Supporting Information

Alkyl Chain Length and Anion Effects of AIE-active α-Cyanostilbene-containing Triphenylamine Derivatives on Optical and Electrochemical Properties

Sin-Yu Chen^a, Min-Hao Pai^a, and Guey-Sheng Liou^{*a,b}

^a Institute of Polymer Science and Engineering, National Taiwan University, 1

Roosevelt Road, 4th Sec., Taipei 10617, Taiwan. E-mail: <u>gsliou@ntu.edu.tw</u>; Tel:

+886-2-33665070

^b Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.

Figure S1. ¹	H-NMR spectrum of TPA-Py-2-Br in DMSO- d_6
Figure S2. ¹	H- ¹ H COSY spectrum of TPA-Py-2-Br in DMSO- d_6
Figure S3. ¹	³ C-NMR spectrum of TPA-Py-2-Br in DMSO- d_6
Figure S4. ¹	H- ¹³ C HSQC spectrum of TPA-Py-2-Br in DMSO- d_6
Figure S5. ¹	H-NMR spectrum of TPA-Py-7-Br in DMSO- <i>d</i> ₆
Figure S6. ¹	H- ¹ H COSY spectrum of TPA-Py-7-Br in DMSO- d_6
Figure S7. ¹	³ C-NMR spectrum of TPA-Py-7-Br in DMSO- d_6
Figure S8. ¹	H- ¹³ C HSQC spectrum of TPA-Py-7-Br in DMSO- d_6
Figure S9. ¹	H-NMR spectrum of diOMe-TPA-Py-2-Br in DMSO- <i>d</i> ₆
Figure S10.	¹ H- ¹ H COSY spectrum of diOMe-TPA-Py-2-Br in DMSO- d_6
Figure S11.	¹³ C-NMR spectrum of diOMe-TPA-Py-2-Br in DMSO- d_6 S9
Figure S12.	¹ H- ¹³ C HSQC spectrum of diOMe-TPA-Py-2-Br in DMSO- d_6 S9
Figure S13.	¹ H-NMR spectrum of diOMe-TPA-Py-7-Br in DMSO- d_6
Figure S14.	¹ H- ¹ H COSY spectrum of diOMe-TPA-Py-7-Br in DMSO- d_6 S10
Figure S15.	¹³ C-NMR spectrum of diOMe-TPA-Py-7-Br in DMSO- <i>d</i> ₆
Figure S16.	¹ H- ¹³ C HSQC spectrum of diOMe-TPA-Py-7-Br in DMSO- d_6 S11
Figure S17.	¹ H-NMR spectrum of TPA-Py-2-BF ₄ in DMSO- d_6 S12
Figure S18.	¹³ C-NMR spectrum of TPA-Py-2-BF ₄ in DMSO- d_6 S12
Figure S19.	¹ H-NMR spectrum of TPA-Py-7-BF ₄ in DMSO- d_6
Figure S20.	¹³ C-NMR spectrum of TPA-Py-7-BF ₄ in DMSO- d_6 S13
Figure S21.	¹ H-NMR spectrum of diOMe-TPA-Py-2-BF ₄ in DMSO- d_6
Figure S22.	¹³ C-NMR spectrum of diOMe-TPA-Py-2-BF ₄ in DMSO- d_6
Figure S23.	¹ H-NMR spectrum of diOMe-TPA-Py-7-BF ₄ in DMSO- d_6
Figure S24.	¹³ C-NMR spectrum of diOMe-TPA-Py-7-BF ₄ in DMSO- d_6
Figure S25.	FTIR spectra of (a) TPA-Py-2-Br (black) and TPA-Py-2-BF ₄ (red), (b)
	$TPA-Py-7\text{-}Br$ (black) and $TPA-Py-7\text{-}BF_4$ (red), (c) $diOMe\text{-}TPA-Py\text{-}2\text{-}$
	$Br\ (black)\ and\ diOMe-TPA-Py-2-BF_4\ (red)\ and\ (d)\ diOMe-TPA-Py-7-$
	Br (black) and diOMe-TPA-Py-7-BF ₄ (red)
Figure S26.	(a) Photos taken under UV light of TPA-Py-2-Br in different water/DMSO
	fractions. (b) PL spectra of $TPA\mathchar`Py\mathchar`2\mathchar`-Br$ in DMSO and water/DMSO
	solutions with different water fractions (f_w) . (c) Plot of relative emission
	intensity (I/I_0) versus different composition of aqueous mixtures of TPA-
	Py-2-Br . I_0 = Emission intensity in pure DMSO solution (10 μ M). λ_{ex} : 449
	nm

Figure S27. (a) Photos taken under UV light of TPA-Py-2-BF₄ in different water/DMSO fractions. (b) PL spectra of TPA-Py-2-BF₄ in DMSO and

- Table S4. Crystal data and experimental details for diOMe-TPA-Py-2-Br......
- Table S5. Crystal data and experimental details for diOMe-TPA-Py-7-Br......S24

Figure S1. ¹H-NMR spectrum of TPA-Py-2-Br in DMSO-*d*₆.

Figure S2. ¹H-¹H COSY spectrum of TPA-Py-2-Br in DMSO-*d*₆.

Figure S3. ¹³C-NMR spectrum of TPA-Py-2-Br in DMSO-*d*₆.

Figure S4. ¹H-¹³C HSQC spectrum of TPA-Py-2-Br in DMSO-*d*₆.

Figure S5. ¹H-NMR spectrum of TPA-Py-7-Br in DMSO-*d*₆.

Figure S6. ¹H-¹H COSY spectrum of TPA-Py-7-Br in DMSO-*d*₆.

Figure S7. ¹³C-NMR spectrum of TPA-Py-7-Br in DMSO-*d*₆.

Figure S8. ¹H-¹³C HSQC spectrum of TPA-Py-7-Br in DMSO-*d*₆.

Figure S9. ¹H-NMR spectrum of diOMe-TPA-Py-2-Br in DMSO-*d*₆.

Figure S10. ¹H-¹H COSY spectrum of diOMe-TPA-Py-2-Br in DMSO-*d*₆.

Figure S11. ¹³C-NMR spectrum of diOMe-TPA-Py-2-Br in DMSO-d₆.

Figure S12. ¹H-¹³C HSQC spectrum of diOMe-TPA-Py-2-Br in DMSO-*d*₆.

Figure S13. ¹H-NMR spectrum of diOMe-TPA-Py-7-Br in DMSO-*d*₆.

Figure S14. ¹H-¹H COSY spectrum of diOMe-TPA-Py-7-Br in DMSO-*d*₆.

Figure S15. ¹³C-NMR spectrum of diOMe-TPA-Py-7-Br in DMSO-d₆.

Figure S16. ¹H-¹³C HSQC spectrum of diOMe-TPA-Py-7-Br in DMSO-*d*₆.

Figure S17. ¹H-NMR spectrum of TPA-Py-2-BF₄ in DMSO-*d*₆.

Figure S18. ¹³C-NMR spectrum of TPA-Py-2-BF₄ in DMSO-*d*₆.

Figure S19. ¹H-NMR spectrum of TPA-Py-7-BF₄ in DMSO-*d*₆.

Figure S20. ¹³C-NMR spectrum of TPA-Py-7-BF₄ in DMSO-*d*₆.

Figure S21. ¹H-NMR spectrum of diOMe-TPA-Py-2-BF₄ in DMSO-*d*₆.

Figure S22. ¹³C-NMR spectrum of diOMe-TPA-Py-2-BF₄ in DMSO-*d*₆.

Figure S23. ¹H-NMR spectrum of diOMe-TPA-Py-7-BF₄ in DMSO-*d*₆.

Figure S24. ¹³C-NMR spectrum of diOMe-TPA-Py-7-BF₄ in DMSO-d₆.

Figure S25. FTIR spectra of (a) TPA-Py-2-Br (black) and TPA-Py-2-BF₄ (red), (b) TPA-Py-7-Br (black) and TPA-Py-7-BF₄ (red), (c) diOMe-TPA-Py-2-Br (black) and diOMe-TPA-Py-2-BF₄ (red) and (d) diOMe-TPA-Py-7-Br (black) and diOMe-TPA-Py-7-BF₄ (red).

Figure S26. (a) Photos taken under UV light of **TPA-Py-2-Br** in different water/DMSO fractions, (b) PL spectra of **TPA-Py-2-Br** in water/DMSO solutions with different water fractions (f_w), (c) Plot of relative emission intensity (I/I_0) versus different compositions of aqueous mixtures of **TPA-Py-2-Br**. I_0 = Emission intensity in pure DMSO solution (10 µM). λ_{ex} : 449 nm.

Figure S27. (a) Photos taken under UV light of TPA-Py-2-BF₄ in different water/DMSO fractions, (b) PL spectra of TPA-Py-2-BF₄ in water/DMSO solutions with different water fractions (f_w), (c) Plot of relative emission intensity (I/I_0) versus different compositions of aqueous mixtures of TPA-Py-2-BF₄. I_0 = Emission intensity in pure DMSO solution (10 μ M). λ_{ex} : 449 nm.

Figure S28. (a) Photos taken under UV light of diOMe-TPA-Py-2-Br in different water/DMSO fractions, (b) PL spectra of diOMe-TPA-Py-2-Br in water/DMSO solutions with different water fractions (f_w), (c) Plot of relative emission intensity (I/I_0) versus different compositions of aqueous mixtures of diOMe-TPA-Py-2-Br. I_0 = Emission intensity in pure DMSO solution (10 μ M). λ_{ex} : 463 nm.

Figure S29. (a) Photos taken under UV light of diOMe-TPA-Py-2-BF₄ in different water/DMSO fractions, (b) PL spectra of diOMe-TPA-Py-2-BF₄ in water/DMSO solutions with different water fractions (f_w), (c) Plot of relative emission intensity (I/I_0) versus different compositions of aqueous mixtures of diOMe-TPA-Py-2-BF₄. I_0 = Emission intensity in pure DMSO solution (10 µM). λ_{ex} : 463 nm.

Figure 30. (a) Photos taken under UV light of diOMe-TPA-Py-7-Br in different water/DMSO fractions, (b) PL spectra of diOMe-TPA-Py-7-Br in water/DMSO solutions with different water fractions (f_w), (c) Plot of relative emission intensity (I/I_0) versus different compositions of aqueous mixtures of diOMe-TPA-Py-7-Br. I_0 = Emission intensity in pure DMSO solution (10 μ M). λ_{ex} : 466 nm.

Figure S31. (a) Photos taken under UV light of **diOMe-TPA-Py-7-BF**₄ in different water/DMSO fractions, (b) PL spectra of **diOMe-TPA-Py-7-BF**₄ in water/DMSO solutions with different water fractions (f_w), (c) Plot of relative emission intensity (I/I_0) versus different compositions of aqueous mixtures of **diOMe-TPA-Py-7-BF**₄. I_0 = Emission intensity in pure DMSO solution (10 µM). λ_{ex} : 466 nm.

Compound	TPA-Py-2-BF ₄
Empirical formula	C34 H28 B F4 N3
Formula weight	565.40
Crystal system	Monoclinic
Space group	P 1 21/n 1
Unit cell dimensions	a = 13.1118(7) Å
	b = 15.2813(7) Å
	c = 13.9655(7) Å
	$\alpha = 90^{\circ}$
	$\beta = 91.365(5)^{\circ}$
	$\gamma = 90^{\circ}$
Volume	2797.4(2) Å ³
Z	4
F(000)	1176
Density (calculated)	1.342 Mg/m^3
Wavelength	0.71073 Å
Cell parameters reflections used	4441
Theta range for Cell parameters	3.3730 to 28.9110°
Absorption coefficient	0.097 mm^{-1}
Temperature	150(2) K
Crystal size	$0.25 \text{ x} 0.20 \text{ x} 0.20 \text{ mm}^3$
Diffractometer	Xcalibur, Atlas, Gemini
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.97323
No. of measured reflections	11865
No. of independent reflections	6141 [R(int) = 0.0292]
No. of observed [I>2_igma(I)]	4280
Completeness to theta = 27.50°	95.7 %
Theta range for data collection	3.38 to 27.50°
Final R indices [I>2sigma(I)]	R1 = 0.0500, wR2 = 0.1366
R indices (all data)	R1 = 0.0805, wR2 = 0.1664
Goodness-of-fit on F ²	0.987
No. of reflections	6141
No. of parameters	379
No. of restraints	0
Largest diff. peak and hole	0.297 and -0.229 e.Å ⁻³

 Table S1. Crystal data and experimental details for TPA-Py-2-BF4.

Compound	TPA-Py-7-Br
Empirical formula	C39 H38 Br N3
Formula weight	628.63
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 9.5749(6) Å
	b = 9.7795(4) Å
	c = 35.3728(18) Å
	$\alpha = 84.999(4)^{\circ}$
	$\beta = 89.387(5)^{\circ}$
	$\gamma = 82.412(4)^{\circ}$
Volume	3270.7(3) Å ³
Z	4
F(000)	1312
Density (calculated)	1.277 Mg/m^3
Wavelength	0.71073 Å
Cell parameters reflections used	3679
Theta range for Cell parameters	3.0880 to 27.1700°
Absorption coefficient	1.288 mm^{-1}
Temperature	150(2) K
Crystal size	$0.25 \text{ x} 0.20 \text{ x} 0.15 \text{ mm}^3$
Diffractometer	Xcalibur, Atlas, Gemini
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.76124
No. of measured reflections	19095
No. of independent reflections	13990 [R(int) = 0.0557]
No. of observed [I>2_igma(I)]	8199
Completeness to theta = 27.50°	93.0 %
Theta range for data collection	2.96 to 27.50°
Final R indices [I>2sigma(I)]	R1 = 0.0899, wR2 = 0.2015
R indices (all data)	R1 = 0.1544, wR2 = 0.2542
Goodness-of-fit on F ²	1.092
No. of reflections	13990
No. of parameters	794
No. of restraints	0
Largest diff. peak and hole	2.042 and -0.756 e.Å ⁻³

 Table S2. Crystal data and experimental details for TPA-Py-7-Br.

Compound	TPA-Py-7-BF ₄
Empirical formula	C39 H38 B F4 N3
Formula weight	635.53
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 10.0994(2) Å
	b = 18.0030(8) Å
	c = 19.7095(6) Å
	$\alpha = 102.494(3)^{\circ}$
	$\beta = 94.039(2)^{\circ}$
	$\gamma = 103.958(2)^{\circ}$
Volume	3366.85(19) Å ³
Z	4
F(000)	1336
Density (calculated)	1.254 Mg/m^3
Wavelength	0.71073 Å
Cell parameters reflections used	6901
Theta range for Cell parameters	3.0570 to 28.4760°
Absorption coefficient	0.088 mm^{-1}
Temperature	150(2) K
Crystal size	$0.25 \text{ x } 0.20 \text{ x } 0.15 \text{ mm}^3$
Diffractometer	Xcalibur, Atlas, Gemini
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.98348
No. of measured reflections	23237
No. of independent reflections	14560 [R(int) = 0.0304]
No. of observed [I>2_igma(I)]	8682
Completeness to theta = 27.50°	94.1 %
Theta range for data collection	3.00 to 27.50°
Final R indices [I>2sigma(I)]	R1 = 0.0764, wR2 = 0.1754
R indices (all data)	R1 = 0.1327, $wR2 = 0.2218$
Goodness-of-fit on F ²	1.003
No. of reflections	14560
No. of parameters	847
No. of restraints	0
Largest diff. peak and hole	1.172 and -0.621 e.Å ⁻³

 Table S3. Crystal data and experimental details for TPA-Py-7-BF4.

Compound	diOMe-TPA-Py-2-Br
Empirical formula	C36 H36 Br N3 O4
Formula weight	654.59
Crystal system	Monoclinic
Space group	P 1 21/n 1
Unit cell dimensions	a = 14.8377(4) Å
	b = 10.3068(2) Å
	c = 21.2595(5) Å
	$\alpha = 90^{\circ}$
	$\beta = 104.015(2)^{\circ}$
	$\gamma = 90^{\circ}$
Volume	3154.42(13) Å ³
Z	4
F(000)	1360
Density (calculated)	1.378 Mg/m^3
Wavelength	0.71073 Å
Cell parameters reflections used	7664
Theta range for Cell parameters	3.5560 to 28.5120°
Absorption coefficient	1.347 mm^{-1}
Temperature	150(2) K
Crystal size	$0.30 \ge 0.25 \ge 0.20 \text{ mm}^3$
Diffractometer	Xcalibur, Atlas, Gemini
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.87930
No. of measured reflections	22809
No. of independent reflections	7092 [R(int) = 0.0315]
No. of observed [I>2_igma(I)]	5435
Completeness to theta = 27.50°	97.8 %
Theta range for data collection	2.83 to 27.50°.
Final R indices [I>2sigma(I)]	R1 = 0.0368, wR2 = 0.0827
R indices (all data)	R1 = 0.0584, wR2 = 0.0934
Goodness-of-fit on F ²	0.999
No. of reflections	7092
No. of parameters	409
No. of restraints	0
Largest diff. peak and hole	0.331 and -0.443 e.Å ⁻³

Table S4. Crystal data and experimental details for diOMe-TPA-Py-2-Br.

Compound	diOMe-TPA-Py-7-Br
Empirical formula	C41 H42 Br N3 O2
Formula weight	688.69
Crystal system	Monoclinic
Space group	P 1 21/c 1
Unit cell dimensions	a = 14.1460(3) Å
	b = 10.3836(2) Å
	c = 25.5561(4) Å
	$lpha=90^{\circ}$
	$\beta = 105.051(2)^{\circ}$
	$\gamma = 90^{\circ}$
Volume	3625.07(12) Å ³
Z	4
F(000)	1440
Density (calculated)	1.262 Mg/m^3
Wavelength	0.71073 Å
Cell parameters reflections used	5835
Theta range for Cell parameters	2.9840 to 27.4910°
Absorption coefficient	1.172 mm^{-1}
Temperature	200(2) K
Crystal size	$0.30 \ge 0.20 \ge 0.15 \text{ mm}^3$
Diffractometer	Xcalibur, Atlas, Gemini
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.89149
No. of measured reflections	17089
No. of independent reflections	7982 [R(int) = 0.0299]
No. of observed [I>2_igma(I)]	5980
Completeness to theta = 27.50°	95.7 %
Theta range for data collection	$2.98 \text{ to } 27.50^{\circ}$
Final R indices [I>2sigma(I)]	R1 = 0.0423, wR2 = 0.0959
R indices (all data)	R1 = 0.0661, wR2 = 0.1098
Goodness-of-fit on F ²	1.012
No. of reflections	7982
No. of parameters	424
No. of restraints	0
Largest diff. peak and hole	0.356 and -0.451 e.Å ⁻³

Table S5. Crystal data and experimental details for diOMe-TPA-Py-7-Br.