Supporting Information

Durable Photoelectrochemical CO₂ Reduction with Water Oxidation using a Visible-Light Driven Molecular Photocathode

Ryutaro Kamata, a Hiromu Kumagai, ‡a Yasuomi Yamazaki, §a Masanobu Higashi, †b Ryu Abe, b and Osamu Ishitani*a

a Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama 2-12-1-NE-1, Meguro-ku, Tokyo 152-8550 (Japan), E-mail: ishitani@chem.titech.ac.jp
b Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)
‡ Present address: Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
§ Present address: Department of Materials and Life Science, Graduate School of Science and Engineering, Seikei University, 3-1-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)
† Present address: The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshiku, Osaka City, Osaka, 558-8585, Japan
Figure S1. Absorption spectra of \textit{VRu-N^N} (red line) and \textit{cis-(CO)-trans-(Cl)-Ru(dmb)(CO)\textsubscript{2}Cl\textsubscript{2}} (blue line) in MeCN solutions.

Figure S2. UV-vis absorption spectra of NiO/PRu-poly-Ru-N^N (red line), and NiO/PRu-poly-Ru-RuCAT1 (black dashed line). FTO electrode was employed as the background.
Figure S3. Time courses of photocurrent using NiO/PRu-poly-Ru-RuCAT1 (electrode area: 2.5 cm$^{-2}$) at $E = -0.7$ (blue line), -0.3 (red line), and 0 (green line) V vs. Ag/AgCl under light irradiation ($460 \text{ nm} < \lambda_{\text{ex}} < 650 \text{ nm}$, 27 mW cm$^{-2}$) in a CO$_2$-purged NaHCO$_3$ (50 mM) aqueous solution (pH = 6.6).

Figure S4. Current-potential curves and time courses of photocurrent at $E = 0$ V vs. Ag/AgCl using NiO/PRu-poly-Ru-RuCAT1 and the polymer photocathode with Re catalyst (NiO/PRu-poly-Ru-Re)1 under light irradiation ($460 \text{ nm} < \lambda_{\text{ex}} < 650 \text{ nm}$, 27 mW cm$^{-2}$) in a CO$_2$-purged NaHCO$_3$ (50 mM) aqueous solution (pH = 6.6).
Figure S5. FT-IR spectra of NiO/PRu-poly-Ru-RuCAT2 (red line) and VRu-RuCAT on NiO electrode (blue line). A diffuse reflection unit was used for the measurements and a bare NiO electrode was employed as the background.

Figure S6. Cross-sectional scanning electron microscopy (SEM) images of A) NiO/PRu-poly-Ru-RuCAT1, B) NiO/PRu-poly-Ru-RuCAT2 and C) NiO/PRu-poly-Ru-Re.
Table S1. Value of n_{cat}, n_{total}, and n_{PRuV}.

<table>
<thead>
<tr>
<th>Entry</th>
<th>n_{PRuV} / nmol</th>
<th>n_{total} / nmol</th>
<th>n_{cat} / nmol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.6</td>
<td>82</td>
<td>35.2</td>
</tr>
<tr>
<td>2</td>
<td>12.9</td>
<td>78</td>
<td>32.6</td>
</tr>
<tr>
<td>3</td>
<td>12.3</td>
<td>87</td>
<td>37.4</td>
</tr>
<tr>
<td>4</td>
<td>13.3</td>
<td>94</td>
<td>40.8</td>
</tr>
</tbody>
</table>

Scheme S1. Preparation scheme for (a) NiO/PRu-ReCAT and (b) NiO/PRu-poly-Ru-Re.

Reference