Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Modified Ti₃C₂ nanosheets as peroxidase mimetics for use in

colorimetric detection and immunoassays

Xiaoju Wu, Tongming Chen, Yuan Chen and Guowei Yang *

State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology

Research Center, School of Materials Science & Engineering, School of Physics, Sun

Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.

* Corresponding author: stygw@mail.sysu.edu.cn

Scheme S1. Schematic illustration of the etching and ultrasonication process for Ti_3AlC_2

Figure S1. (A) High resolution TEM image and (B) statistics analysis of diameter of Ti_3C_2 nanosheets.

Figure S2. Steady-state kinetic assay of Naked- Ti_3C_2 and Ala- Ti_3C_2 . (A, B, E, F) TMB or H_2O_2 concentration-dependent on the reaction rate and (C, D, G, H) the corresponding double-reciprocal plots respectively.

Figure S3. (A) Selectivity analysis for glucose detection.

	Catalyst	Linear range	LOD (µM)	Ref.
		(μΜ)		
Solution	N-doped carbon	2 - 50	1.14	1
system	C-dots/V ₂ O ₅	0.7 - 300	0.7	2
	Co ₃ O ₄ MNPs	200 - 6000	86	3
	Naked-Ti ₃ C ₂	10 - 320	8.82	This work
	His-Ti ₃ C ₂	1.25 - 640	1.034	This work
Paper-based	HRP	500 - 4500	300	4
system	Zr-PCN-222 (Fe)	0 - 2500	250	5
	Co ₃ O ₄ -CeO ₂ nanosheets	5 - 1500	0.21	6
	Naked-Ti ₃ C ₂	10 - 640	10	This work
	His-Ti ₃ C ₂	10 - 640	10	This work

 Table S1. Comparison of analytical parameters for reported colorimetric glucose

 detection¹⁻⁶

Compared with other catalysts in different sensing systems, Ti_3C_2 nanozymes possess relatively broad linear range and low detection limit simultaneously. Furthermore, in a traditional glucose detection experiment, two steps were taken for the cascade reaction. while in the paper-based system, a one-pot assay strategy was introduced by combining the reaction zone and detection zone in the same area, which enable them to be a potential method to detect glucose in some poor regions where lack of expensive equipment. In addition, as the glucose concentration is in the range of 3 to 8 mM for healthy persons and 9 to 40 mM for diabetics, the linear detective range of Ti_3C_2 nanosheets is qualified for glucose detection. In brief, paper-based Ti_3C_2 nanozymes system meets the need of glucose detection in accuracy, simplicity, and portability.

Catalyst	Detection object	R	Ref.
g-C ₃ N ₄ QDs	cTnI	0.996	7
Cu(OH)2	Microcystin-LR	0.992	8
NC@DNAzyme			
Au NPs	haptoglobin	0.9748	9
Ti_3C_2 nanosheets	IR β-subunit	0.923	This work

Table S2. Comparison of correlation coefficients for reported immunoassay⁷⁻⁹

References

- 1. S. Lin, Y. Zhang, W. Cao, X. Wang, L. Qin, M. Zhou and H. Wei, *Dalton Transactions*, 2019, **48**, 1993-1999.
- F. Honarasa, F. H. Kamshoori, S. Fathi and Z. Motamedifar, *Mikrochim Acta*, 2019, 186, 234.
- 3. H. Zhang, L. Han and F. Li, Sensors and Actuators B: Chemical, 2019, 286, 460-467.
- C. K. Chiang, A. Kurniawan, C. Y. Kao and M. J. Wang, *Talanta*, 2019, **194**, 837-845.
- G. C. Ilacas, A. Basa, K. J. Nelms, J. D. Sosa, Y. Liu and F. A. Gomez, *Anal Chim Acta*, 2019, **1055**, 74-80.
- N. Alizadeh, A. Salimi and R. Hallaj, Sensors and Actuators B: Chemical, 2019, 288, 44-52.
- 7. L. Miao, L. Jiao, Q. Tang, H. Li, L. Zhang and Q. Wei, *Sensors and Actuators B: Chemical*, 2019, **288**, 60-64.
- W. Liu, C. Gan, W. Chang, A. Qileng, H. Lei and Y. Liu, *Anal Chim Acta*, 2019, 1054, 128-136.
- 9. A. Mohamad, N. A. Keasberry and M. U. Ahmed, *Analytical Sciences : the International Journal of the Japan Society for Analytical Chemistry*, 2018, **34**, 1257-1263.