Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Material (ESI)

Prediction of chemically ordered dual transition metal carbides (MXenes) as high-capacity anode materials for Na-ion batteries

Na Li,^a Yiran Li ^b and Jun Fan ^{a c*}

^a Department of Materials Science& Engineering, City University of Hong Kong, Hong Kong, China

^b School of Materials Sciences and Engineering, Shanghai University, Shanghai, China

^c Center for Advance Nuclear Safety and Sustainable Development, City University of

Hong Kong, Hong Kong, China

^{*}Corresponding author: junfan@cityu.edu.hk

Figure S1. Optimized structures of potential configurations of (a) $TiZrCO_2$, (b) $Ti_2ZrC_2O_2$ and (b) $Ti Zr_2C_2O_2$. The calculated total energies of these structures are also given.

Figure S2. Density of states (DOS) of $TiZrCO_2$ (a), $TiZrCO_2Na_2$ (b) and $TiZrCO_2Na_4$ (c). The Fermi level is set to zero, which is shown at the black dotted line.

Figure S3. Density of states (DOS) of $Ti_2ZrC_2O_2(a)$, $Ti_2ZrC_2O_2Na_2(b)$ and $Ti_2ZrC_2O_2Na_4(c)$. The Fermi level is set to zero, which is shown at the black dotted line.

Figure S4. Density of states (DOS) of $TiZr_2C_2O_2(a)$, $TiZr_2C_2O_2Na_2(b)$ and $TiZr_2C_2O_2Na_4(c)$. The Fermi level is set to zero, which is shown at the black dotted line.

Figure S5. Charge density difference during adsorption process of the Na atom on $Ti_2ZrC_2O_2$ (a) and $TiZr_2C_2O_2$ (b) monolayer in top and side views. The isosurface level is set to be 0.01 e/Å³. Green and orange regions indicate electron depletion and accumulation, respectively.

Figure S6. Formation energies of (a) $TiZrCO_2Na_n$, (b) $Ti_2ZrC_2O_2Na_n$, and (c) $TiZr_2C_2O_2Na_n$ at 0 K. For n = 1 and 3, solid pentagram refers to the average value, while hollow pentagram refers to the true value.

Figure S7. Potential diffusion pathways (a), corresponding diffusion energy barriers of Na atom on $TiZrCO_2$ monolayer (b) and electron localization function of (001) section for $TiZrCO_2$ (c).

Table S1. The calculated adsorption energies (eV) of single Na atom on three potential sites of TiZrCO₂

Site	А	В	С
$E_{\rm ads}(eV)$	-1.26	-0.82	-1.50

Table S2. Summary of the sequential adsorption energies, E_{ads} (eV/atom), of the second layer Na atoms on TiZrCO₂ and Ti₂ZrC₂O₂

Systems –	Sequential E_{ads} of the 2 nd layer Na atoms				
	1 st Ti_side	2 nd Zr_side	1 st Zr_side	2 nd Ti_side	
TiZrCO ₂	- 0.01	- 0.03	- 0.03	- 0.01	
Ti ₂ ZrC ₂ O ₂	- 0.01	- 0.02	- 0.02	- 0.01	