Electronic Supplementary information

Internal Nanoscale Architecture and Charge Carrier Dynamics of Wide Bandgap Non-Fullerene Bulk Heterojunction Active Layers in Organic Solar Cells

Xinyu Jiang^a, Hongwon Kim^a, Peter S. Deimel^b, Wei Chen^{a,c}, Wei Cao^a, Dan Yang^a, Shanshan Yin^a, Roy Schaffrinna^a, Francesco Allegretti^b, Johannes V. Barth^b, Martina Schwager^d, Haodong Tang^c,Kai Wang^c, Matthias Schwartzkopf^e, Stephan V. Roth^{e,f}, Peter Müller-Buschbaum^{a,g*}

- ^a Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- ^bPhysik-Department, Oberflächen- und Grenzflächenphysik, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- ^c Department of Electrical and Electronic Engineering, Southern University of Science and Technology (SUSTech), 1088 Xueyuan Blvd. 518055 Shenzhen, China
- ^d Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- ^e Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Lothstr. 34, 80335 München, Germany
- ^f Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- ^g Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany

* corresponding author E-mail: muellerb@ph.tum.de

DIO (vol%)	In plane (100) q (Å ⁻¹)	FWHM (Å ⁻¹)	Int.	Out of plane (100) q (Å ⁻¹)	FWHM (Å ⁻¹)	Int.	Out of plane (010) q (Å ⁻¹)	FWHM (Å ⁻¹)	Int.
0.0	0.28 ± 0.01	0.03 ± 0.01	1091	0.30 ± 0.01	$\begin{array}{c} 0.07 \\ \pm \ 0.01 \end{array}$	1165	$\begin{array}{c} 1.72 \\ \pm \ 0.01 \end{array}$	$\begin{array}{c} 0.32 \\ \pm \ 0.01 \end{array}$	158
0.5	$\begin{array}{c} 0.28 \\ \pm \ 0.01 \end{array}$	$\begin{array}{c} 0.04 \\ \pm \ 0.01 \end{array}$	1441	$\begin{array}{c} 0.30 \\ \pm \ 0.01 \end{array}$	$\begin{array}{c} 0.07 \\ \pm \ 0.01 \end{array}$	1496	$\begin{array}{c} 1.74 \\ \pm \ 0.01 \end{array}$	$\begin{array}{c} 0.31 \\ \pm \ 0.01 \end{array}$	213
1.0	$\begin{array}{c} 0.28 \\ \pm \ 0.01 \end{array}$	$\begin{array}{c} 0.03 \\ \pm \ 0.01 \end{array}$	1094	$\begin{array}{c} 0.30 \\ \pm \ 0.01 \end{array}$	$\begin{array}{c} 0.07 \\ \pm \ 0.01 \end{array}$	1104	$\begin{array}{c} 1.74 \\ \pm \ 0.01 \end{array}$	$\begin{array}{c} 0.33 \\ \pm \ 0.01 \end{array}$	166
2.0	$\begin{array}{c} 0.28 \\ \pm \ 0.01 \end{array}$	$\begin{array}{c} 0.03 \\ \pm \ 0.01 \end{array}$	1135	$\begin{array}{c} 0.29 \\ \pm \ 0.01 \end{array}$	$\begin{array}{c} 0.05 \\ \pm \ 0.01 \end{array}$	903	$\begin{array}{c} 1.72 \\ \pm \ 0.01 \end{array}$	$\begin{array}{c} 0.32 \\ \pm \ 0.01 \end{array}$	145
				$\begin{array}{c} 0.37 \\ \pm \ 0.01 \end{array}$	$\begin{array}{c} 0.05 \\ \pm \ 0.01 \end{array}$	757			

Table S1. PBDB-T-2F Bragg peaks analysis of the GIWAXS data of PBDB-T-2F:IT-M

active layers

 Table S2. IT-M Bragg peaks analysis of the GIWAXS data of PBDB-T-2F:IT-M active

 layers

DIO	In plane			Out of plane		
(vol%)	(100) q (Å ⁻¹)	FWHM (Å ⁻¹)	Int.	(010) q (Å ⁻¹)	FWHM (Å ⁻¹)	Int.
0.0	0.31	0.09	273	N/A	N/A	N/A
	± 0.01	± 0.01				
0.5	0.31	0.03	614	1.86	0.09	25
	± 0.01	± 0.01		± 0.01	± 0.01	
1.0	0.31	0.03	507	1.87	0.09	21
	± 0.01	± 0.01		± 0.01	± 0.01	
2.0	0.30	0.08	336	1.86	0.09	16
	± 0.01	± 0.01		± 0.01	± 0.01	

DIO (vol%)	In plane (100) distance (Å)	size (Å)	Out of plane (100) distance (Å)	size (Å)	Out of plane (010) distance (Å)	size (Å)
0.0	22.4±0.1	188±1	20.9±0.1	81±1	3.7±0.1	18±1
0.5	22.4±0.1	141±1	20.9±0.1	81±1	3.6±0.1	18±1
1.0	22.4±0.1	188 ± 1	20.9±0.1	81±1	3.6±0.1	18±1
2.0	22.4±0.1	188±1	21.7±0.1	113±1	3.7±0.1	18±1
			17.0±0.1	113±1		

Table S3. PBDB-T-2F crystals determined with a Gaussian model analysis of the GIWAXSdata of PBDB-T-2F:IT-M active layers

Table S4. IT-M crystals determined with a Gaussian model analysis of the GIWAXS data ofPBDB-T-2F:IT-M active layers

DIO (vol%)	DIO In plane (vol%) (100) distance (Å)		Out of plane (100) size (Å) distance (Å)	
0.0	20.3±0.1	63±1	N/A	N/A
0.5	20.3±0.1	141 ± 1	$3.4{\pm}0.1$	63±1
1.0	20.3±0.1	141 ± 1	$3.4{\pm}0.1$	63±1
2.0	20.9±0.1	71±1	3.4±0.1	63±1

DIO (vol%)	F 1s peak position (eV)	N 1s peak position (eV)	Normalized F/N Ratio*	
0.0	686.2 ± 0.1	$398.4{\pm}~0.1$	1.0	
0.5	$685.8{\pm}~0.1$	398.5 ± 0.1	1.0 ± 0.1	
1.0	$686.2{\pm}~0.1$	$398.5{\pm}~0.1$	1.3 ± 0.2	
2.0	$685.9{\pm}~0.1$	$398.7{\pm}~0.1$	2.6 ± 0.5	

Table S5. Gaussian fit parameters of the XPS data of the PBDB-T-2F:IT-M active layers.

* The F/N ratios are normalized to the value for the sample with 0.0 vol% DIO addition. Individual F/N ratios were determined by using the peak area of the F 1s and N 1s core-level normalized to the specific photoionization cross section at the employed photon energy of 1253.6 eV.

DIO (vol%)	A ₁	τ 1 (ps)	A ₂	τ ₂ (ps)
0.0	1.20	148 ± 2	0.03	1710 ± 290
0.5	1.18	136 ± 2	0.03	1650 ± 260
1.0	1.19	150 ± 2	0.04	1590 ± 260
2.0	1.28	196 ± 2	0.03	1980 ± 450

Table S6. TRPL parameters of fit with a two-phase exponential decay function.

Table S7. Electron and hole mobilities obtained by SCLC method.

DIO (vol%)	$\mu_{\rm h} ({\rm cm}^2{\rm V}^{-1}{\rm s}^{-1})$	$\mu_{\rm e} ({\rm cm}^2{\rm V}^{-1}{\rm s}^{-1})$	$\mu_{ m h}/\mu_{ m e}$
0.0	1.14 x 10 ⁻⁴	3.59 x 10 ⁻⁷	317.5
0.5	1.35 x 10 ⁻⁴	1.67 x 10 ⁻⁶	80.8

The hole and electron mobilities were determined by fitting the dark current to the model of a single carrier SCLC, which is shown by the equation:

$$J = \frac{9}{8}\varepsilon_0\varepsilon_r\mu\frac{V^2}{d^3}$$

where J is the current density, μ the mobility of holes (μ_h) or electrons (μ_e), ε_0 the permittivity of the vacuum, ε_r the relative permittivity of the material and d the thickness of the blend film. V denotes the voltage $V = V_{appl} - V_{bi}$, where V_{appl} is the applied voltage, and V_{bi} the built-in potential determined by electrode work function difference. In this case, $V_{bi} = 0$ V both for holeonly and electron-only devices. The mobility was calculated from the slope of J-V plots.¹

The hole mobility μ_h improved from 1.14 x 10⁻⁴ cm² V ⁻¹ s ⁻¹ to 1.35 x 10⁻⁴ cm² V ⁻¹ s ⁻¹, and the electron mobility μ_e increased from 3.59 x 10⁻⁷ cm² V ⁻¹ s ⁻¹ to 1.67 x 10⁻⁶ cm² V ⁻¹ s ⁻¹ after 0.5% DIO addition. The ratio of μ_h / μ_e reduced from 317.5 to 80.8, suggesting a balanced hole and electron mobility with 0.5 vol% DIO addition.

Figure S1. Details of the fabrication process of the PBDB-T-2F:IT-M based wide-bandgap non-fullerene OSC with different amounts of DIO addition.

Figure S2. AFM height images of PBDBT-2F films prepared with different amounts of DIO addition (rms values) of a) 0.0 (1.4 nm), b) 0.5 (1.9 nm), c) 1.0 (2.7 nm) and d) 2.0 vol% (4.0 nm). e)-h) Corresponding phase images. AFM height images of IT-M films prepared with different amounts of DIO addition of i) 0.0 (0.3 nm), j) 0.5 (0.3 nm), k) 1.0 (0.5 nm) and l) 2.0 vol% (9.9 nm). m) -p) Corresponding phase images.

Figure S3. 2D GIWAXS data of a) PBDB-T-2F and b) IT-M films and PBDB-T-2F:IT-M active layers with c) 0.0, d) 0.5, e) 1.0 and f) 2.0 vol% DIO addition. In part e) the cake cuts are indicated in purple (out-of-plane 0° -15°) and red (in-plane 75°-90°). g) Cake cuts of 2D GIWAXS data in out-of-plane (purple line) and in-plane (red line) direction of PBDB-T-2F (top) and IT-M (bottom) films. h) Schematic diagram of lamellar and π - π stacking of PBDB-T-2F 2F crystal. The corresponding (100) and (010) peak positions are marked.

In the out-of-plane direction, the neat PBDB-T-2F film exhibits (100), (200), and (010) Bragg reflection peaks with positions at 0.29 Å⁻¹, 0.61 Å⁻¹ and 1.68 Å⁻¹, respectively. In the in-plane direction, the neat PBDB-T-2F film shows a (100) Bragg peak at 0.27 Å⁻¹ and a (010) Bragg peak at 1.60 Å⁻¹, suggesting both a face-on and an edge-on orientation. The IT-M thin film shows a pronounced (100) Bragg reflection peak at 0.33 Å⁻¹ together with a (010) Bragg peak from the π - π stacking at position of 1.8 Å⁻¹ in the out-of-plane direction, corresponding to a face-on orientation with respect to the substrate surface.

Figure S4. a) XRR data (black symbols) and corresponding fits (red lines) for neat PBDBT-2F (top) and IT-M (bottom) thin films and b) related SLD profiles. c) Chemical structure of PBDBT-2F and IT-M, respectively.

Figure S5. a) Normalized UV-vis absorption of PBDB-T-2F and IT-M in solution and in a dried thin film. b) UV-vis absorbance of diluted PBDB-T-2F: IT-M blend solutions with different DIO addition. c) PL spectroscopy data of PBDB-T-2F, IT-M films, a glass substrate, respectively.

Figure S6. J-V curves as well asand the corresponding fits (blue line) for the hole-only device a) and electron-only device b), without DIO addition (black) and with 0.5 vol% DIO addition (red), respectively.

References

1. Zhang, B.; Yu, Y.; Zhou, J.; Wang, Z.; Tang, H.; Xie, S.; Xie, Z.; Hu, L.; Yip, H.-L.; Ye, L.; Ade, H.; Liu, Z.; He, Z.; Duan, C.; Huang, F.; Cao, Y. *Adv. Energy Mater.* **2020**, *10* (12), 1904247.