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Fig. S1 SEM images of Zr-pydc (a) and Zr-pydc-Eu (b).
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Fig. S2 N 1s XPS spectra for Zr-pydc (black line) and Zr-pydc-Eu (red line).

Table S1 ICP-OES analysis for the Zr and Eu elements in the Zr-pydc-Eu

Elements Zr Eu

Mass ratio / mg·L-1 330 180

Molar ratio 3.62 1.18



Fig. S3 Thermogravimetric analysis of Zr-pydc and Zr-pydc-Eu. The gradual weight loss from 100 to 300 °C can be 
ascribed to the dehydration of the Zr6O4(OH)4 species and the units of MOFs turned into Zr6O6(pydc)6 in this phase. 
The structure of both the Zr-pydc and Zr-pydc-Eu in air is thermally stable up to 400 °C, above which a further 
weight loss is attributed to decomposition of the framework. The residues are their corresponding metallic 
oxideand when the temperature rises to 700 °C.
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Fig. S4 Excitation (λem = 615 nm, black line) spectrum of Zr-pydc-Eu and emission spectra of Zr-pydc-Eu (red line) 
and Zr-pydc (blue dot line) under the excitation of 297 nm. 



Fig. S5 Emission spectra (a) and the correspongding intensities at 615 nm (b) of Zr-pydc-Eu after immersing in 
Hepes solutions (pH = 7.4) with different time (0 - 48h).

Fig. S6 Luminescence lifetimes of Zr-pydc-Eu at 615 nm in the absence and presence of different concentrations 
(20 and 40 μM) of Cu2+ under the excitation of 297 nm.



Fig. S7 PXRD patterns of Zr-pydc-Eu before and after detection of Cu2+ and H2S. 

Fig. S8 Emission spectra of Zr-pydc-Eu upon the addition of different cations (100 µM, λex = 297 nm).



Fig. S9 Luminescence spectra of Zr-pydc-Eu towards Cu2+ (100 µM) in the presence of other various cations (100 
µM, λ ex = 297 nm).

Fig. S10 Column diagram (a) of the normalized fluorescence intensity (threshold, 0.2) of the Zr-pydc-Eu3+ at 615 
nm toward Cu2+ in the presence of other cations, and the corresponding truth table (b) of the logic operation with 
different cations inputs.



Fig. S11 The emission responses of Cu2+(100 µM)-assisted Zr-pydc-Eu to H2S and various biologically relevant 
interferents (A-P and I-X, 120 µM, λ ex = 297 nm).

Fig. S12 (a) The emission intensities of Cu2+-assisted Zr-pydc-Eu to NaHS and various biologically relevant 
interferents (I-X, 120 µM, λex = 297 nm). (b) Truth table of the logic Zr-pydc-Eu with Cu2+ (100 µM) and different 
components (I-X, 120 µM) as inputs.
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Fig. S13 Luminescence intensity changes of Zr-pydc-Eu at 615 nm as a function of time after successive addition 
of Cu2+ from 30 to 60 µM. 
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Fig. S14 Luminescence intensity changes of Cu2+/Zr-pydc-Eu at 615 nm as a function of time after successive 
addition of NaHS from 20 to 60 µM.



Table S2. Comparison of analysis performances of various systems for determination of Cu2+ and H2S.

No Methods Systems Analyte
LOD/

μM

Response 

time/min

Assay 

media
Ref.

1 Luminescence [Cd(L)2]·(DMF)0.92
Single 

Cu2+
16.9 - DMF 18a

2 Luminescence Cd-MOF-74
Single 

Cu2+
78.7 - Water 18b

3 Luminescence {[Nd2(NH2-BDC)3(DMF)4]}n
Single 

Cu2+
24.95 - DMF 18c

4 Luminescence NH2-MIL-101(Al)@ZIF-8
Single 

Cu2+
0.17 - Water 18d

5 Luminescence
[Zn(OBA)2(PTD)2DMF2H2O]

n

Single 

Cu2+
4.43 - DMF 18e

6 Luminescence Eu3+/Ag+@UiO-66-(COOH)2
Single 

H2S
23.53 0.5 Serum 5a

7 Luminescence Zr6O4(OH)4((NDC-(NO2)2)6
Single 

H2S
20 55

Blood 

plasma, 

living cells

19a

8 Luminescence UiO-66-(NO2)2
Single 

H2S
14.14 40

Blood 

plasma, 

living cells

19b

9 Luminescence
Eu3+/Cu2+@UiO-66-

(COOH)2

Single 

H2S
5.45 0.5 Water 19c

10 Luminescence Tb3+@Cu1
Single 

H2S
1.2 2 Water 19d

11 Luminescence Cy-N3
Single 

H2S
0.08 20 Living cells 19e

12 Luminescence SF4
Single 

H2S
0.125 60 Living cells 19f

13 Luminescence PSS-PA-Cu NC aggregates
Single 

H2S
0.65 30 Water 19g

14
UV-vis 

spectroscopy
Bare gold NPs

Single 

H2S
0.08 1 Water 19h

Cu2+ 0.09 1
Water/

Serum
15 Luminescence Zr-pydc-Eu

H2S 0.06 2
Water/

Serum

This 

work
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Fig. S15 Fluorescent responses of Zr-pydc-Eu to pretreated FBS spiked with different concentrations of Cu2+.
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Fig. S16 Fluorescent responses of Cu2+(100 µM)-assisted Zr-pydc-Eu to pretreated FBS spiked with different 
concentrations of NaHS.

Table S3. Determination of Cu2+ in the pretreated FBS samples by the Zr-pydc-Eu.

Serum Samples
Spiked

(μM)

Measured

 (μM, n = 6)
Recovery (%) RSD (%, n = 6)

1 5.0 5.21±0.10 104.20 1.92

2 50.0 46.37±1.22 92.74 2.63

3 100.0 103.0±1.42 103.00 1.38

Table S4. Determination of NaHS in the pretreated FBS samples by the Cu2+-assisted Zr-pydc-Eu.

Serum Samples
Spiked

(μM)

Measured

 (μM, n = 6)
Recovery (%) RSD (%, n = 6)

1 5.0 4.78 ± 0.11 95.60 2.30

2 60.0 63.54 ± 1.10 105.90 1.73

3 120.0 120.8 ± 1.35 100.67 1.12


