Photonic nanostructures of nanodiscs with multiple magnetooptical properties

Chengcheng Zhang,[†]a Zhiyi Wu,[†]a Zhijie Chen,^a Liangbin Pan,^{*b} Juan Li,^a Mengqi Xiao,^a Liwei Wang,^{*c} Hai Li,^a Zheng Huang,^a Ao-Bo Xu,^a Chaoran Li,^{*a} Le He^a

^a Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.

^b Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.

^c School of Marine Sciences, Guangxi University, Nanning, Guangxi 530004, China.

*E-mail: crli@suda.edu.cn; panliangbin@suda.edu.cn; 20160214@gxu.edu.cn

[†]These authors contributed equally to this work.

Supplementary Figures

Figure S1. TEM image of $Ni(OH)_2$ nanoplates and their average length (126 nm), obtained by measuring 100 particles.

Figure S2. TEM image of $Ni(OH)_2@SiO_2$ nanodiscs obtained by coating a uniform layer of 50 nm-thick silica on the surface of $Ni(OH)_2$ nanoplates.

Figure S3. Low-magnification TEM image of Ni@SiO₂-1 nanodiscs and their average

diameter (232 nm) and thickness (126 nm).

Figure S4. (a) I-q curve of the SAXS pattern in the absence of magnetic field. The intensity was integrated in any diffraction regions. I-q curve of the SAXS pattern with the magnetic field along the (b) vertical and (c) horizontal direction. The intensity along those directions were integrated in a thirty degree of sector from the center.

Figure S5. SEM image of assembled Ni@SiO₂ nanodiscs (a) under a vertical and (b) horizontal magnetic field.

Figure S6. Reflection spectra of the 22% Ni@SiO₂-1 sample in the presence of magnetic fields with different strengths (θ was kept at 90°).

Figure S7. (a-d) Optical microscopy images showing the magnetic tuning of structural color of the 49% Ni@SiO₂-1. (e) Reflection spectra of the 49% Ni@SiO₂-1 in response to magnetic fields with different directions. The corresponding strengths of the magnetic field applied from 0° , 45° and 90° are 175, 75 and 80 mT, respectively.

Figure S8. (a-d) Optical microscopy images showing the magnetic tuning of structural color of the 30% Ni@SiO₂-1. (e) Reflection spectra of the 30% Ni@SiO₂-1 in response to magnetic fields with different directions. The corresponding strengths of the magnetic field applied from 0°, 75° and 90° are 175, 75 and 80 mT, respectively.

Figure S9. Low-magnification TEM image of Ni@SiO₂-2 nanodiscs with different aspect ratio and their average diameter (236 nm) and thickness (132 nm).

Figure S10. (a-d) Optical microscopy images showing magnetic tuning of structural color of 49% Ni@SiO₂-2. (e) Reflection spectra of the 49% Ni@SiO₂-2 in response to magnetic fields with different directions. The corresponding strengths of the magnetic field applied from 0°, 45° and 90° are 175, 75 and 80 mT, respectively.

Figure S11. (a-d) Optical microscopy images showing magnetic tuning of structural color of 30% Ni@SiO₂-2. (e) Reflection spectra of the 30% Ni@SiO₂-2 in response to magnetic fields with different directions. The corresponding strengths of the magnetic field applied from 0°, 60° and 90° are 175, 76 and 80 mT, respectively.

Figure S12. (a-d) Optical microscopy images showing magnetic tuning of structural color of 22% Ni@SiO₂-2. (e) Reflection spectra of the 22% Ni@SiO₂-2 in response to magnetic fields with different directions. The corresponding strengths of the magnetic field applied from 0°, 70° and 90° are 175, 80 and 80 mT, respectively.

Figure S13. (a-d) POM images showing the magnetic tuning of transmittance of the 49% sample sealed in a microfluidic channel. (e) Transmittance spectra of the sample under different magnetic fields.