Supporting Information

The role of electronegativity on the thermoelectric performance of GeTe - I-V-VI₂ solid solutions

Nanhai Li, Wenlu He, Chengjun Li, Guiwen Wang, Guoyu Wang* and Xiaoyuan Zhou* and Xu Lu*

Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, P. R. China
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
Analytical and Testing Center, Chongqing University, Chongqing 401331, P. R. China

Contact Authors: luxu@cqu.edu.cn; guoyuw@cigit.ac.cn; xiaoyuan2013@cqu.edu.cn

1. Single parabolic band (SPB) model

The following equations are used to estimate the effective mass:\(^1\):

\[s = -\frac{k_B}{e} \left(\frac{5}{2} + \lambda \right) \frac{F_3}{\frac{3}{2} + \lambda} (\eta) \left(\frac{3}{2} + \lambda \right) F_1 \left(\frac{3}{2} + \lambda \right) \eta \]

(1)

\[n_H = -\frac{4\pi(2m^*_d k_B T)^2 F_1(\eta)}{\hbar^3 r_H} \]

(2)

\[r_H = \frac{3}{2} F_1(\eta) \left(\frac{3}{2} + \lambda \right) \frac{F_1}{\frac{3}{2} + \lambda} (\eta)^2 \]

(3)

\[F_i(\eta) = \int_0^{\infty} x^i \frac{1}{1 + \exp[\eta(x - \eta)]} dx \]

(4)
where \(\eta = \frac{E_F}{k_B T} \) is the reduced Fermi level, \(x \) is the reduced carrier energy, \(F(x) \) is the Fermi-Dirac integral, \(\tau_H \) is the Hall factor, \(m^*_d \) is the density of states (DOS) effective mass, \(h \) is the Planck constant, and \(\lambda \) is the scattering factor which depends on the energy dependence of the carrier relaxation time \(\tau \) via \(\tau = \tau_0 \xi^\lambda \). When the acoustic phonon scattering or alloy scattering is dominant, \(\lambda = -1/2 \).

2. B factor \& \(zT \)

\(\beta \) is defined by the relation:

\[
\beta = \left(\frac{\kappa}{e^2} \frac{\mu T}{\lambda L} \right)
\]

(5)

where \(\kappa \) is the Boltzmann constant, \(\lambda L \) is the lattice thermal conductivity, \(\sigma_0 \) is a quantity termed as transport coefficient that depends on the carrier mobility and the effective mass according to:

\[
\sigma_{eo} = 2e\mu \left(\frac{2\pi m^*_d}{\hbar^2} \right)^{3/2}
\]

(6)

where \(\mu \) is the carrier mobility, \(m^*_d \) is the density of states (DOS) effective mass, \(h \) is the Planck constant.

To see how the definition of \(\beta \) is justified, we can now separate the \(\eta \)-dependent terms from \(zT \):

\[
zT = \frac{S^2 \sigma T}{\lambda_L + \lambda_e} = \frac{S^2}{\lambda_L/\sigma T + L}
\]

\[
= \frac{S^2(\eta)}{\lambda_L / T \sigma_{eo} \cdot \ln(1 + e^\eta) + L(\eta)}
\]
\[S^2(\eta) = \frac{(k_B/\eta)^2}{\beta \cdot \ln(1 + e^\beta_x)} + L(\eta) \]

where \(\beta \) combines all the \(\eta \)-independent material parameters, giving the definition of the dimensionless material quality factor in Eq.5. The natural unit of the Lorenz number \((k_B/\eta)^2 \) was multiplied in the term containing \(1/\beta \) to make \(\beta \) dimensionless for convenience.

References

Figure S1. (a-b) The magnified area of the powder X-ray diffraction pattern of (GeTe)	extsubscript{1-x}(NaPnTe	extsubscript{2})	extsubscript{x} and (GeTe)	extsubscript{1-x}(CuPnTe	extsubscript{2})	extsubscript{x} in the angles(2\theta) from 29° to 31°. (c-d) The lattice constants (c-axis) of (GeTe)	extsubscript{1-x}(NaPnTe	extsubscript{2})	extsubscript{x} and (GeTe)	extsubscript{1-x}(CuPnTe	extsubscript{2})	extsubscript{x}.

Figure S2. The comparison of the thermal and electrical performance data of (GeTe)	extsubscript{0.98}(NaBiTe	extsubscript{2})	extsubscript{0.02} after hot pressing (powder was consolidated to a disk by a direct-current-induced hot pressing at about 873 K for 40 min and under the pressure of ~50 MPa) and direct cutting.

Figure S3. SEM image of fresh fracture surface morphology of (GeTe)	extsubscript{0.98}(NaBiTe	extsubscript{2})	extsubscript{0.02} after (a) direct cutting and (b) hot pressing.