Supporting information

Controlled synthesis of GaSe microbelts for high-gain photodetector induced by the electron trapping effect

Chun-Yan Wu, Huinan Zhu, Ming Wang, Jingwei Kang, Chao Xie, * Li Wang, Lin-Bao

Luo*

School of Electronic Science and Applied Physics, Hefei University of Technology,

Hefei, Anhui 230009, China

Materials synthesis and characterization

GaSe microstructures were synthesized in a horizontal tube furnace. High purity Ga₂Se₃ powder (Alfa, 99.99%) and appropriate amount of liquid metallic Ga (99.99%, Alfa) were placed on a quartz boat in the central region of a quartz tube. A piece of precleaned Si/SiO₂ substrate was placed downstream, about 12 cm away from the central region to collect the products. The quartz tube was filled with high purity argon (Ar, 99.99%) at a flow rate of 50 sccm after evaluating. The pressure in the tube was kept at 330 Pa. Then the center of the furnace was heated to 960 °C at a rate of 15 °Cmin⁻¹ and then maintained at this temperature for 30 min. After reaction, the furnace was cooled down naturally to room temperature, and silver-gray samples were collected on the substrates.

The morphologies and structures of the as-synthesized GaSe microstructures were investigated using X-ray diffractometer (X'Pert PRO MPD) with Cu K α radiation, field-emission scanning electron microscopy (FESEM, Philips XL 30 FEG), highresolution transmission electron microscope (HRTEM, JEOL JEM-2010) equipped with X-ray energy dispersive spectrometer (EDS, Oxford INCA), and Raman spectroscopy (Jobin Yvon HR 800, HORIBA) with a 532nm laser as the excitation source, respectively. The absorption spectrum was recorded on a CARY 5000 UV–NIR spectrophotometer. X-ray photoelectron (XPS) spectra were given by a Thermo ESCALAB250 X-ray photoelectron spectroscope with an Al K α monochromatic source.

Device Fabrication and Analysis

To fabricate photodetectors, the as-synthesized GaSe nanobelts were firstly dispersed uniformly onto SiO₂ (300 nm)/p+Si substrates at a desired density. Then electron-beam evaporation was employed to define the Au (100 nm) electrodes on single microbelt with the help of a lab-made shadow mask. All related optoelectronic characterizations were carried out under ambient conditions at room temperature, using a semiconductor characterization system (Keithley 4200-SCS) equipped with a broadband monochromator (SP 2150, Princeton Co.). Laser diodes with the wavelengths of 450 nm (Thorlabs M450LP1), 530 nm (Thorlabs M530L4) and 660 nm (Thorlabs, M660L4) were used as light sources. The power intensity of all light sources was carefully calibrated using a power meter (Thorlabs GmbH., PM 100D) before measurement.

Figure S1 FESEM image and the corresponding element mapping of a single GaSe microbelt with a spherical particle on the tip.

Figure S2 Spectral response of the single GaSe microbelt-based photodetector in the range of 400-

1000 nm.

Figure S3 Current-voltage (*I-V*) curves of an individual GaSe microbelt under different bottomgate voltage. I_{ds} decreases gradually with the increase of V_{ds} , showing the p-type electrical characteristic.

Photodetector	Preparation method	Measurement conditions	Light intensity	<i>R</i> (AW ⁻¹)	Ref
GaSe	mechanical	520 nm@5 V	0.06 mWcm ⁻²	2.2	1
GaSe atomic layers	vapor phase transport	405 nm @10 V	50 mWcm ⁻²	0.017	2
GaSe nanosheet	mechanical exfoliation	410 nm @5 V	0.01 mWcm ⁻²	5000	3
2D GaSe crystal	CVD	532 nm@10 V	~2.71 µWcm ⁻²	5	4
GaSe nanoribbons	CVD	350 nm@5 V	0.02 µWcm ⁻²	31.1	5
GaSe nanobelts	CVD	520 nm@5 V	0.067 mWcm ⁻²	164.4	6
GaSe microbelt	CVD	450nm@2 V	9.47 μWcm ⁻²	3866	This work

Table 1 Comparison of key parameters between this work and other GaSe -based photodetectors.

References

- H. Huang, P. Wang, Y. Q. Gao, X. D. Wang, T. Lin, J. L. Wang, L. Liao, J. L. Sun, X. J. Meng,
 Z. M. Huang, X. S. Chen and J. H. Chu, *Appl. Phys. Lett.*, 2015, **107**, 143112.
- 2 S. D. Lei, L. H. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai and P. M. Ajayan, *Nano Lett.*, 2013, 13, 2777-2781.

- 3 Y. Cao, K. Cai, P. Hu, L. Zhao, T. Yan, W. Luo, X. Zhang, X. Wu, K. Wang and H. Zheng, Sci. Rep., 2015, 5, 8130.
- 4 Y. B. Zhou, B. Deng, Y. Zhou, X. B. Ren, J. B. Yin, C. H. Jin, Z. F. Liu and H. L. Peng, *Nano Lett.*, 2016, **16**, 2103-2107.
- 5 X. Xiong, Q. Zhang, X. Zhou, B. Jin, H. Q. Li and T. Y. Zhai, *J. Mater. Chem. C*, 2016, **4**, 7817-7823.
- 6 L. P. Tang, Z. X. Zhao, S. P. Yuan, T. F. Yang, B. X. Zhou and H. Zhou, J. Phys. Chem. Solids, 2018, 118, 186-191.