Supporting Information

Donor and Acceptor Interlock by a Planar Indolo[3,2,1-jk]carbazole for Suppressed Non-radiative Mechanism in Thermally Activated Delayed Fluorescent Emitters

Vilas Venunath Patil, Yun Hwan Park, Kyung Hyung Lee, and Jun Yeob Lee*

School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Korea

Email: leej17@skku.edu

<table>
<thead>
<tr>
<th>Figure</th>
<th>Details</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Experimental section</td>
<td>S2-S8</td>
</tr>
<tr>
<td>-</td>
<td>Device fabrication and measurement</td>
<td>S9</td>
</tr>
<tr>
<td>Fig. S1</td>
<td>1H-NMR spectra of TrzCbzICz-1</td>
<td>S10</td>
</tr>
<tr>
<td>Fig. S2</td>
<td>13C-NMR spectra of TrzCbzICz-1</td>
<td>S11</td>
</tr>
<tr>
<td>Fig. S3</td>
<td>1H-NMR spectra of TrzCbzICz-2</td>
<td>S13</td>
</tr>
<tr>
<td>Fig. S4</td>
<td>13C-NMR spectra of TrzCbzICz-2</td>
<td>S13</td>
</tr>
<tr>
<td>Fig. S5</td>
<td>The (a) solution PL and (b) LTPL curves of TrzCBzICz-1 and (c) solution PL and (d) LTPL curves of TrzCBzICz-2 in solvents with different polarity</td>
<td>S14</td>
</tr>
<tr>
<td>Fig. S6</td>
<td>The TGA curves of TrzCbzICz-1 and TrzCbzICz-2</td>
<td>S15</td>
</tr>
<tr>
<td>Fig. S7</td>
<td>The DSC curve of TrzCbzICz-1 and TrzCbzICz-2</td>
<td>S16</td>
</tr>
<tr>
<td>Fig. S8</td>
<td>The optimized device diagram of TrzCbzICz-1 and TrzCbzICz-2 doped devices</td>
<td>S17</td>
</tr>
</tbody>
</table>
Experimental section

All the reagents and solvents were procured from the commercial sources and used without further purification. The chromatographic separations were performed using silica gel (200-300 nm). The final products were purified by column chromatography and then further purified by temperature gradient vacuum sublimation process. The final products were confirmed by \(^1\)H, \(^{13}\)C NMR and HRMS spectrometry. The \(^1\)H and \(^{13}\)C NMR data of the final products were recorded on JEOL 500 MHz spectrometer by using deuterated chloroform (CDCl\(_3\)) as a solvent and chemical shift are expressed in parts per million (ppm), with tetramethylsilane (TMS) as an internal standard. The details of instrumental tools used are Fourier transform-nuclear magnetic resonance 500 MHz (Unity Inova), Fourier transform-nuclear magnetic resonance 300 MHz (Oxford 300 NMR), cyclic-voltammetry (CV) (Ivium Tech., Iviumstat), UV-Visible absorption spectroscopy (JASCO, V-730), fluorescence spectroscopy (PerkinElmer, LS-55), mass spectroscopy (Advion, Expression LCMS spectrometer in APCI mode), and thermogravimetric analyzer (TGA) [Seiko Exstar 6000 (TG/DTA6100)].
Synthesis

Synthesis of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indolo[3,2,1-\textit{jk}]carbazole (I-1)

To the 250 mL three-neck round-bottomed flask, 2-bromoindolo[3,2,1-\textit{jk}]carbazole (6.0 g, 18.74 mmol, 1 equiv.), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (9.52 g, 37.48 mmol, 2 equiv.), 1,1'-Bis(diphenylphosphino)ferrocene|dichloropalladium(II) [Pd(dppf)Cl\textsubscript{2}] (0.69 g, 0.94 mmol, 0.05 equiv.), potassium acetate (K\textsubscript{2}CO\textsubscript{3}) (5.52 g, 56.22 mmol, 3 equiv.) and 1,-4-dioxane (220 mL) were added and reflux for 12 h under nitrogen atmosphere. The progress of the reaction was monitored on thin layer chromatography (TLC). After completion of reaction, the reaction mass cooled to room temperature and poured in water (500 mL) and extracted in dichloromethane (DCM) multiple time. The organic layer was dried using anhydrous magnesium sulphate (MgSO\textsubscript{4}) and solvent evaporated under vacuum to give crude product. The crude product was purified by column chromatography using hexane: DCM (80:20) to give I-1 as white solid. Yield: 6.88 g (61%). 1H NMR (300 MHz, cdcl\textsubscript{3}) δ 8.60 – 8.54 (m, 2H), 8.14 (ddd, J = 7.8, 1.1, 0.6 Hz, 2H), 7.94 – 7.87 (m, 2H), 7.55 (ddd, J = 8.1, 7.6, 1.2 Hz, 2H), 7.36 (td, J = 7.6, 1.0 Hz, 2H), 1.45 (s, 12H). MS (APCI) m/z: found 368.33 [(M+H)+]. Calculated for C\textsubscript{24}H\textsubscript{22}BNO\textsubscript{2}: 367.25.

Synthesis of 2-(3-chloro-2-fluorophenyl)indolo[3,2,1-\textit{jk}]carbazole (I-2)

To the oven dried 250 mL three-neck round-bottomed flask, 1\textit{a} (2.91 g, 7.94 mmol, 1 equiv.), 1-bromo-3-chloro-2-fluorobenzene (1.65 g, 7.94 mmol, 1 equiv.), tetrakis(triphenylphosphine)palladium (0) [Pd(PPh\textsubscript{3})\textsubscript{4}] (0.28 g, 0.24 mmol, 0.03 equiv.), K\textsubscript{2}CO\textsubscript{3} (3.29 g, 23.83 mmol, 3 equiv.), and tetrahydrofuran-water (100: 33 mL) were added at room temperature. The
reaction mass was refluxed under nitrogen atmosphere for 12 h. The reaction mass was extracted in water-DCM (100-50 mL) mixture. The aqueous layer was further extracted in DCM multiple times. The organic layer was dried over anhydrous MgSO₄. A crude product obtained after evaporating the solvent was purified by column chromatography using hexane: DCM (80:20) to offer I-2 as white solid. Yield: 2.93 g (38%). MS (APCI) m/z: found 370.79 [(M+H)⁺].

Calculated for C₂₄H₁₃ClFN: 369.82. ¹H NMR (300 MHz, cdcl₃) δ 8.19 – 8.10 (m, 4H), 7.95 – 7.88 (m, 2H), 7.60 – 7.34 (m, 6H), 7.24 – 7.17 (m, 1H).

Synthesis of 2-(2-fluoro-3-(3,3,4,4-tetramethylborolan-1-yl)phenyl)indolo[3,2,1-jk]carbazole (I-3)

To the 100 mL three-neck round-bottomed flask, I-2 (2.5 g, 6.76 mmol, 1 equiv.), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (5.15 g, 20.28 mmol, 3 equiv.), tris(dibenzylideneacetone)dipalladium (0) [Pd₂(dba)₃] (0.06 g, 0.07 mmol, 0.01 equiv.), K₂CO₃ (1.99 g, 20.18 mmol, 3 equiv.), 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos) (0.16 g, 0.34 mmol, 0.05 equiv.) and 1, 4-dioxane (80 mL) were reflux for 12 h under nitrogen atmosphere. After completion of reaction, the reaction mass poured in water (200 mL) and extracted in dichloromethane (DCM). The organic layer was dried using anhydrous MgSO₄ and the crude product obtained after evaporation of solvent was purified by column chromatography using hexane: DCM (80:20) as eluent. The intermediate I-3 obtained as wheat colored solid.

Yield: 1.50 g (48%). ¹H NMR (300 MHz, cdcl₃) δ 8.23 (d, J = 1.7 Hz, 2H), 8.13 (ddd, J = 7.8, 1.2, 0.7 Hz, 2H), 7.95 – 7.90 (m, 2H), 7.81 – 7.69 (m, 2H), 7.60 – 7.53 (m, 2H), 7.39 – 7.27 (m, 3H), 1.41 (s, 12H). MS (APCI) m/z: found 462.27 [(M+1)⁺]. Calculated for C₃₀H₂₅BFNO₂: 461.34.
Synthesis of 2-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)-2-fluorophenyl)indolo[3,2,1-\textit{jk}]carbazole (I-4)

A mixture of I-3 (1.03 g, 2.24 mmol, 1 equiv.), 2-chloro-4,6-diphenyl-1,3,5-triazine (0.6 g, 2.24 mmol, 1 equiv.), Pd(PPh$_3$)$_4$ (0.08 g, 0.07 mmol, 0.03 equiv.), K$_2$CO$_3$ (0.93 g, 6.72 mmol, 3 equiv.), and tetrahydrofuran (THF): water (33: 11 mL) was refluxed under nitrogen atmosphere for 12 h. The reaction was cooled to room temperature and extracted in water-DCM mixture. The organic layer dried over anhydrous MgSO$_4$ and evaporated under vacuum to give the crude product. The pure I-4 was obtained as white solid after column chromatography using hexane: DCM (70: 30). 1H NMR (300 MHz, cdcl$_3$) δ 8.79 (dd, $J= 8.0$, 1.6 Hz, 4H), 8.53 – 8.47 (m, 1H), 8.30 (d, $J= 1.5$ Hz, 2H), 8.20 (d, $J= 7.8$ Hz, 2H), 7.96 (d, $J= 8.1$ Hz, 2H), 7.82 (dd, $J= 10.7$, 3.7 Hz, 1H), 7.65 – 7.54 (m, 8H), 7.49 (t, $J= 7.7$ Hz, 1H), 7.40 (t, $J= 7.2$ Hz, 2H). Yield: 0.6 g (47%). MS (APCI) m/z: found 568.33 [(M+2)$^+$]. Calculated for C$_{39}$H$_{23}$FN$_4$: 566.64.

Synthesis of 2-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)-2-(9'-phenyl-9$^\text{H}$,9$'^\text{H}$-[3,3'-bicarbazol]-9-yl)phenyl)indolo[3,2,1-\textit{jk}]carbazole (TrzCbzICz-1)

The intermediate I-4 (0.8 g, 1.41 mmol, 1 equiv.), 9-phenyl-9$^\text{H}$,9$'^\text{H}$-3,3'-bicarbazole (0.71 g, 1.55 mmol, 1.1 equiv.) and cesium carbonate (Cs$_2$CO$_3$) (2.3 g, 7.06 mmol, 5 equiv.) were refluxed in N,N-dimethylformamide (DMF) (45 mL) for 6 h. The reaction mass was cooled to room temperature and extracted in DCM. The organic layer was dried over MgSO$_4$ and solvent was evaporated under vacuum to give crude product which was purified by column chromatography using hexane: DCM (80:20). The final product TrzCbzICz-1 was obtained as yellow solid. Yield: 0.6 g (45%). 1H NMR (500 MHz, CDCl$_3$) δ 8.17 (s, 5H), 7.92 (d, $J= 7.6$ Hz,
7H), 7.74 (dd, J = 14.5, 6.8 Hz, 11H), 7.60 (s, 4H), 7.48 (t, J = 7.5 Hz, 9H), 7.44 – 7.36 (m, 6H).

\(^{13}\text{C}\) NMR (126 MHz, CDCl\(_3\)) \(\delta\) 170.10 (s), 168.63 (s), 138.63 (s), 133.91 (s), 130.92 (s), 130.59 (d, J = 12.4 Hz), 129.30 (s), 119.67 (s), 118.95 (s), 118.16 (s), 115.90 (s), 113.64 (s), 111.39 (s).

Elemental analysis (%): calculated for C\(_{69}\)H\(_{42}\)N\(_6\); C, 86.77; N, 8.80; H, 4.43. Found: C, 86.71; N, 8.77; H, 4.43.

Synthesis of 2-(5-chloro-2-fluorophenyl)indolo[3,2,1-\(jk\)]carbazole (I-5)

Synthetic procedure same as I-2. The 1a (3.00 g, 8.16 mmol, 1 equiv.), 2-bromo-4-chloro-1-fluorobenzene (1.71 g, 8.16 mmol, 1 equiv.), Pd(PPh\(_3\))\(_4\) (0.28 g, 0.24 mmol, 0.03 equiv.), K\(_2\)CO\(_3\) (3.39 g, 24.48 mmol, 3 equiv.), and THF-water (100: 33 mL). The I-5 obtained as white solid. Yield: 1.0 g (33%). \(^1\)H NMR (300 MHz, cdcl\(_3\)) \(\delta\) 8.20 – 8.12 (m, 4H), 7.92 (d, J = 8.1 Hz, 2H), 7.65 – 7.53 (m, 3H), 7.43 – 7.28 (m, 3H), 7.17 (dd, J = 9.8, 8.7 Hz, 1H). MS (APCI) m/z: found 370.79 [(M+H)+]. Calculated for C\(_{24}\)H\(_{13}\)ClFN: 369.82.

Synthesis of 2-(2-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)indolo[3,2,1-\(jk\)]carbazole (I-6)

Synthetic procedure same as I-3. The I-5 (2.5 g, 6.76 mmol, 1 equiv.), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (5.15 g, 20.28 mmol, 3 equiv.), Pd\(_2\)(dba)\(_3\) (0.06 g, 0.07 mmol, 0.01 equiv.), K\(_2\)CO\(_3\) (1.99 g, 20.18 mmol, 3 equiv.), Xantphos (0.16 g, 0.34 mmol, 0.05 equiv.) and 1, 4-dioxane (80 mL). The I-6 obtained as wheat colored solid. Yield: 1.41 g (45%). \(^1\)H NMR (300 MHz, cdcl\(_3\)) \(\delta\) 8.22 (d, J = 1.5 Hz, 2H), 8.15 (d, J = 7.7 Hz, 2H), 8.08 (dd, J = 8.5, 1.6 Hz, 1H), 7.92 (d, J = 8.1 Hz, 2H), 7.83 (ddd, J = 8.0, 5.4, 1.7 Hz, 1H), 7.57 (td, J = 7.9, 1.2
Hz, 2H), 7.40 – 7.33 (m, 2H), 7.25 (dd, $J = 6.8, 3.9$ Hz, 1H), 1.38 (s, 12H). MS (APCI) m/z: found 462.11 [(M+H)$^+$]. Calculated for C$_{30}$H$_{25}$BFNO$_2$: 461.34.

Synthesis of 2-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-2-fluorophenyl)indolo[3,2,1-jk]carbazole (I-7)

Synthetic procedure same as I-4. The I-6 (1.03 g, 2.24 mmol, 1 equiv.), 2-chloro-4,6-diphenyl-1,3,5-triazine (0.6 g, 2.24 mmol, 1 equiv.), Pd(PPh$_3$)$_4$ (0.08 g, 0.07 mmol, 0.03 equiv.), K$_2$CO$_3$ (0.93 g, 6.72 mmol, 3 equiv.), and THF-water (33: 11 mL). The I-7 obtained as white solid. Yield: 0.60 g (47%). 1H NMR (300 MHz, ccd$_3$) δ 9.03 (dd, $J = 7.7, 2.2$ Hz, 1H), 8.82 – 8.76 (m, 2H), 8.65 – 8.59 (m, 2H), 8.33 – 8.12 (m, 5H), 7.96 (dd, $J = 11.9, 8.1$ Hz, 2H), 7.59 (ddd, $J = 13.7, 10.3, 7.0$ Hz, 7H), 7.46 – 7.32 (m, 4H). MS (APCI) m/z: found 568.36 [(M+2)$^+$]. Calculated for C$_{39}$H$_{23}$FN$_4$: 566.64.

Synthesis of 2-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-2-(9'-phenyl-9H,9'H-[3,3'-bicarbazol]-9-yl)phenyl)indolo[3,2,1-jk]carbazole (TrzCbzICz-2)

Synthetic procedure same as TrzCbzICz-1. The I-7 (0.8 g, 1.41 mmol, 1 equiv.), 9-phenyl-9H,9'H-3,3'-bicarbazole (0.71 g, 1.55 mmol, 1.1 equiv.) and cesium carbonate (Cs$_2$CO$_3$) (2.3 g, 7.06 mmol, 5 equiv.) were refluxed in N,N-dimethylformamide (DMF) (45 mL). The final product TrzCbzICz-2 was obtained as yellow solid. Yield: 0.55 g (41%). 1H NMR (500 MHz, Trifluoroacetic Acid-d: CDCl$_3$) δ 8.39 (d, $J = 7.9$ Hz, 8H), 8.18 (s, 6H), 7.81 (t, $J = 7.3$ Hz, 7H), 7.62 (dd, $J = 27.7, 20.0$ Hz, 13H), 7.32 (d, $J = 21.5$ Hz, 8H). 13C NMR (126 MHz, Trifluoroacetic Acid-d: CDCl$_3$) δ 168.77 (s), 167.48 (s), 138.02 (s), 133.99 (s), 130.71 (s),
130.50 (s), 128.70 (s), 119.96 (s), 119.16 (s), 118.25 (s), 115.99 (s), 113.73 (s), 111.48 (s).

Elemental analysis (%): calculated for C\textsubscript{69}H\textsubscript{42}N\textsubscript{6}; C, 86.77; N, 8.80; H, 4.43. Found: C, 85.88; N, 8.95; H, 4.77.
Device fabrication and measurement

To fabricate the OLED devices, transparent glass substrates with a 50 nm thick indium tin oxide (ITO) were used. The cleaning of the ITO glass substrates was carried out by ultrasonic treatment for 10 min using acetone and deionized water. The deposition of all the layers was performed by a vacuum thermal evaporation under a pressure of 3.0×10^{-7} torr. The deposition rates for the organic layers, LiF, and Al were controlled at 0.1, 0.01, and 0.5 nm/s, respectively. The green device structure was, ITO (50 nm)/ PEDOT: PSS (60 nm)/ TAPC (20 nm)/ m-CP (10 nm)/ DPEPO: TrzCbzICz-1: DPEPO: TrzCbzICz-2 (25: X%)/ TSPO1 (5 nm)/ TPBi (20 nm)/ LiF (1.5 nm)/ Al (200 nm). To protect the devices from the oxygen, encapsulation on glass was done under a nitrogen atmosphere in the glove box. All the device measurements were performed at ambient temperature. The electrical and optical characterizations of the devices were carried out using Keithley 2400 Source Meter and CS 2000 spectroradiometer, respectively.
Figure S1. The 1H-NMR spectrum of TrzCbzICz-1
Figure S2. The 13C-NMR spectrum of TrzCbzICz-1
Figure S3. The 1H-NMR spectrum of TrzCbzICz-2
Figure S4. The 13C-NMR spectrum of TrzCbzICz-2
Figure S5. The (a) solution PL and (b) LTPL curves of \textit{TrzCBzICz-1} and (c) solution PL and (d) LTPL curves of \textit{TrzCBzICz-2} in solvents with different polarity.
Figure S6. The TGA curves of TrzCbzICz-1 and TrzCbzICz-2
Figure S7. The DSC curves of TrzCbzICz-1 and TrzCbzICz-2
Figure S8. The optimized device diagram of TrzCbzICz-1 and TrzCbzICz-2 doped devices