STRUCTURE DETERMINATION SUMMARY

Crystal Data for 211031 C 36 H 46 I 4 O 4 P 2 Pd 2 Empirical Formula Crystal System Monoclinic $P2_1/n$ Space Group Unit Cell Dimensions a = 10.5171(14) Δ $b = 10.7549(12) \Delta$ $c = 19.5756(14) \Delta$ $\beta = 97.973(8)^{\circ}$ 2192.8(11) Δ^3 Volume Z 2 1325.1 Formula weight 2.007 Mg/m 3 Density(calc.) Absorption Coefficient 3.742 mm -1 F(000) 1256 Data Collection Diffractometer Used Enraf Nonius CAD4 Radiation MoK_{α} (λ = 0.71073 Δ) 298 Temperature (K) Observed Reflections2865 (F > 0.3 orAbsorption CorrectionSemi-empiricalMin./Max. Transmission0.0981/0.1623 Solution and Refinement Siemens SHELXTL PLUS (PC Version) System Used Direct Methods Solution SolutionFilest fileRefinement MethodFull-Matrix Least-SquaresPerforment onF2 Refinement c.. Absolute Structure N/A Extinction Coefficient 0.00013(2 Riding model, fixed isotropic U Weighting Scheme $w^{-1} = \sigma 2 (F) + 0.0005F^2$ Number of Parameters Refined218Final R Indices (obs. data)R = 4.74 %, wR = 4.51 %R Indices (all data)R = 4.74 %, wR = 4.51 % Final R Indices (out. R = R Indices (all data) R = 1.01 Largest and Mean shift/error0.000, 0.000Data-to-Parameter Ratio13.1:1Largest Difference Peak $0.93 e \Delta^{-3}$ Largest Difference Hole -0.92 e∆⁻³

Table	1. Atom	ic coordinates	$(x10^4)$ and	equivalent	isotropic	displacement
	COEI	ficients $(\Delta^2 \mathbf{x})$)))			
	x	V	Z	U(eq)	
		1	_	0 (0 -1.	, ,	
I(1)	820(1) 1441(1)	93(1)	64(1)		
I(2)	-677(1) 2171(1)	1677(1)	82(1)		
Pd(1)	-739(1) 281(1)	845(1)	49(1)		
P(1)	-2021(2) -701(2)	1505(1)	51(1)		
0(1)	604(4) -1597(5)	2067(3)	69(2)		
0(6)	2007(6) -3405(7)	1488(3)	98(3)		
C(1)	-1337(7) -865(8)	2423(3)	62(3)		
C(2)	113(7) -850(8)	2563(4)	68(3)		
C(4)	1960(8) -1561(8)	2123(5)	83(4)		
C(5)	2378(9) -2153(9)	1513(5)	96(4)		
C(7)	2155(1	2) -3999(11)	875(6)	122(6)		
C(8)	1821(1	2) -5236(10)	866(6)	125(6)		
C(11)	-3533(7) 100(7)	1500(4)	60(3)		
C(12)	-4076(9) 733(10)	913(5)	94(4)		
C(13)	-5258(9) 1296(11)	887(5)	109(5)		
C(14)	-5904(9) 1279(9)	1443(6)	88(4)		
C(15)	-5361(8) 677(8)	2028(5)	76(3)		
C(16)	-4204(7) 99(7)	2062(4)	63(3)		
C(21)	-2517(7) -2272(7)	1243(3)	54(2)		
C(22)	-3762(8) -2564(9)	984(5)	82(4)		
C(23)	-4092(1	0) -3772(11)	778(5)	104(5)		
C(24)	-3209(1	0) -4702(9)	847(4)	86(4)		
C(25)	-1971(9) -4416(8)	1092(4)	79(4)		
C(26)	-1624(8) -3239(7)	1287(4)	64(3)		

 \star Equivalent isotropic U defined as one third of the trace of the orthogonalized U ij tensor

Table 2.	Bond ler	ngths	(Δ)
Table 2. I(1)-Pd(1) I(1)-Pd(1A) I(2)-Pd(1) Pd(1)-P(1) Pd(1)-C(1) P(1)-C(1) P(1)-C(21) O(1)-C(2) O(1)-C(2) O(1)-C(2) O(6)-C(5) O(6)-C(7) C(1)-C(2) C(4)-C(5) C(7)-C(8) C(11)-C(12) C(11)-C(12)	Bond ler 2.661 2.601 2.601 2.256 2.601 1.849 1.807 1.821 1.412 1.415 1.415 1.401 1.387 1.512 1.473 1.375 1.390 1.386	(1) (1) (1) (2) (1) (6) (7) (10) (9) (12) (14) (10) (14) (16) (11)	(Δ)
C(11) - C(16) C(12) - C(13)	1.386	(11) (14)	
C(13) - C(14) C(14) - C(15) C(15) - C(16)	1.360 1.369 1.360	(15) (13) (11)	
C(21) - C(22) C(21) - C(26) C(22) - C(23)	1.3/3 1.397	(10) (10) (15)	
C (22) -C (23) C (23) -C (24) C (24) -C (25)	1.358 1.358	(15) (15) (14)	
C(25)-C(26)	1.358	$(\perp \perp)$	

Table 3. Bond angles (E)

Pd(1) - I(1) - Pd(1A) I(1) - Pd(1) - I(2) I(1) - Pd(1) - P(1) I(2) - Pd(1) - P(1) I(2) - Pd(1) - P(1) I(1) - Pd(1) - I(1A) P(1) - Pd(1) - I(1A) Pd(1) - P(1) - C(1) Pd(1) - P(1) - C(1) C(1) - P(1) - C(21) C(1) - P(1) - C(21) C(1) - P(1) - C(21) C(1) - P(1) - C(21) C(2) - O(1) - C(2) C(2) - O(1) - C(2) C(2) - O(1) - C(2) O(1) - C(2) - C(1) O(1) - C(1) - C(2) P(1) - C(11) - C(12) P(1) - C(11) - C(12) P(1) - C(11) - C(16) C(12) - C(11) - C(16) C(12) - C(13) - C(14) C(13) - C(14) - C(15) P(1) - C(2) - C(22) P(1) - C(2) - C(22) P(1) - C(2) - C(22) P(1) - C(2) - C(22) P(1) - C(2) - C(26)	95.4(1) 90.9(1) 178.5(1) 88.4(1) 84.6(1) 174.0(1) 96.2(1) 114.8(2) 111.7(3) 105.9(3) 116.3(2) 104.0(3) 102.9(3) 113.0(6) 114.2(8) 114.9(5) 109.0(6) 109.6(7) 109.4(8) 113.4(11) 119.9(6) 122.7(5) 117.5(7) 120.7(9) 120.9(9) 118.6(9) 121.5(9) 120.8(7) 122.5(6) 120.6(5) 116.8(7)
C(14) - C(15) - C(16) C(11) - C(16) - C(15)	121.5(9) 120.8(7)
P(1) = C(21) = C(22) P(1) = C(21) = C(26)	122.3(6) 120 6(5)
C(22) = C(21) = C(20)	116 8(7)
C(21) - C(22) - C(23)	120.6(8)
C(22) - C(23) - C(24)	121.3(9)
C(23) -C(24) -C(25)	118.5(9)
C(24) -C(25) -C(26)	121.1(8)
C(21)-C(26)-C(25)	121.7(7)

5		5 5				
Table 4.	Anisotr	opic displa	acement co	efficients	(Δ^2 x10 ³)	
	U11	U22	U33	U12	U13	U23
I(1)	87(1)	56(1)	53(1)	-21(1)	27(1)	-9(1)
I(2)	126(1)	49(1)	78(1)	-6(1)	43(1)	-14(1)
Pd(1)	64(1)	43(1)	44(1)	-2(1)	17(1)	0(1)
P(1)	57(1)	53(1)	46(1)	2(1)	14(1)	2(1)
0(1)	57(3)	73(3)	78(3)	-7(3)	15(2)	-10(3)
0(6)	98(4)	104(5)	94(5)	2(4)	17(4)	-22(4)
C(1)	75(5)	70(5)	39(4)	0(4)	5(3)	5(3)
C(2)	65(5)	67(5)	69(5)	2(4)	-4(4)	0(4)
C(4)	65(5)	86(6)	99(7)	-11(4)	16(5)	-18(5)
C(5)	82(6)	96(8)	112(8)	-10(5)	26(6)	-13(6)
C(7)	129(9)	107(9)	143(11)	-7(7)	65(8)	-21(8)
C(8)	150(10)	112(9)	114(9)	-31(8)	27(8)	-26(7)
C(11)	60(4)	63(5)	61(5)	8(4)	16(4)	6(4)
C(12)	88(6)	127(8)	71(6)	25(6)	27(5)	13(6)
C(13)	89(7)	154(11)	83(7)	47(7)	4(6)	28(7)
C(14)	67(5)	89(7)	110(8)	4(5)	16(6)	-17(6)
C(15)	62(5)	82(6)	86(6)	-8(4)	20(4)	-20(5)
C(16)	66(5)	66(5)	61(5)	4(4)	15(4)	-1(4)
C(21)	56(4)	62(4)	47(4)	-10(4)	18(3)	0(3)
C(22)	65(5)	90(6)	90(6)	-8(5)	10(5)	-15(5)
C(23)	87(7)	111(9)	112(8)	-27(6)	10(6)	-33(7)
C(24)	107(7)	72(6)	81(6)	-28(6)	22(5)	-1(5)
C(25)	108(7)	55(5)	77(6)	-10(5)	18(5)	-3(4)
C(26)	74(5)	58(5)	60(5)	-3(4)	9(4)	6(4)

3The anisotropic displacement exponent takes the form: $-2\pi^2\,(h^2a^{\star\,2}\text{Ull}\,+\,\ldots\,+\,2hka^{\star}b^{\star}\text{Ul2}$)

Table	5. H-2	Atom coordinates	$(x10^4)$ and	isotropic	displacement	coefficients
	$(\Delta^2$	² x10 ³)				
	Х	У	Z	U		
H(1A)	-1622	-1643	2588	62		
H(1B)	-1675	-213	2681	62		
H(2A)	406	-10	2524	68		
H(2B)	414	-1144	3020	68		
H(4A)	2313	-2049	2515	83		
H(4B)	2271	-724	2189	83		
H(5A)	1940	-1733	1116	95		
H(5B)	3286	-2069	1513	95		
H(7A)	3025	-3912	786	121		
Н(7В)	1605	-3610	504	121		
H(8A)	1927	-5620	435	123		
H(8B)	2379	-5631	1232	123		
H(8C)	946	-5326	947	123		
H(12)	-3633	752	516	94		
H(13)	-5613	1738	479	110		
H(14)	-6745	1638	1416	88		
H(15)	-5796	690	2428	76		
H(16)	-3844	-322	2476	64		
H(22)	-4395	-1916	934	82		
H(23)	-4970	-3950	600	104		
H(24)	-3455	-5538	718	85		
H(25)	-1341	-5067	1129	79		
H(26)	-745	-3059	1463	65		