Supporting Information

Effect of the incorporation of poly(ethylene oxide) copolymer on the stability of perovskite solar cells

Jeann Carlos da Silvaa, Francineide Lopes de Araújoa, Rodrigo Szostakb, Paulo Ernesto Marcheza, Raphael Fernando Morala, Jilian Nei de Freitasc, Ana Flávia Nogueira*a.

aChemistry Institute, University of Campinas, Campinas, SP, Brazil.

bBrazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970, Brazil.

cCenter for Information Technology Renato Archer (CTI), Campinas-SP, Brazil.

Corresponding Author:

*Email: anafla@unicamp.br

† J. C. S. and F. L. A. contributed equally to this work.
Table S1. Volumes used in the preparation of perovskite dispersions with P(EO/EP).

<table>
<thead>
<tr>
<th>P(EO/EP) concentration (mg mL(^{-1}))</th>
<th>Volume of MAPbI(_3) stock solution (µL)</th>
<th>Volume of P(EO/EP) stock solution (µL)</th>
<th>Volume of DMF:DMSO (4:1) (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>130</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>0.5</td>
<td>130</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>1.0</td>
<td>130</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>130</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>2.0</td>
<td>130</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>2.5</td>
<td>130</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

Table S2. Summary of the photovoltaic parameters of the PSCs measured under simulated AM 1.5G solar illumination (intensity = 100 mW cm\(^{-2}\)) using forward scan (F) and reverse scan (R). The values in parenthesis are for the best-performing devices.

<table>
<thead>
<tr>
<th>P(EO/EP) concentration</th>
<th>Scan</th>
<th>(V_{oc}) (V)</th>
<th>(J_{sc}) (mA/cm(^2))</th>
<th>FF (%)</th>
<th>PCE (%)</th>
<th>hysteresis index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>F</td>
<td>1.05±0.01 (1.05)</td>
<td>21.48±0.24 (21.83)</td>
<td>64.01±2.48 (59.21)</td>
<td>14.43±0.61 (13.57)</td>
<td>12.39±4.27</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1.07±0.01 (1.08)</td>
<td>21.28±0.33 (21.51)</td>
<td>72.12±1.08 (73.36)</td>
<td>16.42±0.46 (17.04)</td>
<td></td>
</tr>
<tr>
<td>0.5 mg mL(^{-1})</td>
<td>F</td>
<td>1.04±0.01 (1.04)</td>
<td>20.16±1.24 (20.60)</td>
<td>59.56±2.20 (56.09)</td>
<td>12.48±0.83 (12.01)</td>
<td>12.87±6.62</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1.05±0.01 (1.07)</td>
<td>19.90±1.02 (20.27)</td>
<td>68.99±3.37 (73.93)</td>
<td>14.34±1.32 (16.03)</td>
<td></td>
</tr>
<tr>
<td>1.0 mg mL(^{-1})</td>
<td>F</td>
<td>1.06±0.01 (1.04)</td>
<td>19.55±0.28 (20.38)</td>
<td>60.35±2.12 (60.57)</td>
<td>12.50±0.54 (12.20)</td>
<td>10.59±4.89</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1.07±0.01 (1.06)</td>
<td>19.32±0.37 (20.16)</td>
<td>67.91±2.16 (69.64)</td>
<td>14.03±0.31 (14.14)</td>
<td></td>
</tr>
<tr>
<td>1.5 mg mL(^{-1})</td>
<td>F</td>
<td>1.05±0.01 (1.04)</td>
<td>20.18±0.45 (19.73)</td>
<td>62.12±2.65 (60.74)</td>
<td>13.16±0.50 (12.46)</td>
<td>7.27±5.03</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1.06±0.01 (1.07)</td>
<td>20.11±0.40 (19.63)</td>
<td>65.98±3.20 (70.00)</td>
<td>14.06±0.82 (14.70)</td>
<td></td>
</tr>
<tr>
<td>2.0 mg mL(^{-1})</td>
<td>F</td>
<td>1.03±0.01 (1.04)</td>
<td>19.52±0.84 (20.08)</td>
<td>58.66±5.46 (63.66)</td>
<td>11.79±1.73 (13.29)</td>
<td>7.49±7.54</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1.04±0.01 (1.04)</td>
<td>19.03±1.18 (19.97)</td>
<td>64.03±3.50 (64.12)</td>
<td>12.68±1.14 (13.31)</td>
<td></td>
</tr>
</tbody>
</table>

*Average and standard deviation values were obtained based on 12 devices.
Figure S1: Photographs of the setup at XRD2/LNLS beamline for in situ GIWAXS measurements.

Figure S2: GIWAXS reciprocal lattice maps for standard perovskite sample. (a) The moment at anti-solvent is dripped onto the film, (b) after 200 s, (c) after 400 s and (d) after 600 s.
Figure S3: GIWAXS reciprocal lattice maps for film containing 0.5 mg mL\(^{-1}\) of P(EO/EP) copolymer. (a) the moment at anti-solvent is dripped onto the film, (b) after 200 s, (c) after 400 s and (d) after 600 s.
Figure S4: GIWAXS reciprocal lattice maps for film containing 1.0 mg/mL of P(EO/EP) copolymer. (a) the moment at anti-solvent is dripped onto the film, (b) after 200 s, (c) after 400 s and (d) after 600 s.
Figure S5: GIWAXS reciprocal lattice maps for film containing 1.5 mg mL$^{-1}$ of P(EO/EP) copolymer. (a) the moment at anti-solvent is dripped onto the film, (b) after 200 s, (c) after 400 s and (d) after 600 s.
Figure S6: SEM images of perovskite films: a) without the addition of P(EO/EP) or with b) 0.5 mg mL\(^{-1}\) of P(EO/EP), c) 1.0 mg mL\(^{-1}\) of P(EO/EP), d) 1.5 mg mL\(^{-1}\) of P(EO/EP) and e) 2.0 mg mL\(^{-1}\) deposited on FTO/c-TiO\(_2\)/meso-TiO\(_2\) layers.
Figure S7: Normalized PCE evolution as a function of spray time for PSCs without (standard) and with 0.5 mg mL$^{-1}$ of P(EO/EP). After each interval of exposure of the PSC to the spray, we performed J-V measurements under illumination (100 mW cm$^{-2}$). 1st J-V measure (before spray exposure); 2nd J-V measure (10 s of spray exposure); 3rd J-V measure (20 s of spray exposure); 4th J-V measure (30 s of spray exposure) and 5th J-V measure (40 s of spray exposure).