SI: σ → σ* Transitions in Mn₂(CO)₈L₂ complexes (L = P-donor ligands):

π-acidity and oxygen pendant group effects in phosphite ligands

Kevin A. Bunten, Anthony J. Poë* and Tatiana A. Stromnova*

Lash Miller Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Canada M5S 3H6. E-mail: apoe@chem.utoronto.ca; Tel: 01 416 978 3924

* Present address: N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect 31, 117907 Moscow, GSP1, Russia

Table S1 Results of regression analyses of values of $h\nu(\sigma \rightarrow \sigma^*)$ for Mn₂(CO)₈L₂ complexes.

<table>
<thead>
<tr>
<th>#</th>
<th>Obs</th>
<th>α (kJ mol⁻¹)</th>
<th>β</th>
<th>γ (kJ mol⁻¹ deg⁻¹)</th>
<th>δ (kJ mol⁻¹)</th>
<th>φ</th>
<th>Ω (kJ mol⁻¹)</th>
<th>σ(hv)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>14</td>
<td>329(2)</td>
<td>-0.296(22)</td>
<td>-3.44(35)</td>
<td>-</td>
<td>13.4(1)</td>
<td>0.776</td>
<td>0.990</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>17</td>
<td>332(1)</td>
<td>0.104(25)</td>
<td>-3.51(34)</td>
<td>-1.09(18)</td>
<td>8.21(153)</td>
<td>1.25</td>
<td>0.987</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>19</td>
<td>330(2)</td>
<td>0.147(36)</td>
<td>-3.06(53)</td>
<td>-0.453(193)</td>
<td>9.43(253)</td>
<td>2.10</td>
<td>0.962</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>19</td>
<td>329(3)</td>
<td>0.096(58)</td>
<td>-3.66(86)</td>
<td>-0.702(313)</td>
<td>8.60(149)</td>
<td>1.26</td>
<td>0.986</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>19</td>
<td>329(1)</td>
<td>-0.282(31)</td>
<td>-3.55(26)</td>
<td>-0.559(166)</td>
<td>8.39(136)</td>
<td>1.19</td>
<td>0.940</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>19</td>
<td>329(1)</td>
<td>-</td>
<td>-</td>
<td>-0.538(154)</td>
<td>12.05(44)</td>
<td>2.20</td>
<td>0.977</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>19</td>
<td>329(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.86(63)</td>
<td>1.44</td>
<td>0.981</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>19</td>
<td>323(2)</td>
<td>0.191(36)</td>
<td>-0.331(38)</td>
<td>-2.44(52)</td>
<td>8.12(95)</td>
<td>2.13</td>
<td>0.990</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>19</td>
<td>332(3)</td>
<td>0.064(52)</td>
<td>-0.197(51)</td>
<td>-4.12(77)</td>
<td>12.14(95)</td>
<td>1.60</td>
<td>0.994</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>19</td>
<td>330(2)</td>
<td>0.088(40)</td>
<td>-0.261(43)</td>
<td>-3.90(58)</td>
<td>-12.71(70)</td>
<td>1.96</td>
<td>0.994</td>
<td></td>
</tr>
</tbody>
</table>

a Number of observations. *b* All cone angles are referenced to 130°. *c* Non π-acceptor phosphines. *d* Including P(OR)₃ ligands. ($θ_h = 130°$). *e* Including P(OR)₃ ligands and PPh₃₋ₓ(OMe)ₓ ($θ_h = 130$) (This shows that the phosphinites are the cause of a poorer fit). *f* Including P(OR)₃ ligands and PPh₃₋ₓ(OMe)ₓ, but with no $θ_h$ (comparison with e shows the improvement resulting from the introduction of a steric threshold). *g* Including P(OR)₃ ligands and PPh₃₋ₓ(OMe)ₓ ($θ_h = 130$), the value of $β$ is taken as 0.109; see h). *h* Including P(OR)₃ ligands and PPh₃₋ₓ(OMe)ₓ, ($θ_h = 130$), values for the coefficients $β = 0.109, γ = -0.296, δ = -3.44$ are taken from h). *i* Including P(OR)₃ ligands and PPh₃₋ₓ(OMe)ₓ ($θ_h = 130$), values for the coefficient $φ = -1.06$ is taken from Table 2, #3). *j* Not including $φ$ in analysis. *k* Including P(OR)₃ ligands and PPh₃₋ₓ(OMe)ₓ ($θ_h = 0$, values for the coefficient $φ = -1.06$ is taken from Table 2, #3). *l* Including P(OR)₃ ligands and PPh₃₋ₓ(OMe)ₓ ($θ_h = 130$, values for the coefficient $φ = -1.06$ is taken from Table 2, #3).
Table S2 The influence of each individual effect on the $\sigma \rightarrow \sigma^*$ energies.

<table>
<thead>
<tr>
<th>Name</th>
<th>ν (kJ mol$^{-1}$)</th>
<th>α (kJ mol$^{-1}$)</th>
<th>$\beta(pK_a')$ (kJ mol$^{-1}$)</th>
<th>$\gamma(\theta - 130)$ (kJ mol$^{-1}$)</th>
<th>$\delta(E_{av})$ (kJ mol$^{-1}$)</th>
<th>$\phi(pK_a'p)$ (kJ mol$^{-1}$)</th>
<th>$\Omega(E_{ox})$ (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(p-CF$_3$Ph)$_3$</td>
<td>316.4</td>
<td>327</td>
<td>2.22</td>
<td>-4.51</td>
<td>-9.19</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P(p-ClPh)$_3$</td>
<td>318.1</td>
<td>327</td>
<td>4.12</td>
<td>-4.51</td>
<td>-9.19</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>319</td>
<td>327</td>
<td>6.14</td>
<td>-4.51</td>
<td>-9.19</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P(p-MePh)$_3$</td>
<td>319</td>
<td>327</td>
<td>7.13</td>
<td>-4.51</td>
<td>-9.19</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P(p-MeOPh)$_3$</td>
<td>321.5</td>
<td>327</td>
<td>7.70</td>
<td>-4.51</td>
<td>-9.19</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PEt$_3$</td>
<td>337</td>
<td>327</td>
<td>10.07</td>
<td>-0.60</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P(n-Bu)$_3$</td>
<td>337</td>
<td>327</td>
<td>10.67</td>
<td>-0.60</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P(i-Bu)$_3$</td>
<td>333</td>
<td>327</td>
<td>10.41</td>
<td>-3.91</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P(i-Pr)$_3$</td>
<td>329.5</td>
<td>327</td>
<td>11.69</td>
<td>-9.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PCy$_3$</td>
<td>326.8</td>
<td>327</td>
<td>12.85</td>
<td>-12.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PPh$_3$Et</td>
<td>324</td>
<td>327</td>
<td>7.25</td>
<td>-3.01</td>
<td>-6.12</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PPh$_3$Cy</td>
<td>321.5</td>
<td>327</td>
<td>8.09</td>
<td>-6.92</td>
<td>-6.12</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PPhEt$_2$</td>
<td>329</td>
<td>327</td>
<td>8.38</td>
<td>-1.81</td>
<td>-3.06</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PPhCy$_2$</td>
<td>324</td>
<td>327</td>
<td>10.36</td>
<td>-9.63</td>
<td>-3.06</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P(O-i-Pr)$_3$</td>
<td>349.7</td>
<td>327</td>
<td>6.23</td>
<td>0.00</td>
<td>0.00</td>
<td>-10.34</td>
<td>24.63</td>
</tr>
<tr>
<td>P(OPh)$_3$</td>
<td>338</td>
<td>327</td>
<td>1.04</td>
<td>0.00</td>
<td>0.00</td>
<td>-13.77</td>
<td>24.63</td>
</tr>
<tr>
<td>P(OMe)$_3$</td>
<td>342</td>
<td>327</td>
<td>4.08</td>
<td>0.00</td>
<td>0.00</td>
<td>-12.53</td>
<td>24.63</td>
</tr>
<tr>
<td>P(OMe)Ph$_2$</td>
<td>329</td>
<td>327</td>
<td>5.14</td>
<td>-0.90</td>
<td>-6.12</td>
<td>-2.22</td>
<td>8.21</td>
</tr>
<tr>
<td>P(OMe)$_2$Ph</td>
<td>337</td>
<td>327</td>
<td>4.63</td>
<td>0.00</td>
<td>-3.06</td>
<td>-6.12</td>
<td>16.42</td>
</tr>
<tr>
<td>P(p-FPh)$_3$</td>
<td>321.5</td>
<td>327</td>
<td>4.76</td>
<td>-4.51</td>
<td>-9.19</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

SI: $\sigma \rightarrow \sigma^*$ Transitions in Mn$_2$(CO)$_8$L$_2$ complexes...
Fig. S1 Steric profile including π and oxygen effects. Non-π-acids (Solid diamonds), phosphites and phosphinites (Open circles).

SI: σ → σ* Transitions in Mn₂(CO)₈L₂ complexes…
Fig. S2 Colour version of Fig 6. Contributions of various terms to hn for complexes with each individual ligand. $\beta(pK_a')$ (red fill), $\gamma(\theta - 130)$ (no fill), $\delta(E_{ar})$ (green fill), $\phi(pK_a'\pi)$ (dark blue fill), $\Omega(E_{ox})$ (Light blue fill).

SI: $\sigma \rightarrow \sigma^*$ Transitions in Mn$_2$(CO)$_8$L$_2$ complexes…