Supporting Information for:

Improving photodetection and stability of visible light QDs/ZnO phototransistor via Al₂O₃ additional layer

Sungho Park, Byung Jun Kim, Tae Yeon Kim, Eui Young Jung, Kyu-Myung Lee, Jong-Am Hong, Woojin Jeon, Yongsup Park and Seong Jun Kang

a Department of Advanced Materials Engineering for Information and Electronics (BK21 four), Kyung Hee University, Yongin 17101, Republic of Korea

b Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
Figure S1. EDS line scan showing the depth profile of the elemental distribution.
Figure S2. AFM topography images and root mean square (RMS) roughness of a) ZnO, b) Al$_2$O$_3$/ZnO, c) QDs/ZnO, and d) Al$_2$O$_3$/QDs/ZnO films.
Figure S3. a) Transfer curve characteristic (measured at $V_D = 20$ V) of $\text{Al}_2\text{O}_3/\text{ZnO}$ TFTs upon irradiation with different wavelengths of light. b) Transfer curve characteristics (measured at $V_D = 20$ V) of ZnO, $\text{Al}_2\text{O}_3/\text{ZnO}$, QDs/\text{ZnO}, and Al_2O_3/QDs/\text{ZnO} TFTs in darkness.
Figure S4. Transfer curve characteristic (measured at $V_D = 20$ V) of QDs/ZnO TFTs deposited with Al$_2$O$_3$ after a) 5 cycles, b) 20 cycles, and c) 50 cycles upon irradiation with different wavelengths of light.
Figure S5. Tauc plots of a) ZnO and Al₂O₃/ZnO, and b) QDs and Al₂O₃/QDs films.
Figure S6. Schematic of the photo-generated charge transportation at the Al$_2$O$_3$/QDs/ZnO TFT.
Figure S7. Transfer curve characteristics (measured at $V_D = 20$ V) of a) QDs/ZnO and b) Al$_2$O$_3$/QDs/ZnO TFTs upon irradiation with 520 nm light, measured periodically after exposure to air at room temperature.