Magnetic Proline based Ionic Liquid Surfactant as Nano-carrier for Hydrophobic Drug Delivery

Akshay Kulshrestha, ab Praveen Singh Gehlot, c Arvind Kumarab*

^aCSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and

Industrial Research, G. B. Marg, Bhavnagar, 364002, Gujarat India

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

^c Department of chemistry, Government Science College Pardi, Valsad-39612, Gujarat, India

Contents:

- 1. Structural scheme of synthesized $[ProC_{10}][FeCl_3Br]$.
- **2.** ¹H NMR of the synthesis of $[ProC_{10}]$ [Br].
- **3.** Raman spectra and EPR spectra of $[ProC_{10}][FeCl_3Br]$.
- **4.** VSM graph for the [ProC₁₀][FeCl₃Br].
- **5.** DSC thermo gram of [ProC₁₀][FeCl₃Br]and Table showing various values obtained from TGA and DTG.
- 6. TEM images of $[ProC_{10}][Br]$.
- 7. Autocorrelation function of $[ProC_{10}][Br]$ and $[ProC_{10}][FeCl_3Br]$.

Annexure I Derived surface parameters and their equations.

Annexure II Various mathematical models for drug release pattern.

1. Structural scheme of synthesized [ProC₁₀] [FeCl₃Br].

Figure S1. Synthetic procedure of [ProC₁₀][FeCl₃Br].

2. ¹H NMR of the synthesis of [ProC₁₀] [Br]

¹H NMR chemical shift values of [ProC₁₀][Br]: CDCl₃, 500MH_z: δ_H (ppm) 4.3(t, 1H), 4.00(t,2H,NCH2) 3.7 (s,1H,NCH₂),3.21-3.4(m, 3H), 2.16(m, 2H, CH₂), 2.04(m, 2H,CH₂), 1.63 (m,4H,CH₂), 1.25-1.29(m, 28H,CH₂), 0.84-0.90(t,6H,CH₃).

3. Raman spectra and EPR spectra of [ProC₁₀][FeCl₃Br] ^{1,2}:

Figure S3. EPR spectra and Raman spectra of [ProC₁₀][FeCl₃Br] respectively.

4. VSM graph of [ProC₁₀][FeCl₃Br]

The field dependence magnetic susceptibility has been carried out for $[ProC_{10}][FeCl_3Br]$ at room temperature for a magnetic field range -1.2T to 1.2T. However, there is no opening of hysteresis loop in both the cases. Moreover, there is no saturation upto 1.2T indicating that there are strong magnetic interactions among the metal centres.

Figure S4.Represents the magnetic moment vs field graph of [ProC₁₀][FeCl₃Br].

5. DSC thermogram of $[ProC_{10}][FeCl_3Br]$ and various values obtained from TGA and DTG.

Figure S5 DSC of [ProC₁₀][FeCl₃Br]

Table S1: T_d, T_{start} and T_{onset} of [Pro C₁₀][FeCl₃Br] and [Pro C₁₀][Br].

MSAILs	T _{start} (°C)	$T_{d}^{o}(C)$	T _{onset} (°C)
[Pro C ₁₀][Br]	148	247	170
[Pro C ₁₀][FeCl ₃ Br]	220	244	240

6. TEM images of [ProC₁₀][Br] .

Figure S6.TEM images of [ProC₁₀][Br]

7. Autocorrelation Function of MPSAILs

Figure S7 Autocorrelation Function of [ProC₁₀][Br] and [ProC₁₀][FeCl₃Br].

Annexure I

The Surface parameter equation are as follow:³

1. The Adsorption efficiency(pC_{20}) and Effectiveness of Surface tension reduction(Π_{CMC}) of surfactant at air-water interface is estimated by using the relation (1)^{1,2}

$$pC_{20} = -\log C_{20}, \qquad \pi_{CMC} = \gamma_{H_2O} - \gamma_{CAC}....(1)$$

where, C_{20} is the concentration reduce by 20mNm-1 from the surface tension of the solvent (water)¹, γ_{H_2O} stands for the surface tension of the pure water and γ_{CMC} stands for the surface tension of the solvent medium at CMC.

2. The amount of surfactants adsorbed at the interface is estimated from relative surface excess concentration (Γ_{max}). The values Γ_{max} of at the CMC have been calculated using Gibbs adsorption Eq. 2.

$$\Gamma_{\max} = -\frac{1}{nRT} \frac{\partial \gamma}{\partial \ln C}....(2)$$

where " $\partial \gamma / \partial \ln C$ " is the slope of $\gamma - \ln C$ plot in the pre *CMC* region and n is Gibbs adsorption coefficient.

3. Minimum area occupied by monomers at the interface was calculated using equation 4.

$$A_{\min} = \frac{10^{16}}{\Gamma_{\max}.N_A}....(3)$$

where N_A is Avogadro number and the Unit of A_{min} is Å².

Annexure-II

Table S2: Various mathematical models and their equations:⁴

Mathematical Model	Equation				
Zero Order	$C_o - C_t = K_o t$				
First Order	$\ln C = \ln C_0 - K_1 t$				
Higuchi model	$Q = A_{\sqrt{D(2Co - Cs)Cst}}$				
Hixson–Crowell model	$C_{0}^{1/3} - C_{t}^{1/3} = K_{HC}t$				
Korsmeyer- Peppas model	$M_t/M_\infty = K_{kp} t^n$				

where C_o = intial concentration of the drug at time, t = 0, C_t = amount of drug released at time t, K_o = zero order constant, K_1 = first order rate constant, C = percent of drug remaining at time t,Q=Cumulative amount of drug released at time per unit area, C_s is the drug solubility in the matrix and D is the diffusion coefficient of the drug molecule in the matrix, C_s =drug solubility in the matrix and D =diffusion coefficient of the drug molecule in the matrix.Mt = amount of drug released in time t, M ∞ = amount of drug released after time ∞ , n = diffusional exponent or drug release exponent, and K_{kp} = Korsmeyer release rate constant.

Table S3. A comparison of loading efficiency of ciprofloxacin drug in various surfactants or polymeric colloid	dal
systems.	

S.No	Surfactant/ polymer	Drug Carrier	Loading efficiency (%)	Author	Year -	
1.	Present work [ProC ₁₀][FeCl ₃ Br]	vesicles	84.2%	-		
2.	Ciprofloxacin-HCl-Chitosan/Tween/Tri polyphosphate	Micelle nanocomposite	45-56%	Manea et al. ⁵²	2019	
3.	Block copolymers, poly(ε-caprolactone)- block-poly(lysine-stat-phenylalanine bioflim	vesicles	13-31%	Xi et al. ⁵⁵	2019	
4.	Pluronics (Pluronic F108 and Pluronic L81)	Micelles	N.R.	Senthilkumar et al. ⁵⁶	2019	
5.	Long chain non-ionic surfactant N-(4-sulfamoylphenyl)dodecanamide	Vesicles	68-82%	Ali et al. ⁵⁷	2019	
6.	(N-butyl acetate/polysorbate 80/ethanol/water)	Microemulsion	3.6%	Saleem et al. ⁵⁸	2018	
7.	Effect of NaCl on interaction between SDS and HTEAB	micelles	N.R	Banipal et al. ⁵⁹	2018	
8.	Poly(ethylene oxide) (PEO), a surfactant Pluronic F-127	Nanofibre	51%	Kyzioł et al. ⁶⁰	2017	
9.	Surfactant method for core-shell mesoporous silica based layered double hydroxide	disc-like morphology	37%	Barnabas et al. ⁶¹	2017	
10.	Diacyl glycerol-arginine surfactants	vesicle	8-13%	Tavano et al. ⁶²	2014	

Table S4: Kinetics study of release of guest molecule by various mathematical models.

Guest Molecule	Release condition	*Zero Order		*First order		*Higuchi Model		*KorsMeyar Peppas		*Hixon Crowell	
		R ²	Slope	R ²	Slope	R ²	Slope	R ²	Slope	R ²	Slope
Pyrene	pH 7	0.78	0.17	0.85	0.002	0.87	3.3	0.95	0.44	0.83	0.005
Ciprofloxacin	pH 7	0.92	1.19	0.99	0.015	0.97	11	0.99	0.69	0.97	0.037

REFERENCE

- Döbbelin, M.; Jovanovski, V.; Llarena, I.; Marfil, L. J. C.; Cabañero, G.; Rodriguez, J.; Mecerreyes, D. Synthesis of paramagnetic polymers using ionic liquid chemistry. *Polymer Chemistry* 2011, 2(6), 1275 DOI: 10.1039/c1py00044f.
- Shongwe, M. S.; Al-Rahbi, S. H.; Al-Azani, M. A.; Al-Muharbi, A. A.; Al-Mjeni, F.; Matoga, D.; Gismelseed, A.; Al-Omari, I. A.; Yousif, A.; Adams, H.; et al. Coordination versatility of tridentate pyridyl aroylhydrazones towards iron: tracking down the elusive aroylhydrazono-based ferric spin-crossover molecular materials. *Dalton Transactions* **2012**, *41*(8), 2500 DOI: 10.1039/c1dt11407g.
- Rosen, M. J.; Mathias, J. H.; Davenport, L. Aberrant Aggregation Behavior in Cationic Gemini Surfactants Investigated by Surface Tension, Interfacial Tension, and Fluorescence Methods. *Langmuir* 1999, 15(21), 7340–7346 DOI: 10.1021/la9904096.
- Baishya, H. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets. *Journal of Developing Drugs* 2017, 06(02) DOI: 10.4172/2329-6631.1000171.