S  

(V 

K-1) 

σ  

(105 S 

cm-1) 

Mobility 

 (cm2 V-1 

s-1) 

 (ps) 

 

BTCDT 5.78 1.12 2.73 1.41 173 0.471 879 42.42 

PTCDT 5.84 1.11 2.66 2.08 177 0.662 993 51.56 

DFBTCDT 6.43 1.26 1.69 0.77 190 0.212 749 45.48 

DBTCDT 0.34 1.23 1.76 724 174 162 49200 1978 

BTSiDT 2.87 0.64 1.74 1.29 190 0.359 1198 70.31 

BTNDT 6.99 1.37 2.34 1.20 172 0.403 812 56.00 

BTBDT 7.19 2.06 1.09 0.72 184 0.126 340 27.72 

BTIDT 8.10 1.33 1.12 0.19 185 0.05 319 35.50 
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Figure S13: Variation of Seebeck coefficient, conductivity, and power factor with different carrier 

concentrations for BTCDT at room temperature. 

 

Figure S14: (a) Variation of SE couplings with respect to the energy difference between the frontier 

molecular orbitals between D and A moieties, (b) the energy level of the highest occupied 

molecular orbitals of D and A fragments. 

The route to high TE power factor 

The above results unravel strong SE coupling to play a key role in high-performance TE 

D-A copolymer. A strong SE coupling within the D-A copolymer results in small effective 

mass, small DP constant, and thus, weak electron-phonon coupling, large charge carrier 

relaxation time, and consequently, high mobility and high TE power factor. Further analysis 

reveals that SE couplings increase when there is a minimal energy difference (∆𝜀 =

𝐸HOMO(Donor) − 𝐸HOMO(Acceptor)) between the HOMOs of the acceptor and donor 

moiety (Figure S14a-b). For example, with respect to the same donor fragment (CDT), the 

∆𝜀 for DBT is 0.85 eV, whereas it is enhanced to 1.47 eV for BT, 1.93 eV for PT, and 1.92 

eV for DFBT. The SE couplings, as given above, decrease from DBTCDT to DFBTCDT 

while the power factor increases from DBTCDT to DFBTCDT. In other words, SE 

couplings become stronger when there is appropriate frontier molecular orbital alignment 
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between the donor and acceptor moiety which agrees with our previous work that good 

molecular orbital alignment between the sub-building blocks leads to high TE power 

factor.56 Thus a strategy to achieve a high power factor in D-A copolymer is to minimize 

the energy difference between the donor and acceptor moieties which bring forth strong SE 

coupling. Here we’d like to emphasize that our strategy only provides a feasible way to 

enhance the SE coupling. In the polymer, both direct coupling (𝑡) and the SE determine the 

transport properties. Our results indicate that the direct coupling 𝑡 of homopolymer is much 

larger than SE and dominating the transport properties. Thus, electronic properties of homo-

polymers are mainly determined by the direct coupling. 10,11 For example, the t is 6 times 

of SE in h-CDT; while t is only 1.5~3 times of SE in the considered D-A polymer. And 

thus, SE coupling plays a more important role in determining the electronic properties of 

D-A polymers, which was also suggested in literatures10,11. In this sense, homopolymer and 

D-A copolymer should be treated separately, and our strategy should be applied for D-A 

polymers only, so that a large SE and modest direct coupling can be achieved 

simultaneously. In addition, this approach would be only applicable to semiconducting D-

A copolymers where the HOMO and LUMO of the acceptors are lower than those of donors.  
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