Supporting Information

Mechanically stable structured porous boron nitride with high volumetric adsorption capacity

Tian Tian, Jingwei Hou, Humera Ansari, Ying Xiong, Anouk L’Hermitte, David Danaci, Ronny Pini and Camille Petit *

1 Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
2 School of Chemical Engineering, University of Queensland, QLD, 4072, Australia
3 Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
4 Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

* Corresponding author: camille.petit@imperial.ac.uk
1. Synthesis of structured BN

1.1. Effect of DCD on MF resin morphology

Figure S1. Microscope images of MF resin with (a) 0.5 g dicyandiamide and (b) 1.5 g DCD.

Scale bar = 100 µm.
Figure S2. Optical images of MF resin with 1.5 g dicyandiamide before the transparent samples were collected.
1.2. Effect of reaction gas on structured BN

Figure S3. Optical images of porous BN obtained under (a) NH$_3$ and (b) N$_2$. Scale bar = 1 cm.

c) N$_2$ sorption isotherms at 77 K for BN synthesized under NH$_3$ (red circles) and N$_2$ (black diamonds).
2. Moisture stability of structured BN and powder BN

The hydrolytic instability of porous BN has been highlighted in previous studies and represents a major barrier to industrial applications.1,2 Figures S4 and S5 show the influence of moisture (> 99% humidity) exposure time on the BET area of structured BN and powder BN. Both samples show virtually the same BET areas after the first hour. However, the porosity decreased significantly after 2 h of exposure for powder BN, showing a 54% loss in the surface area. For structured BN, the reduction was of 18%. More importantly, structured BN maintains more than 60% of its original surface area after 8 h exposure, whereas powder BN only retains 15%. A 25% more drop of the surface area is observed for structured BN after further 4 h exposure, at which point powder BN is virtually non-porous.

We analysed structural changes in both samples upon exposure to moisture using XRD. In the case of powder BN (Figure S4b), the (002) peak related to hexagonal BN increases in intensity and shifts to higher angles after exposure to moisture. This observation agrees with previous studies and indicates a loss of the amorphous portion of BN upon decomposition in water, leaving the residual material with a higher crystallinity (i.e. lower porosity and surface area).3 Structured BN exhibits a different trend (Figure S4c). The sample does not show any increase in crystallinity before 12 h of exposure. This observation suggests a slower degradation compared to powder BN, consistent with the BET area trend (Figure 5a). We attribute the greater hydrolytic stability of structured BN compared to that of powder BN to its lower content of oxygen atom (3 at\% vs 9 at\%). Indeed, oxygen sites are susceptible to hydrolysis attack as observed in other studies.2
Figure S4. Structural features of structured BN and powder BN after moisture exposure. (a) BET surface area loss as derived from N₂ sorption at 77 K; (b) XRD patterns of powder BN; (c) XRD patterns of structured BN.
Figure S5. N$_2$ adsorption isotherms at 77 K after moisture exposure: (a) structured BN; (b) powder BN; 0 h, circle; 1 h, square; 2 h, diamond; 4 h, triangle; 8 h, hexagon; 12 h, star.
3. Electron microscope images of structured BN vs powder BN

Figure S6. SEM images for a) structured BN; b) powder BN.

Figure S7. TEM images for a) structured BN; b) powder BN.
4. Gas adsorption: structured BN vs powder BN

4.1. N_2 adsorption isotherms at 77K.

Figure S8. N_2 adsorption isotherms at 77 K for structured BN, powder BN and pelletised BN in a) linear scale; b) semi-logarithmic scale.
Table S1. Gravimetric surface area, bulk density, and volumetric surface area for selected high-surface-area BN.

<table>
<thead>
<tr>
<th>Materials</th>
<th>S_{BET} (mass) [m2 g$^{-1}$]</th>
<th>ρ [g cm$^{-3}$]</th>
<th>S_{BET} (vol) [m2 cm$^{-3}$]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structured BN</td>
<td>1523</td>
<td>0.31</td>
<td>473</td>
<td>This work</td>
</tr>
<tr>
<td>Powder BN</td>
<td>1500</td>
<td>0.21</td>
<td>315</td>
<td>This work</td>
</tr>
<tr>
<td>Pelletised BN</td>
<td>905</td>
<td>0.43</td>
<td>389</td>
<td>This work</td>
</tr>
<tr>
<td>Sintered BN</td>
<td>428</td>
<td>0.786</td>
<td>336</td>
<td>Bernard et al.4</td>
</tr>
<tr>
<td>BN foam</td>
<td>1406</td>
<td>0.18</td>
<td>253</td>
<td>Xue et al.5</td>
</tr>
<tr>
<td>BN foam</td>
<td>773</td>
<td>0.015</td>
<td>11.6</td>
<td>Lin et al.6</td>
</tr>
<tr>
<td>hBN aerogel</td>
<td>1080</td>
<td>1×10^{-4}</td>
<td>0.11</td>
<td>Xu et al.7</td>
</tr>
<tr>
<td>BN aerogel</td>
<td>920</td>
<td>0.015</td>
<td>13.8</td>
<td>Li et al.8</td>
</tr>
</tbody>
</table>
Figure S9. Pore size distribution of structured BN as derived from N₂ adsorption isotherms at 77 K.
4.2. Bulk density measurement via mercury porosimetry.

We measured the bulk density of both structured BN and powder BN using mercury porosimetry, a well-established technique that has been used to measure the bulk density of other porous materials. Mercury is a non-wetting liquid that does not intrude into small pores at ambient pressure, facilitating the measurement of bulk volume, which includes both the material volume and the interstitial volume, and thus the bulk density.

In a typical mercury intrusion porosimetry measurement, the sample is filled in a penetrometer, which has a known weight and volume. It should be noted that the sample is not mechanically compressed. After evacuation, the penetrometer is filled with mercury. The mercury will surround the sample at ambient pressure but not enter pores and voids smaller than ca. 6 µm. The weight of mercury is obtained by reweighing the penetrometer and by subtracting the known weights of the empty penetrometer and the sample. The volume of intruded mercury is then computed from the known mercury density (13.5394 g/mL) and the bulk volume of the sample is obtained as the difference between the empty penetrometer volume and the intruded mercury volume.

As powder BN and structured BN has the same composition and similar surface area, the materials volume of both samples can be exactly same. However, due to the more packed structure of structured BN (i.e. less interparticle volume), the structured BN shows much higher bulk density compared to powder BN.
4.3. Methane adsorption isotherms at 298 K.

The data of high-pressure methane uptake was obtained as excess gravimetric adsorption capacity (N_{exc}), and was converted into absolute gravimetric capacity (N_{abs}) using equation (1):

$$N_{abs} = N_{exc} + \rho_{gas}V_{micro}$$

where ρ_{gas} is the density of the non-adsorbed gas and V_{micro} is the micropore volume of the adsorbent. The skeleton volumes (0.474 cm3/g for powder BN and 0.476 cm3/g for structured BN) obtained by helium gravimetry were used to calculate the excess adsorbed capacity.9

Absolute volumetric adsorption capacity is converted from the absolute gravimetric uptake by multiplying by the bulk density. Bulk density is the ratio of the mass of an uncompressed solid sample and its volume, including the volume of the solid and the interparticle space.

Based on the strength of adsorption displayed by the isotherms, the adsorption of CH$_4$ on BN is expected to be based on physisorption.

Figure S10. Comparison of absolute methane uptake at 298 K between powder BN (blue squares) and structured BN (red circles): a) gravimetric uptake; b) volumetric uptake.
Table S2. Surface area, methane storage capacity at RT and 65 (35) bar for selected porous materials at 298 K.

<table>
<thead>
<tr>
<th>Materials</th>
<th>BET surface area [m² g⁻¹]</th>
<th>Absolute uptake g/g</th>
<th>Absolute uptake cm³/cm³</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC3β porous organic cage</td>
<td>652</td>
<td>0.064</td>
<td>28</td>
<td>Charles et al.¹⁰</td>
</tr>
<tr>
<td>5A</td>
<td>-</td>
<td>(0.05)</td>
<td>-</td>
<td>Rolniak et al.¹¹</td>
</tr>
<tr>
<td>13X</td>
<td>-</td>
<td>(0.053)</td>
<td>-</td>
<td>Rolniak et al.¹¹</td>
</tr>
<tr>
<td>MCM-41</td>
<td>1070</td>
<td>(0.065)</td>
<td>32</td>
<td>Menon et al.¹²</td>
</tr>
<tr>
<td>Saran A carbon monolith</td>
<td>1000</td>
<td>0.098</td>
<td>-</td>
<td>Menon et al.¹²</td>
</tr>
<tr>
<td>COF-5</td>
<td>1670</td>
<td>0.115</td>
<td>-</td>
<td>Furukawa and Yaghi¹³</td>
</tr>
<tr>
<td>Structured BN</td>
<td>1500</td>
<td>0.136</td>
<td>59</td>
<td>This work</td>
</tr>
<tr>
<td>NiMOF-74</td>
<td>1350</td>
<td>0.148</td>
<td>-</td>
<td>Peng et al.¹⁴</td>
</tr>
<tr>
<td>HKUST-1</td>
<td>1193</td>
<td>0.177</td>
<td>259</td>
<td>Tian et al.¹⁵</td>
</tr>
<tr>
<td>COF-102</td>
<td>3620</td>
<td>0.238</td>
<td>-</td>
<td>Furukawa and Yaghi¹³</td>
</tr>
<tr>
<td>LMA-738 carbon</td>
<td>3290</td>
<td>0.296</td>
<td>220</td>
<td>Casco et al.¹⁶</td>
</tr>
</tbody>
</table>
4.4. \(N_2 \) adsorption kinetics at 77 K

Figure S11. Comparison of adsorption kinetics of \(N_2 \) uptake at 77K and \(2.2 \times 10^{-6} \) bar between powder BN (blue) and structured BN (red circles): (a) linear scale, (b) log scale.

Fractional uptake based on Equation 2 is used to study the adsorption kinetics:

\[
frac{\text{Fractional uptake}}{m_t - m_0} = \frac{m_t - m_0}{m_{eq} - m_0}
\]

where \(m_t \) is the adsorption amount at time \(t \), \(m_0 \) is the adsorption amount at \(t = 0 \), and \(m_{eq} \) is the adsorption amount at equilibrium.
5. Mechanical stability of structured BN

Figure S12. Optical image of structured BN under a 200 g calibration weight.

The mechanical stability is evaluated by Vickers microhardness test. To convert the Vickers hardness to SI unit (e.g. MPa), the value is multiplied by 9.807.17
6. Formation mechanism

FTIR was used to analyse the chemical composition of the intermediates. Sample collected at 200 °C shows NH$_2$ stretching band (3350 cm$^{-1}$), C-N stretching band (1560, 1450, 1320 cm$^{-1}$) and a triazine ring bending band (807 cm$^{-1}$). All these bands indicate the successful synthesis of the MF resin. Because of the high mechanical strength of MF resin, which can be broken into small glassy pieces, together with the low content of B, the band attributed to B-containing bonds was not observed. Increasing the temperature to 300 °C leads to a new C-O stretching band at 1320 cm$^{-1}$. Both intermediates collected at 300 and 400 °C present an unknown band at around 880-890 cm$^{-1}$. This band is always present in melon-based materials, indicating the existence of melon-based polymer. A new B-O stretching band (1390 cm$^{-1}$) is observed at 400 °C due to the increased percentage of B in the mixture. A very broad band between 800-1700 cm$^{-1}$ at 600 °C indicates the phase transition process at this temperature. Three main characteristic bands (~1360, 1100, 790 cm$^{-1}$) belonging to BN appear when the temperature increased to 800 °C clearly suggested the formation of BN. The IR features remained unchanged when the temperature increased to 1000 °C. The FTIR analysis supports the formation mechanism hypothesis concluded from XPS analysis.
Figure S13. FTIR of intermediates obtained at different temperatures.
References

