Supporting Information

Bimetallic oxyhydroxide in situ derived from Fe₂Co-MOF for efficient electrocatalytic oxygen evolution

Xintong Ling, †ac Feng Du, †e Yintong Zhang,ac Yan Shen,ct Wa Gao,ac Zhiyuan Wang,† Bo Zhou,† Tao Li,† Qing Shen,† Yujie Xiong,† Xiaoyong Wang,ac Yong Zhou,*acd and Zhigang Zou.xcd

"School of Physics, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.

bSchool of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P. R. China.

Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, Jiangsu 210093, P. R. China. E-mail: zhouyong1999@nju.edu.cn.

cSchool of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China.

dInstitute of Materials Science and Devices, School of materials science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.

College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.

eChemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China.

fSchool of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China

University of Electro Communication, Graduate school of Informatics and Engineering, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan

Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, PR China

† Ling and Du contributed equally to this work
Fig. S1 Photos of Co MOF/NF, Fe MOF/NF, and Fe-Co MOF/NFs on nickel foams: (a) Co MOF/NF, (b) Fe: Co= 3: 7, (c) Fe: Co=5: 5, (d) Fe: Co= 7: 3, (e) Fe: Co= 9: 1, and (f) Fe MOF/NF.
Fig. S2 SEM images of nickel foam (a, b).
Fig. S3 SEM images of (a) Co MOF/NF, (b) Fe MOF/NF, Fe-Co MOF/NF of (c) Fe: Co = 3: 7, (d) Fe: Co = 5: 5, and (e) Fe: Co = 9: 1.
Fig. S4 SEM image of Fe-Co MOF/NF (Fe: Co= 7: 3) after stability test.
Fig. S5 XPS spectra of Fe-Co MOF/NF (Fe: Co = 7: 3).
Fig. S6 The XPS spectra of (a) Co 2p and (b) Fe 2p for Fe-Co MOF/NF (Fe: Co= 7: 3) after OER test. XPS spectra of O 1s for Fe-Co MOF/NF (Fe: Co= 7: 3) (c) before OER test and (d) after OER test.
Fig. S7 (a) LSV curves, (b) Tafel plots, and (c) Nyquist plots of Co MOF, Fe MOF, and Fe₂Co MOF on the GC.
Fig. S8 CVs measured in a non-Faradaic region of (a) Co MOF/NF, (b) Fe-Co MOF/NF (Fe: Co= 7: 3), (c) Fe MOF/NF, and (d) blank NF.
Fig. S9 (a) Nitrogen adsorption-desorption isotherms of Co MOF/NF, Fe MOF/NF and Fe-Co MOF/NF (Fe: Co = 7: 3). (b) BET surface area values of Co MOF/NF, Fe MOF/NF and Fe-Co MOF/NF (Fe: Co = 7: 3).
Fig. S10 (a) LSV curves and (b) Nyquist plots of Fe-Co MOF/NF (Fe: Co= 7: 3) before and after stability test.
Fig. S11 The HRTEM images of (a) Fe MOF/NF and (b) Co MOF/NF after OER test. (Inset of a and b): SAED pattern of Fe MOF/NF and Co MOF/NF after OER test.
Table S1 MOF labels and stoichiometry of synthesis are provided.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>CoCl₂•6H₂O (mmol)</th>
<th>Fe(NO₃)₃•9H₂O (mmol)</th>
<th>TPA (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co MOF/NF</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fe: Co= 3: 7</td>
<td>0.7</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>Fe: Co= 5: 5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Fe: Co= 7: 3</td>
<td>0.3</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>Fe: Co= 9: 1</td>
<td>0.1</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>Fe MOF/NF</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table. S2 OER performances for Fe MOF/NF, Co MOF/NF, Fe-Co MOF/NFs with varying Fe/Co batch ratios (Fe: Co= 9: 1, Fe: Co= 7: 3, Fe: Co= 5: 5, and Fe: Co= 3: 7), and blank NF.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Overpotential (10 mA cm⁻²)</th>
<th>Tafel slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe MOF/NF</td>
<td>257 mV</td>
<td>69.1 mV dec⁻¹</td>
</tr>
<tr>
<td>Fe: Co= 9: 1</td>
<td>236 mV</td>
<td>63.8 mV dec⁻¹</td>
</tr>
<tr>
<td>Fe: Co= 7: 3</td>
<td>224 mV</td>
<td>45.3 mV dec⁻¹</td>
</tr>
<tr>
<td>Fe: Co= 5: 5</td>
<td>253 mV</td>
<td>52.9 mV dec⁻¹</td>
</tr>
<tr>
<td>Fe: Co= 3: 7</td>
<td>289 mV</td>
<td>53.2 mV dec⁻¹</td>
</tr>
<tr>
<td>Co MOF/NF</td>
<td>289 mV</td>
<td>61.6 mV dec⁻¹</td>
</tr>
<tr>
<td>blank NF</td>
<td>436 mV</td>
<td>175.6 mV dec⁻¹</td>
</tr>
</tbody>
</table>
Table S3 Comparison of OER performance with other reported non-precious electrocatalysts.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Overpotential (mV @mA cm(^{-2}))</th>
<th>Tafel slope (mV dec(^{-1}))</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe(_2)Co MOF/NF</td>
<td>224@10</td>
<td>45</td>
<td>This work</td>
</tr>
<tr>
<td>2</td>
<td>Fe(_2)Co MOF/GC</td>
<td>400@10</td>
<td>65</td>
<td>This work</td>
</tr>
<tr>
<td>3</td>
<td>MIL-53(Co-Fe)/NF</td>
<td>262@100</td>
<td>69</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>CoFe-MOF-OH NF</td>
<td>265@10</td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Co-Fe NPs</td>
<td>369@20</td>
<td>51</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Co(_2)Fe-MOF</td>
<td>280@10</td>
<td>45</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Co({0.6})Fe({0.4})-MOF-74</td>
<td>280@10</td>
<td>56</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>CoFe-UMNs</td>
<td>290@10</td>
<td>31</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>NiCo/Fe(_2)O(_4)/MOF-74</td>
<td>238@10</td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>CoNi(1:1)-MOF</td>
<td>265@10</td>
<td>56</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>NiFe-MOF</td>
<td>240@10</td>
<td>34</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>NiCo-UMOFNs</td>
<td>250@10</td>
<td>42</td>
<td>10</td>
</tr>
</tbody>
</table>
Table. S4 Free energies of adsorption. This table shows the free energies of adsorption for OH*, O* and OOH*, GOER and for oxygen evolution via the AEM pathway at the top Fe/Co active sites on FeOOH (010), Fe$_{0.67}$Co$_{0.33}$OOH (010) and CoOOH (010).

<table>
<thead>
<tr>
<th>Electro catalyst</th>
<th>Active site</th>
<th>ΔG_{OH} (eV)</th>
<th>ΔG_{O} (eV)</th>
<th>ΔG_{OOH} (eV)</th>
<th>ΔG_{OER} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeOOH</td>
<td>Fe-top</td>
<td>1.21</td>
<td>2.70</td>
<td>4.21</td>
<td>1.51</td>
</tr>
<tr>
<td>Fe${0.67}$Co${0.33}$OOH</td>
<td>Fe-top</td>
<td>0.98</td>
<td>2.55</td>
<td>4.08</td>
<td>1.57</td>
</tr>
<tr>
<td>Fe${0.67}$Co${0.33}$OOH</td>
<td>Co-top</td>
<td>0.73</td>
<td>2.83</td>
<td>3.74</td>
<td>2.10</td>
</tr>
<tr>
<td>CoOOH</td>
<td>Co-top</td>
<td>1.04</td>
<td>2.52</td>
<td>4.32</td>
<td>1.80</td>
</tr>
</tbody>
</table>
Table. S5 Free energies of adsorption. This table shows the free energies of adsorption for OH*, O* and OOH*, ΔG^{DER} and Δ for oxygen evolution via the LOM pathway at the bridge Fe-Fe or Fe-Co active sites on FeOOH (010) and Fe$_{0.67}$Co$_{0.33}$OOH (010) with an OLHL vacancy.

<table>
<thead>
<tr>
<th>Electrocalyst</th>
<th>Active site</th>
<th>ΔG_{OH} (eV)</th>
<th>ΔG_{O} (eV)</th>
<th>ΔG_{OOH} (eV)</th>
<th>ΔG^{DER} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeOOH</td>
<td>Fe-Fe-bridge</td>
<td>-0.21</td>
<td>1.36</td>
<td>3.04</td>
<td>1.88</td>
</tr>
<tr>
<td>Fe${0.67}$Co${0.33}$OOH</td>
<td>Fe-Fe-bridge</td>
<td>-0.08</td>
<td>1.51</td>
<td>3.19</td>
<td>1.73</td>
</tr>
<tr>
<td>Fe${0.67}$Co${0.33}$OOH</td>
<td>Fe-Co-bridge</td>
<td>-0.15</td>
<td>1.06</td>
<td>3.06</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Table. S6 Bader charges in the elementary charge e for Fe and Co cations in the bulk and at the (010) surfaces of FeOOH, Fe_{0.67}Co_{0.33}OOH and CoOOH.

<table>
<thead>
<tr>
<th>Electrocatalyst</th>
<th>bulk</th>
<th>(010)</th>
<th>(010) with an OH vacancy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe</td>
<td>Co</td>
<td>Fe</td>
</tr>
<tr>
<td>FeOOH</td>
<td>+1.28</td>
<td>---</td>
<td>+1.32</td>
</tr>
<tr>
<td>Fe<sub>0.67</sub>Co<sub>0.33</sub>OOH</td>
<td>+1.32</td>
<td>+1.17</td>
<td>+1.14</td>
</tr>
<tr>
<td>CoOOH</td>
<td>---</td>
<td>+1.26</td>
<td>---</td>
</tr>
</tbody>
</table>
Computational details:

Density functional theory (DFT) calculations are done using the projector-augmented wave method and a plane-wave basis set as implemented in the Vienna Ab initio Simulation Package (VASP).

The valence configurations are treated as 1s for H, 2s2p for O, 3d4s for Fe, and 3d4s for Co. To better describe the Fe 3d and Co 3d electrons, the effective U values of 5.30 eV and 3.32 eV are applied in the Hubbard model (DFT+U), respectively.

The Bayesian Error Estimation Functional with van der Waals correlation (BEEF–vdW) is employed. The cutoff energy for plane-wave basis functions is 550 eV. Since the bulk lattice parameters of the transition metal oxyhydroxides are fully optimized based on experimental data (FeOOH: PDF#13-0087, a=b= 2.941 Å, c= 4.49 Å, γ= 120°; CoOOH: PDF#26-1107, a=b= 2.855 Å, c= 8.805 Å, γ= 120°). By substituting a Fe atom with a Co atom within the 3×1×1 supercell of FeOOH, we obtain the bulk structure of Fe0.67Co0.33OOH. Based on the optimized structural parameters, we construct periodic surface slabs with five Fe/Co layers separated by at least 14 Å of vacuum for the (010) surfaces of FeOOH, Fe0.67Co0.33OOH, and CoOOH. Atomic positions within the top three layers of the slabs are allowed to relax in OH*, O* and OOH* binding energy calculations. All calculations are done in Γ-centered Monkhorst–Pack k-point meshes with a reciprocal-space resolution of 0.15 Å⁻¹. The energy convergence is 10⁻⁵ eV and the force convergence 0.02 eV/Å.

As is known, the catalytic activity of the material is determined by the binding energies of the reaction intermediates to the active sites of the catalyst. In the oxygen evolution reaction via the adsorbate evolution mechanism (AEM) pathway, OH*, O* and OOH* intermediates are involved. To estimate the adsorption free energies ΔG of different intermediate at zero potential and pH = 0, we calculate the binding energies ΔE of each intermediate and corrected them with zero-point energy (ZPE) and entropy (TS) using \(\Delta G = \Delta E + \Delta ZPE - T \Delta S. \)

Here, we use the computational hydrogen electrode (CHE) model, which exploits that the chemical potential of a proton-electron pair is equal to gas-phase H₂ at standard conditions. As the ground state of the O₂ is poorly described in DFT calculations we use gas-phase H₂O and H₂ as reference states as they are readily treated in the DFT calculations. The entropy for H₂O is calculated at 0.035 bar which is the equilibrium pressure of H₂O at 300 K.
The free energy of this state is therefore equal to that of liquid water. In the oxygen evolution reaction, the limiting potential is related to the highest free energy step \(\Delta G_{\text{OER}} = \text{Max}(\Delta G_{\text{OH}^*} - \Delta G_{\text{H}_2\text{O}(l)}), (\Delta G_{\text{O}^*} - \Delta G_{\text{OH}^*}), (\Delta G_{\text{OOH}^*} - \Delta G_{\text{O}^*}), (\Delta G_{\text{O}_2(\text{g})} - \Delta G_{\text{OOH}^*}) \).

In the oxygen evolution reaction via the lattice oxhydryl oxidation mechanism (LOM) pathway, \(\text{O}_L^*, \text{O}_L\text{OH}^* \) and \(\text{O}_L\text{H}_L^* \) intermediates are involved. Here * denotes the Fe-Fe or Fe-Co bridge site where the lattice oxhydryl \(\text{O}_L\text{H}_L \) locates, and the subscript L indicates the lattice. If we make a vacancy of the lattice oxhydryl \(\text{O}_L\text{H}_L \) on the FeOOH (010) or Fe\(_{0.67}\)Co\(_{0.33}\)OOH (010) surface, then we could reproduce the four electrochemical steps in the AEM pathway to simulate those in the LOM pathway. We should keep in mind that the first electrochemical step in the LOM pathway is the deprotonation of \(\text{O}_L\text{H}_L^* \) rather than the adsorption of \(\text{OH}^* \) in the AEM pathway.

In addition, the hydroxyl vacancy formation energy is calculated via \(E_I = E(*) + E(\text{H}_2\text{O}) - 1/2E(\text{H}_2) \) according to \(\text{OH}^* + 1/2\text{H}_2 \rightarrow * + \text{H}_2\text{O} \).
References

