Supporting Information

Guest Size Limitation in Metal-Organic Framework Crystal-Glass Composites

Christopher W. Ashling,^a Lauren K. Macreadie,^b Thomas J. F. Southern,^a Yiming Zhang,^b Lauren N. McHugh,^a Rachel C. Evans,^a Stefan Kaskel,^c Shane G. Telfer,^{b*} and Thomas D. Bennett^{a*}

^a. Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.

^b. MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.

^c. Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany.

Contents:

- 1. Powder X-ray Diffraction
- 2. Thermogravimetric Analysis
- 3. Scanning Electron Microscopy
- 4. Gas Sorption

Powder X-ray Diffraction

Figure S1: Powder X-ray diffraction pattern of CUmof-9 as synthesised, CUmof-9 after heating to 400 °C, and a simulated CUmof-9 PXRD pattern using published crystallographic information.¹

Figure S2: Powder X-ray diffraction pattern of MIL-68 as synthesised, and MIL-68 after heating to 450 °C, and simulated MIL-68 PXRD pattern using published crystallographic information.²

Figure S3: Powder X-ray diffraction pattern of MIL-120 as synthesised, MIL-120 after heating to 450 °C and a simulated MIL-120 PXRD pattern using published crystallographic information.³

Figure S4: Powder X-ray diffraction pattern of MIL-126 as synthesised and MIL-126 after heating to 450 °C, and a simulated MIL-126 PXRD pattern using published crystallographic information.⁴

Figure S5: Powder X-ray diffraction pattern of MIL-118 as synthesised, a simulated MIL-118A PXRD pattern, MIL-118 after heating to 450 °C, and a simulated MIL-118C PXRD pattern using published crystallographic information.⁵

Figure S6: Powder X-ray diffraction pattern of UL-MOF-1 as synthesised and UL-MOF-1 after heating to 450 °C, and a simulated UL-MOF-1 PXRD pattern using published crystallographic information.⁶

rwp: 16.064, Space group: P21/c, *a*: 10.300 Å, *b*: 5.355 Å, *c*: 8.671 Å, *B*: 98.68°

Figure S7: Pawley refinement of UL-MOF-1 powder X-ray diffraction pattern.

Figure S8: Pawley refinement of MIL-118A powder X-ray diffraction pattern.

rwp: 14.291, Space group: Pnma, a: 17.111 Å, b: 6.627 Å, c: 12.188 Å

rwp: 21.783, Space group: Cc, a: 19.494 Å, b: 7.749 Å, c: 6.587 Å, ß: 104.54°

Figure S10: Pawley refinement of MIL-53-np powder X-ray diffraction pattern.

Table S1: Lattice parameters from published crystallographic files, and the corresponding lattice parameters of the crystalline material as determined by Pawley refinements.^{3,6}

Sample	Lattice parameters				
	a (Å)	b (Å)	<i>c</i> (Å)	β (°)	Rwp
MIL-118C	12.132	6.619	17.227	90	-
(MIL-118) _{0.5} (<i>a</i> gZIF-62) _{0.5}	12.127	6.431	17.459	90	11.152
UL-MOF-1	10.302	5.345	8.662	98.659	-
(UL-MOF-1) _{0.5} (<i>a</i> gZIF-62) _{0.5}	10.316	5.373	8.727	98.547	7.677

Thermogravimetric Analysis

Figure S11: Thermogravimetric analysis, performed at 10 °C/min under nitrogen gas on the MOFs listed in Table 1 in the main manuscript.

Figure S12: Thermogravimetric analysis of a) DUT-6, and b) DUT-8, displaying the normalised mass loss and the first differential of the normalised mass with respect to time. This experiment was performed at a heating rate of 10 °C/min under a nitrogen protective atmosphere.

Scanning Electron Microscopy

Figure S13: Scanning electron microscopy images of MIL-53-np.

Figure S14: Scanning electron microscopy images of MIL-118C.

Figure S15: Scanning electron microscopy images of UL-MOF-1.

Figure S16: Optical (upper left) and scanning electron microscopy (upper right, lower left and lower right) images of a shard of (MIL-53)_{0.25}(a_g ZIF-62)_{0.75}.

Figure S17: Optical (upper left) and scanning electron microscopy (upper right, lower left and lower right) images of a shard of (MIL-118)_{0.5}(a_g ZIF-62)_{0.5}. The lower-right image is an enhanced view of the surface defect highlighted in red.

Figure S18: Optical (left) and scanning electron microscopy (right) images of a shard of (UL-MOF-1)_{0.5}(a_g ZIF-62)_{0.5}.

Gas Sorption

Figure S19: Gas adsorption isotherms of a_g ZIF-62. Solid and open circles of the same colour indicate the adsorption and desorption respectively.

Figure S20: Gas adsorption isotherms of **a**) MIL-118, and **b**) UL-MOF-1. Solid and open circles of the same colour indicate the adsorption and desorption respectively.

Figure S21: Gas adsorption isotherms of MIL-53-np. Solid and open circles of the same colour indicate the adsorption and desorption respectively.

Figure S22: Gas adsorption isotherms of (MIL-53)_{0.25}(a_g ZIF-62)_{0.75}. Solid and open circles of the same colour indicate the adsorption and desorption respectively.

References

- 1 F. A. A. Paz and J. Klinowski, *Chem. Commun.*, 2003, **9**, 1484–1485.
- 2 K. Barthelet, J. Marrot, G. Férey and D. Riou, *Chem. Commun.*, 2004, **4**, 520–521.
- C. Volkringer, T. Loiseau, M. Haouas, F. Taulelle, D. Popov, M. Burghammer, C. Riekel,
 C. Zlotea, F. Cuevas, M. Latroche, D. Phanon, C. Knöfelv, P. L. Llewellyn and G. Férey,
 Chem. Mater., 2009, 21, 5783–5791.
- 4 R. J. Marshall, C. T. Lennon, A. Tao, H. M. Senn, C. Wilson, D. Fairen-Jimenez and R. S. Forgan, *J. Mater. Chem. A*, 2018, **6**, 1181–1187.
- 5 C. Volkringer, T. Loiseau, N. Guillou, G. Fèrey, M. Haouas, F. Taulelle, N. Audebrand, I. Margiolaki, D. Popov, M. Burghammer and C. Riekel, *Cryst. Growth Des.*, 2009, **9**, 2927–2936.
- 6 D. Banerjee, S. J. Kim and J. B. Parise, *Cryst. Growth Des.*, 2009, **9**, 2500–2503.