Supplementary information for

Controlling the degradation of cellulose scaffolds with Malaprade oxidation for tissue engineering

Wichchulada Chimpibula,b, Tadashi Nakaji-Hirabayashic, Xida Yuanb, Kazuaki Matsumura*b

aProgram in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

bSchool of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan

cFaculty of Engineering Department of Environmental Applied Chemistry, University of Toyama, Toyama, Japan

*Corresponding Author: Kazuaki Matsumura, School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan; e-mail: mkazuaki@jaist.ac.jp
Figure S1. SEM photographs of the cellulose scaffold structure after leaching. The scaffolds contained different percentages of NaCl particles with a size of 250 μm: (A) 60%, (B) 50%, (C) 40%, and (D) 30%.
Table S1 Pore size of cellulose scaffolds prepared using 50 wt% of NaCl crystals as porogens.

<table>
<thead>
<tr>
<th>NaCl particle size/µm</th>
<th>Pore size before oxidation / µm</th>
<th>Pore size after oxidation by NaIO₄ (1.0%)/µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>54±4.8</td>
<td>58±9.9</td>
</tr>
<tr>
<td>75</td>
<td>84±5.5</td>
<td>79±10.6</td>
</tr>
<tr>
<td>100</td>
<td>124±11.3</td>
<td>131±20.8</td>
</tr>
<tr>
<td>150</td>
<td>210±23.5</td>
<td>199±12.6</td>
</tr>
<tr>
<td>250</td>
<td>248±21.0</td>
<td>266±31.5</td>
</tr>
</tbody>
</table>

Table S2 Pore size of cellulose scaffolds prepared using 30, 40, 50, 60 wt% of NaCl crystals with a size of 250 µm as porogens.

<table>
<thead>
<tr>
<th>NaCl particle (250 µm size) concentration/wt%</th>
<th>Pore size before oxidation / µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>122±25.6</td>
</tr>
<tr>
<td>40</td>
<td>188±17.3</td>
</tr>
<tr>
<td>50</td>
<td>248±21.0</td>
</tr>
<tr>
<td>60</td>
<td>283±32.6</td>
</tr>
</tbody>
</table>

Table S3 Porosity of cellulose scaffolds

<table>
<thead>
<tr>
<th>Porosity / %</th>
<th>NaCl particle (250 µm size) concentration / wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Before oxidation</td>
<td>54.2±3.3</td>
</tr>
<tr>
<td>After oxidation by NaIO₄ (1.0%)</td>
<td>55.4±4.5</td>
</tr>
</tbody>
</table>
Table S4. Aldehyde introduction to cellulose scaffolds.

<table>
<thead>
<tr>
<th>% NaIO₄ introduced to cellulose scaffold</th>
<th>mmol aldehyde/weight (mmol/g)</th>
<th>% aldehyde introduction /glucose unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.056</td>
<td>0.91±0.04</td>
</tr>
<tr>
<td>0.2</td>
<td>0.080</td>
<td>1.30±0.02</td>
</tr>
<tr>
<td>0.3</td>
<td>0.117</td>
<td>1.90±0.28</td>
</tr>
<tr>
<td>0.5</td>
<td>0.346</td>
<td>5.61±0.48</td>
</tr>
<tr>
<td>1.0</td>
<td>0.640</td>
<td>10.4±1.75</td>
</tr>
<tr>
<td>2.5</td>
<td>0.913</td>
<td>14.8±2.98</td>
</tr>
<tr>
<td>5.0</td>
<td>1.34</td>
<td>21.7±1.02</td>
</tr>
<tr>
<td>10.0</td>
<td>2.06</td>
<td>33.4±3.88</td>
</tr>
<tr>
<td>15.0</td>
<td>2.33</td>
<td>37.7±3.56</td>
</tr>
<tr>
<td>20.0</td>
<td>2.67</td>
<td>43.3±5.32</td>
</tr>
</tbody>
</table>
Figure S2. Ald-Cel scaffold degradation in 5% glycine solution over a period of 8 weeks.

Data represent mean ± standard deviation (N = 3).
Figure S3. Changes in body weight of rats after implantation. The error bars indicate SD (N = 6).