Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

C(sp³)–H Bond Functionalization with Styrenes via Hydrogen-Atom Transfer to an Aqueous Hydroxyl Radical under Photocatalysis

Shogo Mori^a and Susumu Saito*,a,b

^aGraduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan ^bResearch Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan

> *To whom correspondence should be addressed: E-mail: saito.susumu@f.mbox.nagoya-u.ac.jp

Table of Contents

- 1. General method
- 2. Materials
- 3. Optimization
- 4. Isolated yields and characterization of products
- 5. Appearances of reaction mixtures
- 6. Mechanistic study
- 7. Green metrics
- 8. Reference
- 9. Spectral data

1. General method

All experiments were performed under an inert gas unless otherwise noted. Photocatalytic reactions were performed in PhotoRedOx Box with LEDs ($\lambda = 365$ nm, P205-18-1 365 nm, Fig. S1) purchased from HepatoChem Inc. unless otherwise noted. Spot-type LEDs ($\lambda = 365$ nm, HLV-24UV365-4WNRBTNJ) purchased from CCS Inc. were used in a 1 mmol scale reaction. ¹H and ¹³C NMR spectra were measured on a JEOL ECA 600 or 500 (600 or 500 MHz for ¹H, 151 or 126 MHz for ¹³C, 564 MHz for F) at ambient temperature. Chemical shifts are reported as δ in ppm and internally referenced to tetramethylsilane (TMS, 0.0 ppm for ¹H), CDCl₃ (77.2 ppm for ¹³C), or benzotrifluoride (-62.6 ppm for ¹⁹F). The following abbreviations are used: br = broad, s = singlet, d = doublet, t = triplet, q =quartet, quin = quintet, sext = sextet and m = multiplet). GC-MS analyses were performed on Agilent 6850 series network GC system and Agilent 5975C series Mass Selective Detector (EI) [column: HP-5MS capillary column (l = 30 m, d = 0.25 mm, film thickness = 0.25 µm). High-resolution mass spectra (HRMS) were obtained from JMS-700 (FAB, JEOL). IR spectra were obtained from JASCO FT/IR6100. µGC-TCD analyses were conducted in a dual channel micro gas chromatography (µGC) system coupled to a thermal conductivity detector (TCD, Agilent 490). Emission spectroscopy was carried out on a JASCO FP-8500 spectrofluorometer at room temperature using quartz cells (light pass length = 1.0 cm). A Karl Fischer coulometer (MCU-610-DT) was used to check the water content of reagents. Inductively coupled plasma-atomic emission spectrophotometry (ICP-AES) was carried out with Vista Pro (Agilent). For thin-layer chromatography (TLC) analysis through this work, Merck percolated TLC plates (silica gel 60 GF254 0.25 mm) were used. The products were purified by flash chromatography using glass columns with silica gel 60 N (spherical, neutral, diameter: 40–100 µm) purchased from Kanto Chemical or pre-packed Biotage SNAP columns using a Biotage Isolera Automated Flash Chromatography System.

Fig. S1 PhotoRedOx Box with LEDs ($\lambda = 365$ nm)

2. Materials

All materials were used directly without further purification. Ethyl acetate (EtOAc), n-hexane, mesitylene, N.N-dimethylformamide (DMF, 2e), N.N-dimethyacetamide (DMA, 2f), potassium acetate (KOAc), potassium carbonate (K₂CO₃), cesium hydroxide monohydrate (CsOH•H₂O), acetonitrile-d₃ (2a- d_3 , 99.9%), deuterium oxide (D₂O, 99.8%), acetonitrile dehydrated -super- (water content = 24 ppm), tetrahydrofuran dehydrated stabilizer free -Super Plus- (THF, 2c), toluene (2k) and benzophenone were purchased from Kanto Chemical. TiO₂ (Aeroxide P25) tripotassium phosphate (K₃PO₄), lithium hydroxide (LiOH) and α -methylstyrene (1a), 3,3-dimethyl-2-butanone (2h) were purchased from Sigma-Aldrich. 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), 4-fluoro-amethylstyrene (1h), 4-chloro-α-methylstyrene (1i), 4-methylstyrene (1m), trans-anethole (1o), 2methyltetrahydrofuran (2i), tetrahydropyran (2j), NaBH₄, coumarin, umbelliferone, acetone- d_6 (2b- d_6 , 99.9%) and 1,1,2,2-tetrachloroethane were purchased from Tokyo Chemical Industry. n-Dodecane, potassium hydroxide (KOH), sodium hydroxide (NaOH), acetonitrile (water content = 2609 ppm, 2a), acetone super dehydrated (2b),1,4-dioxane (2d) and AgNO₃ were purchased from FUJIFILM Wako Pure Chemical Corporation. Dipotassium hydrogen phosphate (K₂HPO₄) was purchased from nacalai tesque. Propionitrile (2g) was purchased from Acros Organics. Chloroform-d (CDCl₃, 99.8%) was purchased from CIL.

Ag/TiO₂ was synthesized in a manner similar to the literature procedure.¹ Ag(1 wt %)/TiO₂ was prepared as follows: TiO₂(P25, 1.98 g) and AgNO₃ (31.5 mg) were added to water (40 mL) and evaporated under vigorous stirring at 353 K for 16 h. The obtained powder was grained gently and calcined at 673 K under air. The heating rate and holding time at 673 K were 1.1 K/min and 2 h, respectively. To a suspension of the powder in water (20 mL), NaBH₄ (10 equiv to Ag) in cooled water (5 mL, 0 °C) was added dropwise, and the resulted suspension was stirred for 2 h at room temperature. After the suspension was transferred to a 50 mL Falcon tube and centrifuged (3500 rpm, 30 min), the supernatant was removed by decantation. After water (20 mL) was added to the tube and centrifuged (3500 rpm, 30 min), the supernatant was removed by decantation. This washing process was repeated once more. Drying the solid residue under reduced pressure gave Ag(1 wt %)/TiO₂ (1.86 g). The silver content was 0.9 wt % [determined by ICP-AES, after digestion of the catalyst (10.0 mg) using concd HNO₃ aq (2 mL) at 80 °C for 12 h].

Pt (5 wt %)/TiO₂ was prepared by the same method as Ag/TiO₂. M (5 wt %)/TiO₂ (M = Co, Rh, Ir, Ni, procedure.² Pd, Cu synthesized reported and Au) were by the Tetrakis(tetrabutylammonuim)decatungstate (TBADT) was synthesized by the reported procedure.³ According to the reported procedure⁴, known compounds $(1b^5, 1d^6, 1e^6, 1f^7, 1g^8, 1j^9, 1k^6, 1l^9, 1n^{10}, 1n^{$ 1p¹¹ and 1q¹²) and 1c were synthesized. 1c (white solid): ¹H NMR (600 MHz, CDCl₃): δ 7.90 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 5.49 (m, 1H), 5.27–5.26 (m, 1H), 3.06 (s, 3H), 2.19–2.18 (m, 1H), 5.27–5.26 (m, 1H), 3.06 (s, 3H), 2.19–2.18 (m, 1H), 5.27–5.26 (m, 2H), 5.27-5.26 (m, 2H), 5.27-3H); ¹³C NMR (151 MHz, CDCl₃): δ 146.9, 142.0, 139.2, 127.6, 126.6, 116.0, 44.8, 21.8; HRMS (FAB): *m*/*z* calcd. for C₁₀H₁₃O₂S ([M+H]⁺) 197.0631, found 197.0639. FT-IR (KBr, cm⁻¹): 1295, 1147. **3aa**¹³, **3da**¹³, **3ea**¹⁴, **3ia**¹³, **3ma**¹³, **3aa**¹⁵, **3ab**¹⁶, **3mb**¹⁷, **3mc**¹⁸, **5a**¹⁹, **5b**²⁰ and **6**²¹ are known compounds.

3. Optimization

General procedure for optimization

An oven-dried Pyrex glass test tube was charged with a magnetic stirrer bar and photocatalyst. The vessel was sealed with a rubber septum and placed under nitrogen before 1 mL of a stock solution containing **1a** (0.20 mmol) in **2a** and 1 mL of an aqueous solution of base were added. The mixture was sonicated and then stirred under LED-light irradiation ($\lambda = 365$ nm). After 24 h, the reaction mixture diluted with ethyl acetate (EtOAc) was analyzed by GC-MS with an internal standard (*n*-dodecane). The mixture was dried over Na₂SO₄. After filtration through a 0.45 µm membrane filter and concentration under reduced pressure (80 mmHg, 40 °C), an aliquot with an internal standard (mesitylene) was monitored by ¹H NMR analysis.

^{*a* 1}H NMR yield.

^b Determined by µGC-TCD.

^c Not detected.

Table S2. Evaluation of Ag loading amount

^b Isolated yield.

Table S3. Evaluation of homogeneous photo-induced HAT catalyst

1	Ag(1 wt %)/TiO ₂ (10.0 mg)	86 (85) ^b
2	TBADT (4 mol %)	C
3	benzophenone (100 mol %)	

^{*a* 1}H NMR yield.

^b Isolated yield.

^{*c*} Not detected.

Table S4: Evaluation of base

1 a, 0	+ 0.2 mmol	H ^C CN 2a , 1 mL	Ag(1 wt %)/TiO ₂ (1 H ₂ O (1 mL) base hν (365 nm), r.t., N	0.0 mg) 	Ch 3aa	1
	entry		base	yield of 3 a	a (%) ^a	
	1	KC	OH (0.02 mmol)	86 (85	$(5)^b$	
	2	LiC	OH (0.02 mmol)	71		
	3	Na	OH (0.02 mmol)	70		
	4	CsOH	•H ₂ O (0.02 mmol)	78		
	5	KO	Ac (0.02 mmol)	17		
	6	K ₂ C	CO ₃ (0.02 mmol)	67		
	7	K ₃ I	PO ₄ (0.02 mmol)	74		
	8	K ₂ H	PO ₄ (0.02 mmol)	8		
	9	K	OH (0.01 mmol	65		
	10	KC	OH (0.04 mmol)	84		
	11	K	OH (0.2 mmol)	78		
	12	K	COH (2 mmol)	35		

^{*a* 1}H NMR yield.

^b Isolated yield.

4. Isolated yields and characterization of products

General procedure A

An oven-dried Pyrex glass test tube was charged with a magnetic stirrer bar and Ag(1 wt %)/TiO₂ (10.0 mg). The vessel was sealed with a rubber septum and placed under nitrogen before **1** (0.20 mmol), **2** (1 mL) and an aqueous solution of KOH (0.02 M, 1 mL) were added (**1** that was not volatile was added with the Ag(1 wt %)/TiO₂). The mixture was sonicated and then stirred under LED-light irradiation ($\lambda = 365$ nm). After 24 h, the reaction mixture was diluted with EtOAc and dried over Na₂SO₄. After filtration through a 0.45 µm membrane filter and concentration under reduced pressure

(80 mmHg, 40 °C), the residue was purified by flash column chromatography on silica gel using EtOAc-hexane as the eluent.

General procedure B

An oven-dried Pyrex glass test tube was charged with a magnetic stirrer bar and Ag(1 wt %)/TiO₂ (10.0 mg). The vessel was sealed with a rubber septum and placed under nitrogen before **1** (0.20 mmol), **2** (1 mL) and an aqueous solution of KOH (0.02 M, 1 mL) were added (**1** that was not volatile was added with the Ag(1 wt %)/TiO₂). The mixture was sonicated and then stirred under LED-light irradiation ($\lambda = 365$ nm). After 24 h, the reaction mixture was transferred to a 50 mL Falcon tube that contained EtOAc (10 mL) and water (30 mL). The mixture was centrifuged (3,500 rpm, 3 min) and the organic phase was separated. The aqueous phase was subjected to additional three EtOAc (5 mL) addition–centrifugation–extraction cycles. The combined organic extracts were dried over Na₂SO₄, filtrated, and the filtrate was concentrated under reduced pressure (80 mmHg, 40 °C). Purification of the residue by flash column chromatography on silica gel using EtOAc–hexane as the eluent afforded pure **3** and **4**, and a mixture of **3** and **4**. The ratio of isomers (**3**/**4**) was determined by ¹H NMR analysis after column chromatography.

4-Phenylpentanenitrile (3aa)¹³

According to the general procedure A, **1a** (23.6 mg, 0.200 mmol) and **2a** (1 mL) were used. The desirable product (**3aa**, 27.1 mg, 0.170 mmol, 85%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.32 (t, *J* = 7.2 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.19 (d, *J* = 7.2 Hz, 2H), 2.86 (dqd, *J* = 9.6, 7.2, 5.4 Hz, 1H), 2.22 (ddd, *J* = 16.8, 7.8, 6.0 Hz, 1H), 2.11 (ddd, *J* = 16.8, 7.8, 7.8 Hz, 1H), 1.97 (dddd, *J* = 13.8, 7.8, 7.8, 5.4 Hz, 1H), 1.88 (dddd, *J* = 13.8, 9.6, 7.8, 6.0 Hz, 1H), 1.31 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 144.8, 129.0, 127.1, 127.0, 119.8, 39.1, 33.7, 22.1, 15.7; HRMS (FAB): *m/z* calcd. for C₁₁H₁₄N ([M+H]⁺) 160.1121, found 160.1127.

4-(4-Cyanobutan-2-yl)benzonitrile (3ba)

According to the general procedure A, **1b** (28.7 mg, 0.200 mmol) and **2a** (1 mL) were used. The desirable product (**3ba**, 33.8 mg, 0.183 mmol, 92%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/4) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.64 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 2.97 (dqd, J = 9.0, 7.2, 6.6 Hz, 1H), 2.28 (ddd, J = 16.8, 7.2, 6.0 Hz, 1H), 2.14 (ddd, J = 16.8, 7.8, 7.8 Hz, 1H), 2.00 (dddd, J = 13.8, 7.8, 7.2, 6.0 Hz, 1H), 1.91 (dddd, J = 13.8, 9.0, 7.8, 6.0 Hz, 1H), 1.33 (d, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 150.4, 132.8, 128.0, 119.2, 118.9, 111.0, 39.2, 33.2, 21.6, 15.6; HRMS (FAB): m/z calcd. for C₁₂H₁₃N₂ ([M+H]⁺)

185.1073, found 185.1075; FT-IR (neat, NaCl, cm⁻¹): 2245, 2227.

1 mmol scale reaction

An oven-dried Pyrex glass test tube was charged with a magnetic stirrer bar, **1b** (143.9 mg, 1.00 mmol) and Ag(1 wt %)/TiO₂ (50.0 mg). The vessel was sealed with a rubber septum and placed under nitrogen before **2a** (2 mL) and an aqueous solution of KOH (0.02 M, 2 mL) were added. The mixture was sonicated and then stirred under light irradiation with two LEDs (λ = 365 nm, P205-18-1 365 nm) purchased from HepatoChem Inc. and three LEDs (λ = 365 nm, HLV-24UV365-4WNRBTNJ) purchased from CCS Inc. at ca. 45 °C. After 24 h, the aqueous mixture was extracted with four portions of EtOAc (5 mL). The combined organic fractions were dried over Na₂SO₄. After filtration through a 0.45 µm membrane filter and concentration under reduced pressure (80 mmHg, 40 °C), an aliquot with an internal standard (1,1,2,2-tetrachloroethane) was monitored by ¹H NMR analysis. The desirable product (**3ba**, 131.5 mg, 0.71 mmol, 71%) was isolated after flash column chromatography on silica gel (EtOAc/hexane = 1/4) as a colorless oil.

4-(4-Cyanobutan-2-yl)phenyl methyl sulfone (3ca)

According to the general procedure A, **1c** (39.3 mg, 0.200 mmol) and **2a** (1 mL) were used. The desirable product (**3ca**, 39.5 mg, 0.166 mmol, 83%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/1) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.92 (d, *J* = 9.0 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 3.07 (s, 3H), 3.01 (dqd, *J* = 9.6, 7.2, 6.0 Hz, 1H), 2.29 (ddd, *J* = 17.4, 7.2, 6.0 Hz, 1H), 2.15 (ddd, *J* = 17.4, 7.8, 7.8 Hz, 1H), 2.02 (dddd, *J* = 13.8, 7.8, 7.2, 6.0 Hz, 1H), 1.93 (dddd, *J* = 13.8, 9.6, 7.8, 6.0 Hz, 1H), 1.35 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 151.4, 139.3, 128.2, 119.2, 44.7, 39.0, 33.2, 21.7, 15.6; HRMS (FAB): *m/z* calcd. for C₁₂H₁₆NO₂S ([M+H]⁺) 238.0896, found 238.0904; FT-IR (neat, NaCl, cm⁻¹): 2245, 1307, 1148.

4-(4-Methoxyphenyl)pentanenitrile (3da)¹³

According to the general procedure A, **1d** (29.6 mg, 0.200 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2a** (1 mL) were used. The desirable product (**3da**, 31.9 mg, 0.169 mmol, 84%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/19) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.11 (d, *J* = 9.0 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 3.79 (s, 3H) 2.81 (dqd, *J* = 9.6, 7.2, 6.0 Hz, 1H), 2.21 (ddd, *J* = 17.4, 7.8, 5.4 Hz, 1H), 2.10 (ddd, *J* = 17.4, 7.8, 7.8 Hz, 1H), 1.95 (dddd, *J* = 13.2, 7.8, 7.8, 6.0 Hz, 1H), 1.82 (dddd, *J* = 13.2, 9.6, 7.8, 5.4 Hz, 1H), 1.28 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 158.5, 136.7, 128.0, 119.9, 114.3, 55.4, 38.3, 33.9, 22.3, 15.6; HRMS (FAB): *m/z* calcd. for C₁₂H₁₆NO ([M+H]⁺) 190.1226, found 190.1236.

4-(4-Tolyl)pentanenitrile (3ea)¹⁴

According to the general procedure A, **1e** (26.4 mg, 0.200 mmol) and **2a** (1 mL) were used. The desirable product (**3ea**, 28.8 mg, 0.166 mmol, 83%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.13 (d, *J* = 7.8 Hz, 2H), 7.07 (d, *J* = 7.8 Hz, 2H), 2.82 (dqd, *J* = 9.6, 7.2, 6.0 Hz, 1H), 2.33 (s, 3H), 2.21 (ddd, *J* = 16.8, 8.4, 5.4 Hz, 1H), 2.10 (ddd, *J* = 16.8, 7.8, 7.8 Hz, 1H), 1.95 (dddd, *J* = 13.2, 8.4, 7.8, 6.0 Hz, 1H), 1.85 (dddd, *J* = 13.2, 9.6, 7.8, 5.4 Hz, 1H), 1.29 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 141.7, 136.5, 129.6, 127.0, 119.9, 38.7, 33.8, 22.2, 21.2, 15.6; HRMS (FAB): *m/z* calcd. for C₁₂H₁₆N ([M+H]⁺) 174.1277, found 174.1279.

4-(3-Tolyl)pentanenitrile (3fa)

According to the general procedure A, **1f** (26.4 mg, 0.200 mmol) and **2a** (1 mL) were used. The desirable product (**3fa**, 22.2 mg, 0.128 mmol, 64%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.21 (t, *J* = 7.8 Hz, 1H), 7.05–7.04 (m, 1H), 6.99–6.97 (m, 2H), 2.81 (dqd, *J* = 9.6, 6.6, 5.4 Hz, 1H), 2.34 (s, 3H), 2.22 (ddd, *J* = 16.8, 7.8, 6.0 Hz, 1H), 2.11 (ddd, *J* = 16.8, 7.8, 7.8 Hz, 1H), 1.96 (dddd, *J* = 13.8, 7.8, 7.8, 5.4 Hz, 1H), 1.87 (dddd, *J* = 13.8, 9.6, 7.8, 6.0 Hz, 1H), 1.29 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 144.7, 138.5, 128.8, 127.9, 127.7, 124.1, 119.9, 39.1, 33.7, 22.2, 21.6, 15.7; HRMS (FAB): *m/z* calcd. for C₁₂H₁₆N ([M+H]⁺) 174.1277, found 174.1279; FT-IR (neat, NaCl, cm⁻¹): 2247.

4-(2-Tolyl)pentanenitrile (3ga)

According to the general procedure A, **1g** (26.5 mg, 0.200 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2a** (1 mL) were used. The desirable product (**3ga**, 15.0 mg, 0.087 mmol, 44%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.21–7.10 (m, 4H), 3.17 (ddq, *J* = 8.4, 7.2, 6.6 Hz, 1H), 2.36 (s, 3H), 2.27 (ddd, *J* = 16.8, 7.2, 6.0 Hz, 1H), 2.17 (ddd, *J* = 16.8, 7.8, 7.8 Hz, 1H), 2.01–1.92 (m, 2H), 1.25 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 142.9, 136.0, 130.9, 126.7, 126.5, 125.0, 119.9, 33.6, 33.0, 21.7, 19.7, 15.6; HRMS (FAB): *m/z* calcd. for C₁₂H₁₆N ([M+H]⁺) 174.1277, found 174.1276; FT-IR (neat, NaCl, cm⁻¹): 2247.

4-(4-Fluorophenyl)pentanenitrile (3ha)

According to the general procedure A, **1h** (27.3 mg, 0.200 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2a** (1 mL) were used. The desirable product (**3ha**, 26.7 mg, 0.151 mmol, 75%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/9) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.15 (dd, J = 8.4, 5.4 Hz, 2H), 7.01 (dd, J = 8.4, 8.4 Hz, 2H), 2.87 (dqd, J = 9.6, 6.6, 6.0 Hz, 1H), 2.23 (ddd, J = 16.8, 7.8, 5.4 Hz, 1H), 2.10 (ddd, J = 16.8, 7.8, 7.8 Hz, 1H), 1.96 (dddd, J = 13.8, 7.8, 7.8, 6.0 Hz, 1H), 1.84 (dddd, J = 13.8, 9.6, 7.8, 5.4 Hz, 1H), 1.29 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.6, 161.0, 140.4, 140.4, 128.5, 128.5, 119.6, 115.8, 115.7, 38.4, 33.8, 22.2, 15.6; ¹⁹F NMR (564 MHz, CDCl₃): δ -116.1; HRMS (FAB): *m/z* calcd. for C₁₁H₁₃FN ([M+H]⁺) 178.1027, found 178.1027; FT-IR (neat, NaCl, cm⁻¹): 2248, 1224.

4-(4-Chlorophenyl)pentanenitrile (3ia)¹³

According to the general procedure A, **1i** (15.2 mg, 0.100 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2a** (1 mL) were used. The desirable product (**3ia**, 13.4 mg, 0.069 mmol, 69%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/19) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.30 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 2.86 (dqd, *J* = 9.6, 7.2, 6.0 Hz, 1H), 2.24 (ddd, *J* = 16.8, 7.2, 5.4 Hz, 1H), 2.11 (ddd, *J* = 16.8, 7.8, 7.8 Hz, 1H), 1.96 (dddd, *J* = 13.8, 7.8, 7.8, 6.0 Hz, 1H), 1.84 (dddd, *J* = 13.8, 9.6, 7.8, 5.4 Hz, 1H), 1.29 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 143.2, 132.7, 129.1, 128.5, 119.5, 38.5, 33.6, 22.0, 15.6; HRMS (FAB): *m/z* calcd. for C₁₁H₁₃ClN ([M+H]⁺) 194.0731, found 194.0735.

4-(4-Cyanobutan-2-yl)pyridine (3ja)

According to the general procedure A, **1j** (11.8 mg, 0.099 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2a** (1 mL) were used. The desirable product (**3ja**, 11.2 mg, 0.070 mmol, 71%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 2/1) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 8.56 (d, *J* = 4.8 Hz, 2H), 7.13 (dd, *J* = 4.8, 1.2 Hz, 2H), 2.89 (dqd, *J* = 9.0, 7.2, 6.6 Hz, 1H), 2.29 (ddd, *J* = 16.8, 7.8, 6.0 Hz, 1H), 2.15 (ddd, *J* = 16.8, 7.8, 7.8 Hz, 1H), 1.99 (dddd, *J* = 13.8, 7.8, 7.8, 6.6 Hz, 1H), 1.92 (dddd, *J* = 13.8, 9.0, 7.8, 6.0 Hz, 1H), 1.33 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 153.7, 150.5, 122.5, 119.2, 38.5, 32.9, 21.2, 15.6; HRMS (FAB): *m/z* calcd. for C₁₀H₁₃N₂ ([M+H]⁺) 161.1073, found 161.1079; FT-IR (neat, NaCl, cm⁻¹): 2247.

3-(4-Cyanobutan-2-yl)pyridine (3ka)

According to the general procedure A, **1k** (12.0 mg, 0.101 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2a** (1 mL) were used. The desirable product (**3ka**, 8.0 mg, 0.050 mmol, 50%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 2/1) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 8.51 (d, J = 12.6 Hz, 2H), 7.53 (d, J = 7.8 Hz, 1H), 7.29–7.27 (m, 1H), 2.92 (dqd, J = 9.0, 7.2, 6.6 Hz, 1H), 2.28 (ddd, J = 16.8, 7.8, 6.0 Hz, 1H), 2.17 (ddd, J = 16.8, 7.8, 7.8 Hz, 1H), 2.01 (dddd, J = 13.8, 7.8, 7.8, 6.0 Hz, 1H), 1.92 (dddd, J = 13.8, 9.0, 7.8, 6.0 Hz, 1H), 1.35 (d, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 149.1, 148.7, 140.1, 134.4, 124.0, 119.3, 36.7, 33.4, 21.8, 15.6; HRMS (FAB): m/z calcd. for C₁₀H₁₃N₂ ([M+H]⁺) 161.1073, found 161.1079; FT-IR (neat, NaCl, cm⁻¹): 2247.

2-(4-Cyanobutan-2-yl)pyridine (3la)

According to the general procedure A, **11** (23.9 mg, 0.201 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2a** (1 mL) were used. The desirable product (**3la**, 23.8 mg, 0.149 mmol, 74%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/3) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 8.57–8.56 (m, 1H), 7.64 (td, *J* = 7.8, 1.8 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 1H), 7.15 (ddd, *J* = 7.8, 4.8, 1.2 Hz, 1H), 3.07–3.01 (m, 1H), 2.32–2.26 (m, 1H), 2.21–2.15 (m, 2H), 2.00–1.95 (m, 1H), 1.33 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 163.7, 149.8, 136.9, 122.6, 121.9, 119.8, 40.7, 31.9, 21.0, 15.5; HRMS (FAB): *m/z* calcd. for C₁₀H₁₃N₂ ([M+H]⁺) 161.1073, found 161.1079; FT-IR (neat, NaCl, cm⁻¹): 2246.

4-(4-Tolyl)butanenitrile (3ma)¹³

According to the general procedure A, **1m** (23.6 mg, 0.200 mmol) and **2a** (1 mL) were used. The desirable product (**3ma**, 21.8 mg, 0.137 mmol, 68%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/19): ¹H NMR (500 MHz, CDCl₃) as a colorless oil: δ 7.11 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 2.73 (t, *J* = 7.5 Hz, 2H), 2.32 (s, 3H), 2.30 (t, *J* = 7.0 Hz, 2H), 1.96 (tt, *J* = 7.5, 7.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 136.8, 136.2, 129.5, 128.5, 119.7, 34.1, 27.2, 21.2, 16.5; HRMS (FAB): *m/z* calcd. for C₁₁H₁₄N ([M+H]⁺) 160.1121, found 160.1126.

4-(4-(Benzyloxy)phenyl)butanenitrile (3na)

According to the general procedure A, **1n** (42.1 mg, 0.200 mmol), Ag(1 wt %)/TiO₂ (50.0 mg) and **2a** (1 mL) were used. The desirable product (**3na**, 35.0 mg, 0.139 mmol, 70%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/9) as a white solid: ¹H NMR (600 MHz, CDCl₃): δ 7.43 (d, *J* = 7.8 Hz, 2H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 9.0 Hz, 2H), 5.04 (s, 2H), 2.71 (t, *J* = 7.2 Hz, 2H), 2.29 (t, *J* = 7.2 Hz, 2H), 1.94 (quin, *J* = 7.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 157.7, 137.2, 132.2, 129.6, 128.8, 128.1, 127.6, 119.7, 115.2, 70.2, 33.7, 27.3, 16.5; HRMS (FAB): *m/z* calcd. for C₁₇H₁₇NO (M⁺) 251.1305, found 251.1318; FT-IR (KBr, cm⁻¹): 2244, 1248, 1015.

MeO

4-(4-Methoxyphenyl)-3-methylbutanenitrile (3oa)

According to the general procedure A, **10** (14.8 mg, 0.100 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2a** (1 mL) were used. The desirable product (**30a**, 13.1 mg, 0.069 mmol, 69%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/19) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.08 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 3.80 (s, 3H), 2.62 (dd, J = 13.8, 7.2 Hz, 1H), 2.58 (dd, J = 13.8, 7.8 Hz, 1H), 2.28 (dd, J = 16.8, 5.4 Hz, 1H), 2.18 (dd, J = 16.2, 6.6 Hz, 1H), 2.13–2.06 (m, 1H), 1.11 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 158.5, 131.2, 130.1, 118.9, 114.1, 55.4, 41.3, 32.8, 23.7, 19.6; HRMS (FAB): *m/z* calcd. for C₁₂H₁₆NO ([M+H]⁺) 190.1226, found 190.1232; FT-IR (neat, NaCl, cm⁻¹): 2250, 1249, 1036.

4-(4-Tolyl)hexanenitrile (3pa)

According to the general procedure A, **1p** (29.3 mg, 0.200 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2a** (1 mL) were used. The desirable product (**3pa**, 29.8 mg, 0.159 mmol, 80%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil: ¹H NMR (500 MHz, CDCl₃): δ 7.12 (d, *J* = 7.5 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 2.55–2.49 (m, 1H), 2.33 (s, 3H), 2.20–2.14 (m, 1H), 2.07–1.99 (m, 2H), 1.85–1.77 (m, 1H), 1.72–1.55 (m, 2H), 0.80 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 139.9, 136.4, 129.6, 127.6, 120.0, 46.5, 32.1, 29.6, 21.2, 15.6, 12.2; HRMS (FAB): *m/z* calcd. for C₁₃H₁₈N ([M+H]⁺) 188.1434, found 188.1437; FT-IR (neat, NaCl, cm⁻¹): 2246.

4-(3-Cyano-1-phenylpropan-1-yl)benzonitrile (3qa)

According to the general procedure A, **1q** (41.0 mg, 0.200 mmol) and **2a** (1 mL) were used. The desirable product (**3qa**, 42.9 mg, 0.174 mmol, 87%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/3) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.60 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.26 (t, *J* = 7.8 Hz, 1H), 7.22–7.20 (m, 2H), 4.14 (t, *J* = 7.8 Hz, 1H), 2.45–2.36 (m, 2H), 2.33–2.24 (m, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 148.5, 141.1, 132.8, 129.3, 128.6, 127.8, 127.7, 119.0, 118.7, 111.0, 49.9, 30.7, 15.9; HRMS (FAB): *m/z* calcd. for C₁₇H₁₅N₂ ([M+H]⁺) 247.1230, found 247.1231; FT-IR (neat, NaCl, cm⁻¹): 2247, 2227.

4-Hydroxy-4-phenylpentanenitrile (3aa')¹⁵

According to the general procedure A, **1a** (23.7 mg, 0.200 mmol) and **2a** (1 mL) were used under air. The product (**3aa'**, 5.7 mg, 0.033 mmol, 16%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/4) as a colorless oil: ¹H NMR (500 MHz, CDCl₃): δ 7.41–7.36 (m, 4H), 7.30–7.27 (m, 1H), 2.44–2.38 (m, 1H), 2.18–2.15 (m, 2H), 2.12–2.05 (m, 1H), 1.72 (s, 1H), 1.63 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ ; 145.6, 128.8, 127.5, 124.7, 120.3, 73.8, 39.8, 30.9, 12.3; HRMS (FAB): *m/z* calcd. for C₁₁H₁₄NO ([M+H]⁺) 176.1070, found 176.1076.

5-Phenylhexan-2-one (3ab)¹⁶

According to the general procedure A, **1a** (23.6 mg, 0.200 mmol) and **2b** (1 mL) were used. The desirable product (**3ab**, 32.5 mg, 0.184 mmol, 92%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/19) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.29 (t, *J* = 7.2 Hz, 2H), 7.19 (t, *J* = 7.2 Hz, 1H), 7.16 (d, *J* = 7.2 Hz, 2H), 2.68 (dqd, *J* = 9.0, 6.6, 6.0 Hz, 1H), 2.33 (ddd,

J = 17.4, 9.0, 6.6 Hz, 1H), 2.26 (ddd, J = 17.4, 9.0, 5.4 Hz, 1H), 2.05 (s, 3H), 1.90 (dddd, J = 13.8, 9.0, 6.6, 6.0 Hz, 1H), 1.82 (dddd, J = 13.8, 9.0, 9.0, 5.4 Hz, 1H), 1.26 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 209.1, 146.6, 128.6, 127.2, 126.3, 42.0, 39.5, 32.0, 30.1, 22.6; HRMS (FAB): m/z calcd. for C₁₂H₁₇O ([M+H]⁺) 177.1274, found 177.1274.

4-(5-Oxohexan-2-yl)benzonitrile (3bb)

According to the general procedure A, **1b** (28.8 mg, 0.201 mmol) and **2b** (1 mL) were used. The desirable product (**3bb**, 37.2 mg, 0.185 mmol, 92%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/5) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.60 (d, *J* = 8.4 Hz, 2H), 7.29–7.28 (m, 2H), 2.77 (dqd, *J* = 8.4, 7.2, 6.6 Hz, 1H), 2.34 (ddd, *J* = 17.4, 9.0, 6.0 Hz, 1H), 2.27 (ddd, *J* = 17.4, 9.0, 6.0 Hz, 1H), 2.08 (s, 3H), 1.91 (dddd, *J* = 14.4, 9.0, 6.6, 6.0 Hz, 1H), 1.83 (dddd, *J* = 14.4, 9.0, 8.4, 6.0 Hz, 1H), 1.26 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 208.3, 152.4, 132.5, 128.0, 119.1, 110.2, 41.5, 39.6, 31.5, 30.1, 22.0; HRMS (FAB): *m/z* calcd. for C₁₃H₁₆NO ([M+H]⁺) 202.1226, found 202.1238; FT-IR (neat, NaCl, cm⁻¹): 2229, 1713.

5-(4-Methoxyphenyl)hexan-2-one (3db)

According to the general procedure A, **1d** (29.6 mg, 0.200 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2b** (1 mL) were used. The desirable product (**3db**, 23.2 mg, 0.112 mmol, 56%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/9) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.08 (d, *J* = 8.4 Hz, 2H), 6.84 (d, *J* = 9.0 Hz, 2H), 3.79 (s, 3H), 2.63 (dqd, *J* = 9.6, 7.2, 6.0 Hz, 1H), 2.31 (ddd, *J* = 17.4, 9.6, 6.6 Hz, 1H), 2.25 (ddd, *J* = 17.4, 9.6, 5.4 Hz, 1H), 2.05 (s, 3H), 1.88 (dddd, *J* = 13.8, 9.6, 6.6, 6.0 Hz, 1H), 1.77 (dddd, *J* = 13.8, 9.6, 9.6, 5.4 Hz, 1H), 1.23 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 209.2, 158.1, 138.7, 128.0, 114.0, 55.4, 42.0, 38.7, 32.2, 30.1, 22.8; HRMS (FAB): *m/z* calcd. for C₁₃H₁₉O₂ ([M+H]⁺) 207.1380, found 207.1378; FT-IR (neat, NaCl, cm⁻¹): 1714, 1247, 1037.

5-(2-Tolyl)hextan-2-one (3gb)

According to the general procedure A, **1g** (26.4 mg, 0.199 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2b** (1 mL) were used. The desirable product (**3gb**, 9.0 mg, 0.047 mmol, 24%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/19) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.18–7.16 (m, 2H), 7.14–7.13 (m, 1H), 7.10–7.07 (m, 1H), 2.99 (sext, *J* = 7.2 Hz, 1H), 2.38–2.28

(m, 2H), 2.31 (s, 3H), 2.06 (s, 3H), 1.88 (td, J = 7.8, 7.2 Hz, 2H), 1.21 (d, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 209.1, 144.7, 135.7, 130.5, 126.5, 125.9, 125.4, 41.9, 33.9, 31.3, 30.1, 22.0, 19.8; HRMS (FAB): m/z calcd. for C₁₃H₁₉O ([M+H]⁺) 191.1430, found 191.1438; FT-IR (neat, NaCl, cm⁻¹): 1713.

5-(4-Tolyl)pentan-2-one (3mb)¹⁷

According to the general procedure A, **1m** (23.7 mg, 0.201 mmol) and **2b** (1 mL) were used. The desirable product (**3mb**, 25.3 mg, 0.144 mmol, 72%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/19) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.09 (d, J = 7.8 Hz, 2H), 7.05 (d, J = 7.8 Hz, 2H), 2.58 (t, J = 7.2 Hz, 2H), 2.42 (t, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.10 (s, 3H), 1.88 (quin, J = 7.2 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 209.0, 138.6, 135.5, 129.2,128.5, 43.0, 34.7, 30.1, 25.5, 21.1; HRMS (FAB): m/z calcd. for C₁₂H₁₇O ([M+H]⁺) 177.1274, found 177.1274.

4-(4-Oxo-1phenylpentan-1-yl)benzonitrile (3qb)

According to the general procedure A, **1q** (41.4 mg, 0.202 mmol) and **2b** (1 mL) were used. The desirable product (**3qb**, 51.0 mg, 0.194 mmol, 96%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/4) as a colorless oil: ¹H NMR (500 MHz, CDCl₃): δ 7.56 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 9.0 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.20–7.18 (m, 2H), 3.97 (t, *J* = 8.0 Hz, 1H), 2.41–2.38 (m, 2H), 2.34–2.30 (m, 2H), 2.07 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 208.0, 150.2, 142.7, 132.5, 129.0, 128.7, 128.0, 127.1, 119.0, 110.4, 50.4, 41.6, 30.2, 28.8; HRMS (FAB): *m/z* calcd. for C₁₈H₁₈NO ([M+H]⁺) 264.1383, found 264.1387; FT-IR (neat, NaCl, cm⁻¹): 2229, 1713.

2-(4-Methylphenethyl)tetrahydrofuran (3mc)¹⁸

According to the general procedure A, **1m** (23.6 mg, 0.200 mmol), Ag(1 wt %)/TiO₂ (20.0 mg) and **2c** (1 mL) were used. The desirable product (**3mc**, 17.7 mg, 0.093 mmol, 47%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/19) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.11–7.08 (m, 4H), 3.90–3.87 (m, 1H), 3.83–3.79 (m, 1H), 3.75–3.71 (m, 1H), 2.74–2.69

(m, 1H), 2.64–2.59 (m, 1H), 2.31 (s, 3H), 2.00–1.95 (m, 1H), 1.94–1.82 (m, 3H), 1.78–1.72 (m, 1H), 1.50–1.44 (m, 1H); ¹³C NMR (151 MHz, CDCl₃): δ 139.3, 135.3, 129.2, 128.5, 78.8, 67.8, 37.7, 32.4, 31.5, 25.9, 21.2; HRMS (FAB): *m*/*z* calcd. for C₁₃H₁₉O ([M+H]⁺) 191.1430, found 191.1438.

2-(4-Methylphenethyl)-1,4-dioxane (3md)

According to the general procedure A, **1m** (23.7 mg, 0.200 mmol) and **2d** (1 mL) were used. The desirable product (**3md**, 27.3 mg, 0.132 mmol, 66%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/19) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.10–7.06 (m, 4H), 3.79 (dd, J = 12.0, 1.8 Hz, 1H), 3.73–3.67 (m, 3H), 3.60 (td, J = 12.0, 1.8 Hz, 1H), 3.55–3.51 (m, 1H), 3.29 (t, J = 10.2 Hz, 1H), 2.73 (ddd, J = 13.8, 10.2, 5.4 Hz, 1H), 2.60 (ddd, J = 13.8, 9.6, 7.2 Hz, 1H), 2.31 (s, 3H), 1.72 (dddd, J = 13.8, 9.6, 8.4, 5.4 Hz, 1H), 1.62–1.56 (m, 1H); ¹³C NMR (151 MHz, CDCl₃): δ 138.8, 135.5, 129.3, 128.5, 74.8, 71.5, 67.0, 66.7, 33.6, 31.0, 21.2; HRMS (FAB): m/z calcd. for C₁₃H₁₈O₂ (M⁺) 206.1301, found 206.1302. FT-IR (neat, NaCl, cm⁻¹): 1123.

N-(3-(4-Cyanophenyl)butan-1-yl)-*N*-methylformamide (3be) and 3-(4-cyanophenyl)-*N*,*N*-dimethylbutanamide (4be)

According to the general procedure B, **1b** (28.5 mg, 0.199 mmol) and **2e** (1 mL) were used. The products (**3be+4be**, 36.6 mg, 0.169 mmol, 85% total yield, **3be/4be** = 1.1:1) were obtained and **3be** (colorless oil, 14.5 mg, 0.067 mmol, 34%) and **4be** (colorless oil, 10.6 mg, 0.049 mmol, 25%) were isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/1): **3be**: ¹H NMR (600 MHz, CDCl₃) major rotamer: δ 7.87 (s, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 3.20–3.07 (m, 2H), 2.83 (s, 3H), 2.81–2.75 (m, 1H), 1.91–1.80 (m, 2H), 1.29 (d, J = 7.2 Hz, 3H); minor rotamer: δ 7.99 (s, 1H), 7.60 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 7.8 Hz, 2H), 3.31 (ddd, J = 13.2, 9.0, 6.0 Hz, 1H), 3.20–3.07 (m, 1H), 2.87 (s, 3H), 2.81–2.75 (m, 1H), 1.91–1.80 (m, 2H), 1.30 (d, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): rotameric mixture: δ 162.7, 152.3, 151.5, 132.8, 132.6, 127.9, 127.9, 119.1, 118.9, 110.7, 110.4, 47.7, 42.8, 38.1, 37.4, 35.8, 34.6, 34.5, 29.5, 22.4, 22.2; HRMS (FAB): *m/z* calcd. for C₁₃H₁₇N₂O ([M+H]⁺) 217.1335, found 217.1342; FT-IR (neat, NaCl, cm⁻¹): 2226, 1671.; **4be**: ¹H NMR (600 MHz, CDCl₃): δ 7.58 (d, J = 7.2 Hz, 2H), 7.36 (d, J = 7.2 Hz, 2H), 3.46 (sext, J = 7.2 Hz, 1H), 2.93 (s, 3H), 2.90 (s, 3H), 2.61 (dd, J = 15.6, 7.2 Hz, 1H), 2.55 (dd, J = 15.6, 7.2 Hz, 1H), 1.32 (d, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ ; 171.0, 152.5, 132.5, 128.0, 119.2, 110.2, 41.3, 37.4, 36.6, 35.6, 21.8; HRMS (FAB): *m/z* calcd. for C₁₃H₁₇N₂O ([S 3H), 2.90 (s, 3H), 2.61 (dd, J = 15.6, 7.2 Hz, 1H), 2.55 (dd, J = 15.6, 7.2 Hz, 1H), 1.32 (d, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ ; 171.0, 152.5, 132.5, 128.0, 119.2, 110.2, 41.3, 37.4, 36.6, 35.6, 21.8; HRMS (FAB): *m/z* calcd. for C₁₃H₁₇N₂O ([M+H]⁺) 217.1335, found 217.1344;

N-(3-(4-Cyanophenyl)butan-1-yl)-*N*-methylacetamide (3bf) and 4-(4-cyanophenyl)-*N*,*N*-dimethylpentanamide (4bf)

According to the general procedure B, 1b (28.7 mg, 0.200 mmol) and 2f (1 mL) were used. 3bf (colorless oil, 40.1 mg, 0.174 mmol, 87%) and 4bf (colorless oil, 3.0 mg, 0.013 mmol, 7%) were isolated by flash column chromatography on silica gel (EtOAc): 3bf: ¹H NMR (600 MHz, CDCl₃) major rotamer: δ 7.59 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 3.32 (ddd, J = 13.8, 9.0, 5.4 Hz, 1H), 3.25-3.17 (m, 1H), 2.89 (s, 3H), 2.81-2.76 (m, 1H), 2.01 (s, 3H), 1.93-1.78 (m, 2H) 1.28 (d, J =7.2 Hz, 3H); minor rotamer: δ 7.63 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 3.25–3.17 (m, 1H), 3.07 (ddd, J = 15.0, 10.2, 4.8 Hz, 1H), 2.87 (s, 3H), 2.81-2.76 (m, 1H), 1.92 (s, 3H), 1.93-1.78 (m, 1H), 1.92 (s, 2H), 1.93-1.78 (m, 2H), 1.93-12H) 1.31 (d, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): rotameric mixture: δ 170.6, 170.2, 152.6, 151.7, 132.7, 132.5, 127.9, 127.8, 119.2, 118.9, 110.6, 110.1, 49.1, 46.2, 38.3, 38.0, 36.2, 36.1, 34.9, 33.2, 22.4, 22.4, 22.0, 21.2; HRMS (FAB): m/z calcd. for C₁₄H₁₉N₂O ([M+H]⁺) 231.1492, found 231.1495; FT-IR (neat, NaCl, cm⁻¹): 2226, 1646.; **4bf**: ¹H NMR (600 MHz, CDCl₃): δ 7.59 (d, J = 8.4Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 2.92 (s, 3H), 2.87 (s, 3H), 2.85 (dqd, J = 9.0, 6.6, 6.0 Hz, 1H), 2.18 (ddd, J = 15.6, 9.0, 6.6 Hz, 1H), 2.12 (ddd, J = 15.6, 9.0, 6.0 Hz, 1H), 1.99 (dddd, J = 13.8, 9.0, 6.6, 1H)6.0 Hz, 1H), 1.90 (dddd, J = 13.8, 9.0, 9.0, 6.0 Hz, 1H) 1.28 (d, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): *δ*; 172.4, 152.7, 132.5, 128.1, 119.2, 110.2, 39.9, 37.3, 35.6, 33.0, 31.1, 22.2 ;HRMS (FAB): m/z calcd. for C₁₄H₁₉N₂O ([M+H]⁺) 231.1492, found 231.1495; FT-IR (neat, NaCl, cm⁻¹): 2226, 1646.

N-methyl-*N*-(3-phenylbutan-1-yl)acetamide (3af) and *N*,*N*-dimethyl-4-phenylpentanamide (4af) According to the general procedure B, 1a (23.6 mg, 0.200 mmol) and 2f (1 mL) were used. The products (3af+4af, 23.5 mg, 0.114 mmol, 57% total yield, 3af/4af = 4.7:1) were obtained and 3af (colorless oil, 8.4 mg, 0.041 mmol, 20%) and 4af (colorless oil, 1.3 mg, 0.006 mmol, 3%) were isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/2): 3af: ¹H NMR (600 MHz, CDCl₃) major rotamer: δ 7.33–7.28 (m, 2H), 7.23–7.17 (m, 3H), 3.20–3.14 (m, 1H), 3.06 (ddd, *J* = 15.0, 10.2, 4.8 Hz, 1H), 2.86 (s, 3H), 2.74–2.66 (m, 1H), 1.88 (s, 3H), 1.93–1.76 (m, 2H), 1.29 (d, *J* = 6.6 Hz, 3H); minor rotamer: δ 7.33–7.28 (m, 2H), 7.23–7.17 (m, 3H), 3.39 (ddd, *J* = 13.2, 9.6, 6.0 Hz, 1H), 3.20–3.14 (m, 1H), 2.86 (s, 3H), 2.74–2.66 (m, 1H), 2.01 (s, 3H), 1.93–1.76 (m, 2H), 1.27 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): rotameric mixture: δ 170.5, 147.0, 146.0, 128.9, 128.6, 127.0, 126.9, 126.7, 126.3 49.4, 46.5, 38.1, 37.9, 36.5, 36.3, 35.4, 33.3, 23.0, 22.8, 22.1, 21.2; HRMS (FAB): m/z calcd. for C₁₃H₂₀NO ([M+H]⁺) 206.1539, found 206.1547.; FT-IR (neat, NaCl, cm⁻¹): 1647.; **4af**: ¹H NMR (600 MHz, CDCl₃): δ 7.29 (t, J = 7.8 Hz, 2H), 7.20–7.18 (m, 3H), 2.90 (s, 3H), 2.84 (s, 3H), 2.74 (dqd, J = 9.6, 7.2, 5.4 Hz, 1H), 2.19 (ddd, J = 15.6, 9.6, 6.6 Hz, 1H), 2.13 (ddd, J = 15.6, 9.6, 5.4 Hz, 1H), 1.99 (dddd, J = 13.8, 9.6, 6.6, 5.4 Hz, 1H), 1.88 (dddd, J = 13.8, 9.6, 9.6, 5.4 Hz, 1H), 1.28 (d, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ ; 173.2, 146.9, 128.6, 127.3, 126.3, 39.8, 37.3, 35.5, 33.5, 31.6, 22.8; HRMS (FAB): m/z calcd. for C₁₃H₂₀NO ([M+H]⁺) 206.1539, found 206.1547.; FT-IR (neat, NaCl, cm⁻¹): 1648.

N-Methyl-*N*-(3-(4-tolyl)butan-1-yl)acetamide (3ef) and *N*,*N*-dimethyl-4-(4-tolyl)pentanamide (4ef)

According to the general procedure B, 1e (26.4 mg, 0.200 mmol) and 2f (1 mL) were used. 3ef (colorless oil, 19.7 mg, 0.090 mmol, 45%) and **4ef** (colorless oil, 5.9 mg, 0.027 mmol, 13%) were isolated by flash column chromatography on silica gel (EtOAc/hexane = 2/3): **3ef**: ¹H NMR (600 MHz, CDCl₃) major rotamer: δ 7.13–7.07 (m, 4H), 3.18–3.12 (m, 1H), 3.05 (ddd, J = 14.4, 10.2, 4.8 Hz, 1H), 2.86 (s, 3H), 2.71–2.62 (m, 1H), 2.33 (s, 3H), 1.90 (s, 3H), 1.91–1.74 (m, 2H), 1.27 (d, J = 7.2 Hz, 3H); minor rotamer: δ 7.13–7.07 (m, 4H), 3.38 (ddd, J = 13.8, 9.0, 5.4 Hz, 1H), 3.18–3.12 (m, 1H), 2.86 (s, 3H), 2.71–2.62 (m, 1H), 2.31 (s, 3H), 2.01 (s, 3H), 1.91–1.74 (m, 2H) 1.25 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): rotameric mixture: δ 170.5, 144.0, 142.9, 136.1, 135.6, 129.5, 129.3, 126.8, 126.8, 49.4, 46.5, 37.6, 37.4, 36.5, 36.2, 35.4, 33.2, 23.1, 22.9, 22.1, 21.2, 21.1; HRMS (FAB): *m*/*z* calcd. for C₁₄H₂₂NO ([M+H]⁺) 220.1696, found 220.1700; FT-IR (neat, NaCl, cm⁻¹): 1649.; **4ef**: ¹H NMR (600 MHz, CDCl₃): δ 7.10 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 2.90 (s, 3H), 2.85 (s, 3H), 2.70 (dqd, J = 9.6, 6.6, 5.4 Hz, 1H), 2.32 (s, 3H), 2.18 (ddd, J = 15.6, 9.6, 6.6 Hz, 1H), 2.13 (ddd, J = 15.6, 9.6, 5.4 Hz, 1H), 1.97 (dddd, J = 13.8, 9.6, 6.6, 5.4 Hz, 1H), 1.86 (dddd, J = 13.8, 9.6, 9.6, 5.4 Hz, 1H), 1.25 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ ; 173.2, 143.8, 135.7, 129.3, 127.1, 39.4, 37.3, 35.5, 33.5, 31.6, 22.9, 21.2; HRMS (FAB): m/z calcd. for C₁₄H₂₂NO ([M+H]⁺) 220.1696, found 220.1699; FT-IR (neat, NaCl, cm⁻¹): 1648.

N-(3-(4-methoxyphenyl)butan-1-yl)-*N*-methylacetamide (3df) and 4-(4-methoxyphenyl)-*N*,*N*-dimethylpentanamide (4df)

According to the general procedure B, 1d (29.6 mg, 0.200 mmol) and 2f (1 mL) were used. The

products (3df+4df, 29.4 mg, 0.125 mmol, 62% total yield, 3df/4df = 4.7:1) were obtained and 3df(colorless oil, 11.5 mg, 0.049 mmol, 24%) and 4df (colorless oil, 2.2 mg, 0.009 mmol, 5%) were isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/3): **3df**: ¹H NMR (600 MHz, CDCl₃) major rotamer: δ 7.13–7.09 (m, 2H), 6.86 (d, J = 8.4 Hz, 2H), 3.80 (s, 3H), 3.18–3.12 (m, 1H), 3.05 (ddd, J = 14.4, 10.8, 4.8 Hz, 1H), 2.86 (s, 3H), 2.70-2.61 (m, 1H), 1.89 (s, 3H), 1.93-1.75 (m, 1H), 1.89 (s, 2H), 1.93-1.75 (m, 2H), 1.93-12H), 1.26 (d, J = 7.8 Hz, 3H); minor rotamer: δ 7.13–7.09 (m, 2H), 6.84 (d, J = 8.4 Hz, 2H), 3.79 (s, 3H), $3.37 \pmod{J} = 14.4, 9.0, 6.0 \text{ Hz}, 1\text{H}$), $3.18-3.12 \pmod{14}, 2.86 \binom{1}{5}, 3\text{H}$), $2.70-2.61 \binom{1}{5}, 2.02 \binom{1}{5}$ (s, 3H), 1.93-1.75 (m, 2H), 1.24 (d, J = 7.2 Hz, 3H); ${}^{13}C$ NMR (151 MHz, CDCl₃): rotameric mixture: δ 170.5, 158.3, 158.0, 139.1, 138.1, 127.9, 127.8, 114.3, 114.0, 55.5, 49.4, 46.6, 37.3, 37.0, 36.7, 36.3, 35.6, 33.3, 23.2, 23.0, 22.1, 21.2; HRMS (FAB): *m/z* calcd. for C₁₄H₂₂NO₂ ([M+H]⁺) 236.1645, found 236.1653.; FT-IR (neat, NaCl, cm⁻¹): 1647, 1247, 1034.; 4df: ¹H NMR (600 MHz, CDCl₃): δ 7.10 (d, *J* = 8.4 Hz, 2H), 6.84 (d, *J* = 8.4 Hz, 2H), 3.79 (s, 3H), 2.90 (s, 3H), 2.85 (s, 3H), 2.69 (dqd, *J* = 9.6, J = 13.8, 9.6, 6.6, 5.4 Hz, 1H), 1.83 (dddd, J = 13.8, 9.6, 9.6, 5.4 Hz, 1H), 1.25 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ; 173.2, 158.1, 139.0, 128.1, 114.0, 55.4, 39.0, 37.4, 35.5, 33.7, 31.6, 23.0; HRMS (FAB): m/z calcd. for C14H22NO2 ([M+H]+) 236.1645, found 236.1644.; FT-IR (neat, NaCl, cm⁻¹): 1648, 1247, 1036.

5. Appearances of reaction mixtures

^{*a*} Determined by GC-MS. ^{*b*} Isolated yield.

^c Not determined

^d Not detected.

^e Ag(1 wt %)/TiO₂ (20.0 mg) was used.

6. Mechanistic study

6-1. Hydroxy radical detection by coumarin fluorescence method²²

Coumarin is known to react with the hydroxyl radical in water. Among the products, only umbelliferone emits strong fluorescence. If the hydroxyl radical is generated by photocatalysis, umbelliferone should be observed.

Fig. S2 Normalized fluorescence spectra of a 5 μ M umbelliferone aqueous solution (black), a 0.1 mM coumarin aqueous solution (blue), and a sample prepared as follows (red): Ag(1 wt %)/TiO₂ (15.0 mg) was suspended in a test tube containing 3.5 mL of a 0.1 mM coumarin aqueous solution under N₂. The suspension was sonicated and then stirred vigorously under LED light of 365 nm. After the irradiation for 5 min, 0.5 g of KCl was added into the suspension, and then the suspension was kept in dark to precipitate the powder. After 12 h, the clear solution was obtained by decantation and its fluorescence spectrum was measured. All measurements were carried out after N₂ bubbling for 10 min. Excitation wavelength was 322 nm.

6-2. Radical trapping experiment

An oven-dried Pyrex glass test tube was charged with a magnetic stirrer bar, Ag(1 wt %)/TiO₂ (10.0 mg) and TEMPO (0.8 mmol). The vessel was sealed with a rubber septum and placed under nitrogen before 1 mL of a stock solution containing **1a** (0.20 mmol) in **2a** or **2b** and 1 mL of an aqueous solution of KOH (0.02 M) were added. The mixture was sonicated and then stirred under LED-light irradiation ($\lambda = 365$ nm). After 6 h, the reaction mixture diluted with EtOAc was analyzed by GC-MS with an internal standard (*n*-dodecane). The mixture was dried over Na₂SO₄. After filtration through a 0.45 µm membrane filter and concentration under reduced pressure (80 mmHg, 40 °C), an aliquot with an internal standard (1,1,2,2-tetrachloroethane) was monitored by ¹H NMR analysis. The residue was purified by flash column chromatography on silica gel using EtOAc–hexane as the eluent.

Table S6. Radical trapping experiment using TEMPO in a 2a/water system

^{*a* 1}H NMR yield.

(entry 2, before reaction)

2-(2,2,6,6-Tetramethylpiperidin-1-yloxy)acetonitrile (5a)¹⁹

In entry 2, **5a** (59.8 mg, 0.305 mmol) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 3/97) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 4.52 (s, 2H), 1.57–1.52 (m, 1H), 1.49–1.41 (m, 4H), 1.35–1.31 (m, 1H), 1.20 (s, 6H), 1.10 (s, 6H); ¹³C NMR (151 MHz, CDCl₃): δ ; 116.2, 62.8, 60.5, 39.7, 33.1, 20.1, 17.0; HRMS (FAB): *m/z* calcd. for C₁₁H₂₀N₂O (M⁺) 196.1570, found 196.1578.

Table S7. Radical trapping experiment using TEMPO in a 2b/water system

^a ¹H NMR yield.

1-(2,2,6,6-Tetramethylpiperidin-1-yloxy)propan-2-one (5b)²⁰

In entry 2, **5b** (29.2 mg, 0.137 mmol) was isolated by flash column chromatography on silica gel(EtOAc/hexane = 1/49) as a pale yellow oil: ¹H NMR (600 MHz, CDCl₃): δ 4.38 (s, 2H), 2.21 (s, 3H) 1.60–1.52 (m, 1H), 1.49–1.42 (m, 4H), 1.36–1.30 (m, 1H), 1.16 (s, 6H), 1.14 (s, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 207.1, 83.4, 60.2, 39.7, 33.0, 27.4, 20.2, 17.1; HRMS (FAB): *m/z* calcd. for C₁₂H₂₃NO₂ (M⁺) 213.1723, found 213.1722.

6-3. Labeling experiments

Labeling experiments were carried out according to general procedure A. Conversions of **1a** were determined by GC-MS. Yields were determined by weight. D/H ratios of the isolated products were calculated based on ¹H NMR (600 MHz, CDCl₃) analysis of **3aa**: δ 7.32 (t, J = 7.2 Hz, 2.00H), 2.86 (dqd, J = 9.6, 7.2, 5.4 Hz, 1.00H, PhC*H*), 2.22 (ddd, J = 16.8, 7.8, 6.0 Hz, 1.04H, CH₂CN), 2.11 (ddd, J = 16.8, 7.8, 7.8 Hz, 1.04H, CH₂CN); **3ab**: δ 7.29 (t, J = 7.2 Hz, 2.00H), 2.68 (dqd, J = 9.0, 6.6, 6.0 Hz, 1.01H, PhC*H*), 2.33 (ddd, J = 17.4, 9.0, 6.6 Hz, 1.04H, CH₂CO), 2.26 (ddd, J = 17.4, 9.0, 5.4 Hz, 1.03H, CH₂CO), 2.05 (s, 2.99H, CH₃CO).

Fig. S3 D labeling experiment using **3aa** in **2a**- d_3 /D₂O-KOH. According to general procedure A, **3aa** (31.8 mg, 0.200 mmol) was used instead of **1**, and **2a**- d_3 and D₂O were used. **3aa** (29.0 mg, 0.182 mmol, 91%) was recovered by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil.

Fig. S4 D labeling experiment using **1a** in **2a**- d_3 /D₂O-KOH. According to general procedure A, **1a** (23.6 mg, 0.200 mmol), **2a**- d_3 and D₂O were used. **3aa**- d_3 (17.6 mg, 0.108 mmol, 54%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil.

Fig. S5 D labeling experiment using **1a** in **2a**- d_3 /H₂O-KOH. According to general procedure A, **1a** (23.6 mg, 0.200 mmol), **2a**- d_3 and H₂O were used. **3aa**- d_2 (19.1 mg, 0.118 mmol, 59%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil.

Fig. S6 D labeling experiment using **1a** in **2a**/D₂O-KOH. According to general procedure A, **1a** (23.6 mg, 0.200 mmol), **2a** and D₂O were used. **3aa**- d_1 (3.7 mg, 0.023 mmol, 12%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil.

Fig. S7 Kinetic isotope effect experiment using 1a in $2a/2a-d_3/H_2O$ -KOH. According to general procedure A, 1a (23.7 mg, 0.200 mmol), 2a (0.5 mL), $2a-d_3$ (0.5 mL) and H₂O were used. After 2 h irradiation, the products ($3aa+3aa-d_2$, 6.0 mg, 0.038 mmol, 19% total yield, $3aa/3aa-d_2 = 8.9$) were obtained by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil.

Fig. S8 D labeling experiment using **3ab** in **2b**- d_6 /D₂O-KOH. According to general procedure A, **3ab** (35.3 mg, 0.200 mmol) was used instead of **1**, and **2b**- d_6 and D₂O were used. Deuterated **3ab** (30.1 mg, 0.167 mmol, 84%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil.

Fig. S9 D labeling experiment using **1a** in **2b**- d_6/D_2O -KOH. According to general procedure A, **1a** (23.7 mg, 0.200 mmol), **2b**- d_6 and D₂O were used. **3ab**- d_6 (4.6 mg, 0.025 mmol, 13%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil.

Fig. S10 D labeling experiment using **1a** in **2b**- d_6 /H₂O-KOH. According to general procedure A, **1a** (23.7 mg, 0.200 mmol), **2b**- d_6 , and H₂O were used. Deuterated **3ab** (9.9 mg, 0.055mmol, 28%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil.

Fig. S11 D labeling experiment using **1a** in **2b**/D₂O-KOH. According to general procedure A, **1a** (23.6 mg, 0.200 mmol), **2b** and D₂O were used. Deuterated **3ab** (9.0 mg, 0.050 mmol, 25%) was isolated by flash column chromatography on silica gel (EtOAc/hexane = 1/24) as a colorless oil.

6-4. Control experiment with 2b

Table S8. Control experiment with 2b Ag(1 wt %)/TiO₂ (10.0 mg) H_2O (1 mL) Н + KOH (0.02 mmol) hν (365 nm), r.t., N2, 24 h II Ο Ο 1a, 0.2 mmol 2b, 1 mL 3ab changes from entry yield of **3ab** $(\%)^a$ standard conditions 1 none >99 (92)^b 2 without Ag(1 wt %)/TiO₂ _c 3 in the dark _c 4 25 without KOH 5^d without H₂O _c without H₂O, KOH 6^d _c

^{*a* 1}H NMR yield.

^b Isolated yield.

^c Not detected.

^d Dehydrated acetone (2 mL) was used.

S32

7. Green metrics

entry	1	2	3	4
reference number in the main text	this work	29	30	25
AE (%) ^a	100	100	100	100
RME (%) ^b	7.7	1.4	1.2	0.9
PMI ^c (reaction)	29	70	86	121
PMI ^c (reactant reagent, catalyst)	13	70	86	121
TON^d	171 ^e	_	9 <i>f</i>	2^g

Table S9. Green metrics of this work and previous works

^{*a*} atom economy. ^{*b*} reaction mass efficiency. ^{*c*} process mass intensity.

^d turnover number (mol/mol). ^e based on Ag. ^f based on CuI.

^g based on 4,4'-dichlorobenzophenone.

entry 1

8. Reference

- 1. Y. Shiraishi, K. Fujiwara, Y. Sugano, S. Ichikawa and T. Hirai, ACS Catal., 2013, 3, 312–320.
- V. N. Tsarev, Y. Morioka, J. Caner, Q. Wang, R. Ushimaru, A. Kudo, H. Naka and S. Saito, Org. Lett., 2015, 17, 2530–2533.
- 3. S. Protti, D. Ravelli, M. Fagnoni and A. Albini, Chem. Commun., 2009, 7351–7353.
- 4. J. Ni, Y. Jiang, Z. An, J. Lan and R. Yan, Chem. Commun., 2019, 55, 7343-7345.
- 5. P. S. Engel, L. Pan, Y. Ying and L. B. Alemany, J. Am. Chem. Soc., 2001, 123, 3706–3715.
- 6. J. Huang, G. Hu, S. An, D. Chen, M. Li and P. Li, J. Org. Chem., 2019, 84, 9758–9769.
- 7. C. B. Tripathi and S. Mukherjee, Org. Lett., 2014, 16, 3368–3371.
- 8. X. Wang, Z. Wang, Y. Asanuma and Y. Nishihara, Org. Lett., 2019, 21, 3640–3643.
- M. R. Friedfeld, G. W. Margulieux, B. A. Schaefer and P. J. Chirik, *J. Am. Chem. Soc.*, 2014, 136, 13178–13181.
- S. Khabnadideh, D. Pez, A. Musso, R. Brun, L. M. R. Pérez, D. González-Pacanowska and I. H. Gilbert, *Bioorg. Med. Chem.*, 2005, 13, 2637–2649.
- S. McIntyre, E. Hörmann, F. Menges, S. P. Smidt and A. Pfaltz, *Adv. Synth. Catal.*, 2005, 347, 282–288.
- 12. M. A. Oberli and S. L. Buchwald, Org. Lett., 2012, 14, 4606-4609.
- 13. T. Suga, S. Shimazu and Y. Ukaji, Org. Lett., 2018, 20, 5389-5392.
- 14. S. Serra, Nat. Prod. Commun., 2013, 8, 863-868.
- 15. M. Kischkewitz, K. Okamoto, C. Mück-Lichtenfeld and A. Studer, Science, 2017, 355, 936–938.
- F. Lima, U. K. Sharma, L. Grunenberg, D. Saha, S. Johannsen, J. Sedelmeier, E. V. Van der Eycken and S. V. Ley, *Angew. Chem., Int. Ed.*, 2017, 56, 15136–15140.
- 17. H. Liu, L. Ma, R. Zhou, X. Chen, W. Fang and J. Wu, ACS Catal., 2018, 8, 6224-6229.
- 18. H. Cheng, X. Wang, L. Chang, Y. Chen, L. Chu and Z. Zuo, Sci. Bull., 2019, 64, 1896–1901.
- 19. X.-H. Ouyang, M. Hu, R.-J. Song and J.-H. Li, Chem. Commun., 2018, 54, 12345–12348.
- 20. Y. Li, M. Pouliot, T. Vogler, P. Renaud and A. Studer, Org. Lett., 2012, 14, 4474-4477.
- 21. T. M. Ha, C. Chatalova-Sazepin, Q. Wang and J. Zhu, *Angew. Chem., Int. Ed.*, 2016, **55**, 9249–9252.
- 22. J. Zhang and Y. Nosaka, J. Photochem. Photobiol., A, 2015, 303–304, 53–58.

9. Spectral data

