Supporting Information

for

Facile and scalable dry surface doping technique to enhance the electrochemical performance of LiNi$_{0.64}$Mn$_{0.2}$Co$_{0.16}$O$_2$ cathode materials

Yang Shia*, Kitae Kima, Yingjie Xinga, Andrew Milloniga, Bryan Kima, Lixin Wanga, Eunsung Leea, Chloe Harrisona, Taehwan Yua, Derek C. Johnsona, Albert L. Lipsonb, Jessica L. Durhamb, Donghao Liub, Timothy T. Fisterc, Lei Yed, and Jianguo Wend

a: A123 Systems, LLC, 200 West Street, Waltham, MA 02451
b: Applied Materials Division, Argonne National Laboratory, 9700 S Case Avenue, Lemont, IL 60439
c: Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Case Avenue, Lemont, IL 60439
d: Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Case Avenue, Lemont, IL 60439

* Corresponding author email: yshi@a123systems.com
Fig. S1 shows the cross-section TEM EDS mapping of the 0.6% Nd-doped NMC cathode and Nd is distributed on the surface.

Fig. S1 Cross-section TEM-EDS mapping of the 0.6% Nd-doped NMC cathode.

Fig. S2 shows the Rietveld refinement of the XRD patterns.

Fig. S2 Rietveld refinement of the XRD patterns of (a) pristine, (b) annealed and (c) Nd-doped NMC cathodes.
Fig. S3 displays the cycling performance of NMC cathodes doped with different amount of Nd, and 0.6% Nd-doped NMC shows the best cycling performance.

Fig. S3 Specific discharge capacities of NMC doped with different amount of Nd at C/2 in coin cells.

Fig. S4 displays the measurement positions in EELS linescan.

Fig. S4 Measurement positions of EELS spectra in (a) fresh NMC, (b) fresh Nd-doped NMC, (c) cycled NMC and (d) cycled Nd-doped NMC cathodes.
Fig. S5 displays similar EELS spectra of fresh NMC and Nd-doped NMC samples. (a-b) O K-edge, (c-d) Ni L-edge, (e-f) Co L-edge, and (g-h) Mn L-edge.