Electronic Supplementary Information for Dalton Transactions

Copolymerization of cyclohexene oxide and carbon dioxide using (salen)Co(III) complexes: synthesis and characterization of syndiotactic poly(cyclohexene carbonate)

Claire T. Cohen, Christophe M. Thomas, Kathryn L. Peretti, Emil B. Lobkovsky, Geoffrey W. Coates*

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, USA. Email: gc39@cornell.edu

Table 1. Crystal data and structure refinement for (R,R)-(salen-1)CoCl.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>(R,R)-(salen-1)CoCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C96 H128 Cl2 Co2 N4 O4</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1590.78</td>
</tr>
<tr>
<td>Temperature</td>
<td>173(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 14.5088(11) Å</td>
</tr>
<tr>
<td></td>
<td>α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 10.1068(6) Å</td>
</tr>
<tr>
<td></td>
<td>β = 93.639(3)°</td>
</tr>
<tr>
<td></td>
<td>c = 29.765(2) Å</td>
</tr>
<tr>
<td></td>
<td>γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>4355.9(5) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.213 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.494 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1704</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.20 x 0.05 x 0.04 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.52 to 20.87°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-14<=h<=14, -10<=k<=10, -26<=l<=29</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>23614</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>8926 [R(int) = 0.0679]</td>
</tr>
<tr>
<td>Completeness to theta = 20.87°</td>
<td>99.6 %</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9805 and 0.9076</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>8926 / 955 / 973</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.076</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0589, wR2 = 0.1325</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0808, wR2 = 0.1408</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.02(2)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.546 and -0.376 e.Å^3</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for (R,R)-(salen-1)CoCl. U(eq) is defined as one third of the trace of the orthogonalized U^ij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(1)</td>
<td>11018(1)</td>
<td>8151(1)</td>
<td>5370(1)</td>
<td>20(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>11598(1)</td>
<td>10266(2)</td>
<td>5257(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>10657(3)</td>
<td>8235(5)</td>
<td>5953(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>12090(3)</td>
<td>7366(5)</td>
<td>5604(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>9832(4)</td>
<td>8562(6)</td>
<td>5114(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>11243(4)</td>
<td>7510(6)</td>
<td>4792(2)</td>
<td>15(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>9822(5)</td>
<td>8646(8)</td>
<td>4621(3)</td>
<td>20(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>8883(5)</td>
<td>8696(8)</td>
<td>4365(3)</td>
<td>19(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>9025(6)</td>
<td>8644(8)</td>
<td>3857(3)</td>
<td>29(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>9554(5)</td>
<td>7427(8)</td>
<td>3730(3)</td>
<td>24(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>10509(5)</td>
<td>7380(8)</td>
<td>3985(3)</td>
<td>20(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>10382(5)</td>
<td>7454(7)</td>
<td>4484(3)</td>
<td>15(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>9097(5)</td>
<td>8783(7)</td>
<td>5337(3)</td>
<td>15(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>9052(5)</td>
<td>8807(7)</td>
<td>5811(3)</td>
<td>18(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>8191(5)</td>
<td>9067(7)</td>
<td>5977(3)</td>
<td>18(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>8081(5)</td>
<td>9134(7)</td>
<td>6427(3)</td>
<td>19(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>8874(5)</td>
<td>8891(7)</td>
<td>6716(3)</td>
<td>22(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>9742(5)</td>
<td>8578(7)</td>
<td>6576(3)</td>
<td>20(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>9860(5)</td>
<td>8525(8)</td>
<td>6109(3)</td>
<td>20(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>7172(5)</td>
<td>9466(8)</td>
<td>6632(3)</td>
<td>23(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>6936(5)</td>
<td>8365(9)</td>
<td>6957(3)</td>
<td>38(2)</td>
</tr>
<tr>
<td>C(16)</td>
<td>6368(5)</td>
<td>9575(10)</td>
<td>6268(3)</td>
<td>42(3)</td>
</tr>
<tr>
<td>C(17)</td>
<td>7262(6)</td>
<td>10772(9)</td>
<td>6886(3)</td>
<td>49(3)</td>
</tr>
<tr>
<td>C(18)</td>
<td>10543(5)</td>
<td>8260(8)</td>
<td>6915(3)</td>
<td>26(2)</td>
</tr>
<tr>
<td>C(19)</td>
<td>10260(5)</td>
<td>8295(10)</td>
<td>7408(3)</td>
<td>39(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>11288(6)</td>
<td>9343(9)</td>
<td>6881(3)</td>
<td>35(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>10950(6)</td>
<td>6918(8)</td>
<td>6838(3)</td>
<td>31(2)</td>
</tr>
<tr>
<td>C(22)</td>
<td>12046(5)</td>
<td>7310(7)</td>
<td>4650(3)</td>
<td>17(2)</td>
</tr>
<tr>
<td>C(23)</td>
<td>12882(5)</td>
<td>7274(7)</td>
<td>4933(3)</td>
<td>21(2)</td>
</tr>
<tr>
<td>C(24)</td>
<td>12854(5)</td>
<td>7201(7)</td>
<td>5402(3)</td>
<td>17(2)</td>
</tr>
<tr>
<td>C(25)</td>
<td>13708(5)</td>
<td>6953(7)</td>
<td>5669(3)</td>
<td>20(2)</td>
</tr>
<tr>
<td>Atom</td>
<td>C(26)</td>
<td>C(27)</td>
<td>C(28)</td>
<td>C(29)</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>14509(5)</td>
<td>14551(5)</td>
<td>13732(5)</td>
<td>13709(5)</td>
</tr>
<tr>
<td>Atoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>14'</td>
<td>15'</td>
<td>16'</td>
<td>17'</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13211(5)</td>
<td>6458(8)</td>
<td>1596(3)</td>
<td>23(2)</td>
</tr>
<tr>
<td></td>
<td>13530(5)</td>
<td>7470(8)</td>
<td>1959(3)</td>
<td>29(2)</td>
</tr>
<tr>
<td></td>
<td>13176(6)</td>
<td>5075(8)</td>
<td>1795(3)</td>
<td>46(3)</td>
</tr>
<tr>
<td></td>
<td>13924(5)</td>
<td>6467(9)</td>
<td>1239(3)</td>
<td>33(2)</td>
</tr>
<tr>
<td></td>
<td>9888(5)</td>
<td>7639(8)</td>
<td>1885(3)</td>
<td>26(2)</td>
</tr>
<tr>
<td></td>
<td>10291(5)</td>
<td>7504(9)</td>
<td>2373(3)</td>
<td>36(2)</td>
</tr>
<tr>
<td></td>
<td>9087(5)</td>
<td>6651(8)</td>
<td>1828(3)</td>
<td>28(2)</td>
</tr>
<tr>
<td></td>
<td>9523(5)</td>
<td>9050(8)</td>
<td>1819(3)</td>
<td>27(2)</td>
</tr>
<tr>
<td></td>
<td>7822(5)</td>
<td>8628(7)</td>
<td>-392(3)</td>
<td>20(2)</td>
</tr>
<tr>
<td></td>
<td>7066(5)</td>
<td>8670(7)</td>
<td>-123(3)</td>
<td>17(2)</td>
</tr>
<tr>
<td></td>
<td>7192(5)</td>
<td>8731(7)</td>
<td>354(3)</td>
<td>19(2)</td>
</tr>
<tr>
<td></td>
<td>6428(5)</td>
<td>9009(7)</td>
<td>609(3)</td>
<td>20(2)</td>
</tr>
<tr>
<td></td>
<td>5580(5)</td>
<td>9104(7)</td>
<td>381(3)</td>
<td>20(2)</td>
</tr>
<tr>
<td></td>
<td>5404(5)</td>
<td>8956(7)</td>
<td>-91(3)</td>
<td>17(2)</td>
</tr>
<tr>
<td></td>
<td>6150(5)</td>
<td>8777(7)</td>
<td>-336(3)</td>
<td>22(2)</td>
</tr>
<tr>
<td></td>
<td>6545(5)</td>
<td>9135(8)</td>
<td>1120(3)</td>
<td>22(2)</td>
</tr>
<tr>
<td></td>
<td>7254(5)</td>
<td>10211(8)</td>
<td>1253(3)</td>
<td>30(2)</td>
</tr>
<tr>
<td></td>
<td>6842(5)</td>
<td>7793(8)</td>
<td>1321(3)</td>
<td>30(2)</td>
</tr>
<tr>
<td></td>
<td>6444(5)</td>
<td>9553(9)</td>
<td>1327(3)</td>
<td>29(2)</td>
</tr>
<tr>
<td></td>
<td>4424(5)</td>
<td>9051(8)</td>
<td>-308(3)</td>
<td>24(2)</td>
</tr>
<tr>
<td></td>
<td>30(2)</td>
<td>30(2)</td>
<td>30(2)</td>
<td>30(2)</td>
</tr>
<tr>
<td></td>
<td>34(2)</td>
<td>34(2)</td>
<td>34(2)</td>
<td>34(2)</td>
</tr>
<tr>
<td></td>
<td>36(2)</td>
<td>36(2)</td>
<td>36(2)</td>
<td>36(2)</td>
</tr>
<tr>
<td></td>
<td>15S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6006(8)</td>
<td>6938(12)</td>
<td>3188(4)</td>
<td>73(3)</td>
</tr>
<tr>
<td></td>
<td>5470(7)</td>
<td>7818(12)</td>
<td>2942(4)</td>
<td>65(3)</td>
</tr>
<tr>
<td></td>
<td>5872(8)</td>
<td>8700(11)</td>
<td>2666(4)</td>
<td>66(3)</td>
</tr>
<tr>
<td></td>
<td>6815(9)</td>
<td>8680(11)</td>
<td>2628(4)</td>
<td>70(3)</td>
</tr>
<tr>
<td></td>
<td>7339(7)</td>
<td>7759(14)</td>
<td>2889(4)</td>
<td>75(3)</td>
</tr>
<tr>
<td></td>
<td>6918(9)</td>
<td>6917(12)</td>
<td>3151(4)</td>
<td>76(4)</td>
</tr>
<tr>
<td></td>
<td>5575(8)</td>
<td>4371(12)</td>
<td>3188(4)</td>
<td>73(3)</td>
</tr>
<tr>
<td></td>
<td>5636(8)</td>
<td>3053(13)</td>
<td>2379(4)</td>
<td>73(3)</td>
</tr>
<tr>
<td></td>
<td>6338(9)</td>
<td>2482(11)</td>
<td>2182(5)</td>
<td>85(4)</td>
</tr>
<tr>
<td></td>
<td>7010(8)</td>
<td>3216(14)</td>
<td>1969(4)</td>
<td>88(4)</td>
</tr>
<tr>
<td></td>
<td>6891(8)</td>
<td>4567(11)</td>
<td>1965(4)</td>
<td>65(3)</td>
</tr>
<tr>
<td></td>
<td>6198(8)</td>
<td>5098(11)</td>
<td>2173(4)</td>
<td>65(3)</td>
</tr>
<tr>
<td></td>
<td>7828(7)</td>
<td>5734(10)</td>
<td>-1785(4)</td>
<td>58(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C(20S)</td>
<td>6967(8)</td>
<td>6373(10)</td>
<td>-1874(4)</td>
<td>57(3)</td>
</tr>
<tr>
<td>C(21S)</td>
<td>6388(7)</td>
<td>6484(9)</td>
<td>-1544(4)</td>
<td>49(3)</td>
</tr>
<tr>
<td>C(22S)</td>
<td>6637(6)</td>
<td>6109(9)</td>
<td>-1117(4)</td>
<td>45(2)</td>
</tr>
<tr>
<td>C(23S)</td>
<td>7489(6)</td>
<td>5486(9)</td>
<td>-1013(4)</td>
<td>45(2)</td>
</tr>
<tr>
<td>C(24S)</td>
<td>8074(7)</td>
<td>5325(9)</td>
<td>-1355(4)</td>
<td>51(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(1)-O(2)</td>
<td>1.844(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(1)-O(1)</td>
<td>1.845(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(1)-N(1)</td>
<td>1.882(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(1)-N(2)</td>
<td>1.887(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(1)-Cl(1)</td>
<td>2.330(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-C(13)</td>
<td>1.307(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-C(24)</td>
<td>1.305(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)-C(7)</td>
<td>1.311(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.468(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-C(22)</td>
<td>1.280(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-C(6)</td>
<td>1.503(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.520(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.524(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.540(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.510(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.538(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.508(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.415(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.397(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-C(13)</td>
<td>1.452(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.361(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.415(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(14)</td>
<td>1.526(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.388(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.413(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(18)</td>
<td>1.526(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(17)</td>
<td>1.522(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.527(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(16)</td>
<td>1.544(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-C(21)</td>
<td>1.503(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-C(20)</td>
<td>1.546(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.548(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.432(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.401(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23)-C(28)</td>
<td>1.425(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24)-C(25)</td>
<td>1.451(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25)-C(26)</td>
<td>1.390(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25)-C(29)</td>
<td>1.520(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(26)-C(27)</td>
<td>1.402(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(27)-C(28)</td>
<td>1.367(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(27)-C(33)</td>
<td>1.557(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(29)-C(31)</td>
<td>1.516(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(29)-C(30)</td>
<td>1.525(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(29)-C(32)</td>
<td>1.535(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(33)-C(35)</td>
<td>1.508(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(33)-C(34)</td>
<td>1.512(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(33)-C(36)</td>
<td>1.528(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7S)-C(12S)</td>
<td>1.352(14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7S)-C(8S)</td>
<td>1.398(15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8S)-C(9S)</td>
<td>1.375(13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9S)-C(10S)</td>
<td>1.369(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10S)-C(11S)</td>
<td>1.381(13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11S)-C(12S)</td>
<td>1.347(13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(1')-O(2')</td>
<td>1.848(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(1')-O(1')</td>
<td>1.856(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(1')-N(1')</td>
<td>1.863(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(1')-N(2')</td>
<td>1.912(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(1')-Cl(1')</td>
<td>2.326(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1')-C(13')</td>
<td>1.311(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2')-C(24')</td>
<td>1.319(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1')-C(7')</td>
<td>1.299(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1')-C(1')</td>
<td>1.482(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2')-C(22')</td>
<td>1.287(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2')-C(6')</td>
<td>1.488(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1')-C(6')</td>
<td>1.531(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1')-C(2')</td>
<td>1.537(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2')-C(3')</td>
<td>1.536(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3')-C(4')</td>
<td>1.501(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4')-C(5')</td>
<td>1.523(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5')-C(6')</td>
<td>1.502(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C(7')-C(8') 1.427(11)
C(8')-C(9') 1.403(10)
C(8')-C(13') 1.417(11)
C(9')-C(10') 1.347(11)
C(10')-C(11') 1.405(10)
C(10')-C(14') 1.532(10)
C(11')-C(12') 1.403(10)
C(12')-C(13') 1.452(11)
C(12')-C(18') 1.540(10)
C(14')-C(16') 1.520(12)
C(14')-C(17') 1.529(11)
C(14')-C(15') 1.537(11)
C(18')-C(21') 1.530(11)
C(18')-C(20') 1.532(11)
C(22')-C(23') 1.399(10)
C(23')-C(24') 1.421(11)
C(23')-C(28') 1.440(10)
C(24')-C(25') 1.411(11)
C(25')-C(26') 1.370(10)
C(25')-C(29') 1.525(11)
C(26')-C(27') 1.421(11)
C(27')-C(28') 1.355(11)
C(27')-C(33') 1.526(10)
C(29')-C(30') 1.532(11)
C(29')-C(31') 1.533(11)
C(29')-C(32') 1.538(11)
C(33')-C(35') 1.507(11)
C(33')-C(34') 1.508(11)
C(33')-C(36') 1.550(11)
C(1S)-C(6S) 1.336(15)
C(1S)-C(2S) 1.363(15)
C(2S)-C(3S) 1.369(15)
C(3S)-C(4S) 1.380(15)
C(4S)-C(5S) 1.405(16)
C(5S)-C(6S) 1.329(16)
C(13S)-C(14S) 1.335(16)
C(13S)-C(18S) 1.348(14)
C(14S)-C(15S) 1.338(15)
C(15S)-C(16S) 1.407(16)
C(16S)-C(17S) 1.376(16)
C(17S)-C(18S) 1.327(14)
C(19S)-C(24S) 1.372(14)
C(19S)-C(20S) 1.416(14)
C(20S)-C(21S) 1.338(13)
C(21S)-C(22S) 1.353(13)
C(22S)-C(23S) 1.404(12)
C(23S)-C(24S) 1.375(13)

O(2)-Co(1)-O(1) 87.0(2)
O(2)-Co(1)-N(1) 167.3(2)
O(1)-Co(1)-N(1) 93.7(2)
O(2)-Co(1)-N(2) 90.4(2)
O(1)-Co(1)-N(2) 161.7(2)
N(1)-Co(1)-N(2) 85.0(3)
O(2)-Co(1)-Cl(1) 98.34(17)
O(1)-Co(1)-Cl(1) 102.69(18)
N(1)-Co(1)-Cl(1) 93.94(18)
N(2)-Co(1)-Cl(1) 95.64(19)
C(13)-O(1)-Co(1) 130.9(5)
C(24)-O(2)-Co(1) 127.0(5)
C(7)-N(1)-C(1) 122.6(6)
C(7)-N(1)-Co(1) 125.8(6)
C(1)-N(1)-Co(1) 111.6(4)
C(22)-N(2)-C(6) 122.1(6)
C(22)-N(2)-Co(1) 124.7(5)
C(6)-N(2)-Co(1) 112.6(4)
N(1)-C(1)-C(2) 117.1(6)
N(1)-C(1)-C(6) 104.5(6)
C(2)-C(1)-C(6) 111.5(6)
C(1)-C(2)-C(3) 108.7(6)
C(4)-C(3)-C(2) 112.0(7)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>111.0(7)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>108.8(6)</td>
</tr>
<tr>
<td>N(2)-C(6)-C(5)</td>
<td>116.9(6)</td>
</tr>
<tr>
<td>N(2)-C(6)-C(1)</td>
<td>104.1(6)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(1)</td>
<td>113.8(6)</td>
</tr>
<tr>
<td>N(1)-C(7)-C(8)</td>
<td>126.7(7)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(7)</td>
<td>117.0(7)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(13)</td>
<td>121.7(8)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(13)</td>
<td>121.2(7)</td>
</tr>
<tr>
<td>C(10)-C(9)-C(8)</td>
<td>121.4(8)</td>
</tr>
<tr>
<td>C(9)-C(10)-C(11)</td>
<td>116.6(7)</td>
</tr>
<tr>
<td>C(9)-C(10)-C(14)</td>
<td>124.3(7)</td>
</tr>
<tr>
<td>C(11)-C(10)-C(14)</td>
<td>119.0(8)</td>
</tr>
<tr>
<td>C(12)-C(11)-C(10)</td>
<td>125.1(8)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)</td>
<td>118.3(7)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(18)</td>
<td>121.1(7)</td>
</tr>
<tr>
<td>C(13)-C(12)-C(18)</td>
<td>120.6(6)</td>
</tr>
<tr>
<td>O(1)-C(13)-C(12)</td>
<td>121.5(7)</td>
</tr>
<tr>
<td>O(1)-C(13)-C(8)</td>
<td>121.7(7)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(8)</td>
<td>116.8(7)</td>
</tr>
<tr>
<td>C(17)-C(14)-C(10)</td>
<td>109.9(7)</td>
</tr>
<tr>
<td>C(17)-C(14)-C(15)</td>
<td>109.5(7)</td>
</tr>
<tr>
<td>C(10)-C(14)-C(15)</td>
<td>109.1(6)</td>
</tr>
<tr>
<td>C(17)-C(14)-C(16)</td>
<td>108.9(7)</td>
</tr>
<tr>
<td>C(10)-C(14)-C(16)</td>
<td>111.6(7)</td>
</tr>
<tr>
<td>C(15)-C(14)-C(16)</td>
<td>107.8(7)</td>
</tr>
<tr>
<td>C(21)-C(18)-C(12)</td>
<td>112.2(7)</td>
</tr>
<tr>
<td>C(21)-C(18)-C(20)</td>
<td>110.3(6)</td>
</tr>
<tr>
<td>C(12)-C(18)-C(20)</td>
<td>108.3(7)</td>
</tr>
<tr>
<td>C(21)-C(18)-C(19)</td>
<td>107.3(7)</td>
</tr>
<tr>
<td>C(12)-C(18)-C(19)</td>
<td>112.7(6)</td>
</tr>
<tr>
<td>C(20)-C(18)-C(19)</td>
<td>106.0(7)</td>
</tr>
<tr>
<td>N(2)-C(22)-C(23)</td>
<td>124.3(8)</td>
</tr>
<tr>
<td>C(24)-C(23)-C(28)</td>
<td>121.1(7)</td>
</tr>
<tr>
<td>C(24)-C(23)-C(22)</td>
<td>120.7(7)</td>
</tr>
<tr>
<td>C(28)-C(23)-C(22)</td>
<td>117.8(8)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>O(2)-C(24)-C(23)</td>
<td>122.1(7)</td>
</tr>
<tr>
<td>O(2)-C(24)-C(25)</td>
<td>119.4(7)</td>
</tr>
<tr>
<td>C(23)-C(24)-C(25)</td>
<td>118.5(7)</td>
</tr>
<tr>
<td>C(26)-C(25)-C(24)</td>
<td>116.7(8)</td>
</tr>
<tr>
<td>C(26)-C(25)-C(29)</td>
<td>122.8(7)</td>
</tr>
<tr>
<td>C(24)-C(25)-C(29)</td>
<td>120.5(7)</td>
</tr>
<tr>
<td>C(25)-C(26)-C(27)</td>
<td>125.1(7)</td>
</tr>
<tr>
<td>C(28)-C(27)-C(26)</td>
<td>117.3(7)</td>
</tr>
<tr>
<td>C(28)-C(27)-C(33)</td>
<td>122.6(8)</td>
</tr>
<tr>
<td>C(26)-C(27)-C(33)</td>
<td>120.0(7)</td>
</tr>
<tr>
<td>C(27)-C(28)-C(23)</td>
<td>120.9(8)</td>
</tr>
<tr>
<td>C(31)-C(29)-C(25)</td>
<td>108.4(7)</td>
</tr>
<tr>
<td>C(31)-C(29)-C(30)</td>
<td>111.8(7)</td>
</tr>
<tr>
<td>C(25)-C(29)-C(30)</td>
<td>110.3(7)</td>
</tr>
<tr>
<td>C(31)-C(29)-C(32)</td>
<td>108.4(7)</td>
</tr>
<tr>
<td>C(25)-C(29)-C(32)</td>
<td>111.0(6)</td>
</tr>
<tr>
<td>C(30)-C(29)-C(32)</td>
<td>106.9(7)</td>
</tr>
<tr>
<td>C(35)-C(33)-C(34)</td>
<td>108.5(8)</td>
</tr>
<tr>
<td>C(35)-C(33)-C(36)</td>
<td>110.3(7)</td>
</tr>
<tr>
<td>C(34)-C(33)-C(36)</td>
<td>108.3(7)</td>
</tr>
<tr>
<td>C(35)-C(33)-C(27)</td>
<td>110.8(7)</td>
</tr>
<tr>
<td>C(34)-C(33)-C(27)</td>
<td>108.5(6)</td>
</tr>
<tr>
<td>C(36)-C(33)-C(27)</td>
<td>110.3(7)</td>
</tr>
<tr>
<td>C(12S)-C(7S)-C(8S)</td>
<td>121.1(11)</td>
</tr>
<tr>
<td>C(9S)-C(8S)-C(7S)</td>
<td>119.1(10)</td>
</tr>
<tr>
<td>C(10S)-C(9S)-C(8S)</td>
<td>119.0(10)</td>
</tr>
<tr>
<td>C(9S)-C(10S)-C(11S)</td>
<td>120.6(9)</td>
</tr>
<tr>
<td>C(12S)-C(11S)-C(10S)</td>
<td>120.7(10)</td>
</tr>
<tr>
<td>C(11S)-C(12S)-C(7S)</td>
<td>119.5(12)</td>
</tr>
<tr>
<td>O(2')-Co(1')-O(1')</td>
<td>86.8(2)</td>
</tr>
<tr>
<td>O(2')-Co(1')-N(1')</td>
<td>167.7(2)</td>
</tr>
<tr>
<td>O(1')-Co(1')-N(1')</td>
<td>94.0(2)</td>
</tr>
<tr>
<td>O(2')-Co(1')-N(2')</td>
<td>90.6(2)</td>
</tr>
<tr>
<td>O(1')-Co(1')-N(2')</td>
<td>161.2(2)</td>
</tr>
<tr>
<td>N(1')-Co(1')-N(2')</td>
<td>84.6(3)</td>
</tr>
<tr>
<td>O(2')-Co(1')-Cl(1')</td>
<td>98.99(16)</td>
</tr>
</tbody>
</table>
O(1')-Co(1')-Cl(1') 102.76(17)
N(1')-Co(1')-Cl(1') 92.85(19)
N(2')-Co(1')-Cl(1') 96.05(18)
C(13')-O(1')-Co(1') 128.3(5)
C(24')-O(2')-Co(1') 128.2(5)
C(7')-N(1')-C(1') 120.5(6)
C(7')-N(1')-Co(1') 127.1(6)
C(1')-N(1')-Co(1') 112.4(4)
C(22')-N(2')-C(6') 124.4(6)
C(22')-N(2')-Co(1') 123.2(5)
C(6')-N(2')-Co(1') 112.2(4)
N(1')-C(1')-C(6') 103.6(6)
N(1')-C(1')-C(2') 118.1(6)
C(6')-C(1')-C(2') 111.2(6)
C(3')-C(2')-C(1') 108.7(6)
C(4')-C(3')-C(2') 110.4(7)
C(3')-C(4')-C(5') 113.0(7)
C(6')-C(5')-C(4') 108.7(6)
N(2')-C(6')-C(5') 116.3(6)
N(2')-C(6')-C(1') 104.0(6)
C(5')-C(6')-C(1') 113.3(6)
N(1')-C(7')-C(8') 125.2(7)
C(9')-C(8')-C(13') 120.5(8)
C(9')-C(8')-C(7') 117.9(7)
C(13')-C(8')-C(7') 121.6(7)
C(10')-C(9')-C(8') 123.4(7)
C(9')-C(10')-C(11') 116.4(7)
C(9')-C(10')-C(14') 124.4(7)
C(11')-C(10')-C(14') 119.2(8)
C(12')-C(11')-C(10') 125.0(8)
C(11')-C(12')-C(13') 116.8(7)
C(11')-C(12')-C(18') 121.6(7)
C(13')-C(12')-C(18') 121.6(6)
O(1')-C(13')-C(8') 123.6(7)
O(1')-C(13')-C(12') 118.6(6)
C(8')-C(13')-C(12') 117.8(7)
C(16')-C(14')-C(17') 108.5(7)
C(16')-C(14')-C(10') 107.0(6)
C(17')-C(14')-C(10') 111.9(7)
C(16')-C(14')-C(15') 110.7(7)
C(17')-C(14')-C(15') 107.3(6)
C(10')-C(14')-C(15') 111.4(6)
C(21')-C(18')-C(20') 109.9(6)
C(21')-C(18')-C(19') 108.2(7)
C(20')-C(18')-C(19') 106.7(7)
C(21')-C(18')-C(12') 110.1(7)
C(20')-C(18')-C(12') 110.2(7)
C(19')-C(18')-C(12') 111.7(6)
N(2')-C(22')-C(23') 126.8(8)
C(22')-C(23')-C(24') 121.2(7)
C(22')-C(23')-C(28') 119.1(8)
C(24')-C(23')-C(28') 119.5(7)
O(2')-C(24')-C(25') 119.9(8)
O(2')-C(24')-C(23') 120.7(7)
C(25')-C(24')-C(23') 119.4(7)
C(26')-C(25')-C(24') 117.3(8)
C(26')-C(25')-C(29') 121.9(7)
C(24')-C(25')-C(29') 120.8(7)
C(25')-C(26')-C(27') 125.6(7)
C(28')-C(27')-C(26') 116.5(7)
C(28')-C(27')-C(33') 122.5(8)
C(26')-C(27')-C(33') 121.0(7)
C(27')-C(28')-C(23') 121.4(8)
C(25')-C(29')-C(30') 110.3(7)
C(25')-C(29')-C(31') 109.1(7)
C(30')-C(29')-C(31') 111.1(6)
C(25')-C(29')-C(32') 112.2(7)
C(30')-C(29')-C(32') 106.0(7)
C(31')-C(29')-C(32') 108.2(7)
C(35')-C(33')-C(34') 108.4(7)
C(35')-C(33')-C(27') 112.9(7)
C(34')-C(33')-C(27') 108.6(6)
C(35')-C(33')-C(36') 109.0(7)
C(34')-C(33')-C(36') 107.8(7)
C(27')-C(33')-C(36') 110.0(7)
C(6S)-C(1S)-C(2S) 120.0(12)
C(1S)-C(2S)-C(3S) 119.8(11)
C(2S)-C(3S)-C(4S) 120.2(11)
C(3S)-C(4S)-C(5S) 117.9(12)
C(6S)-C(5S)-C(4S) 119.8(11)
C(5S)-C(6S)-C(1S) 122.2(12)
C(14S)-C(13S)-C(18S) 119.6(12)
C(13S)-C(14S)-C(15S) 119.1(12)
C(14S)-C(15S)-C(16S) 122.6(11)
C(17S)-C(16S)-C(15S) 115.9(11)
C(18S)-C(17S)-C(16S) 119.7(11)
C(17S)-C(18S)-C(13S) 123.0(11)
C(24S)-C(19S)-C(20S) 119.1(10)
C(21S)-C(20S)-C(19S) 119.2(11)
C(20S)-C(21S)-C(22S) 121.6(11)
C(21S)-C(22S)-C(23S) 120.7(10)
C(24S)-C(23S)-C(22S) 117.8(10)
C(19S)-C(24S)-C(23S) 121.3(10)

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters (Å² x 10³) for (R,R)-(salen-1)CoCl. The anisotropic displacement factor exponent takes the form: -2π² [h² a*² U₁₁ + ... + 2 h k a* b* U₁₂]

<table>
<thead>
<tr>
<th></th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(1)</td>
<td>13(1)</td>
<td>20(1)</td>
<td>25(1)</td>
<td>-4(1)</td>
<td>1(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>23(1)</td>
<td>25(1)</td>
<td>52(2)</td>
<td>-7(1)</td>
<td>6(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>13(3)</td>
<td>32(3)</td>
<td>26(3)</td>
<td>-6(3)</td>
<td>6(2)</td>
<td>1(3)</td>
</tr>
<tr>
<td>O(2)</td>
<td>19(3)</td>
<td>24(3)</td>
<td>23(3)</td>
<td>7(3)</td>
<td>0(2)</td>
<td>12(2)</td>
</tr>
<tr>
<td>N(1)</td>
<td>10(3)</td>
<td>18(4)</td>
<td>20(4)</td>
<td>-1(3)</td>
<td>-1(3)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>N(2)</td>
<td>8(3)</td>
<td>24(4)</td>
<td>14(3)</td>
<td>1(3)</td>
<td>-1(3)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>C(1)</td>
<td>16(4)</td>
<td>17(4)</td>
<td>26(4)</td>
<td>1(4)</td>
<td>2(3)</td>
<td>4(3)</td>
</tr>
<tr>
<td>C(2)</td>
<td>13(4)</td>
<td>21(5)</td>
<td>23(5)</td>
<td>2(4)</td>
<td>-6(3)</td>
<td>3(3)</td>
</tr>
<tr>
<td>C(3)</td>
<td>24(5)</td>
<td>35(5)</td>
<td>28(5)</td>
<td>0(4)</td>
<td>7(4)</td>
<td>8(4)</td>
</tr>
<tr>
<td>C(4)</td>
<td>18(4)</td>
<td>37(5)</td>
<td>17(5)</td>
<td>-3(4)</td>
<td>-2(3)</td>
<td>5(4)</td>
</tr>
<tr>
<td>C(5)</td>
<td>7(4)</td>
<td>29(5)</td>
<td>23(4)</td>
<td>0(4)</td>
<td>1(3)</td>
<td>2(3)</td>
</tr>
<tr>
<td>C(6)</td>
<td>14(4)</td>
<td>12(4)</td>
<td>18(4)</td>
<td>-2(4)</td>
<td>-8(3)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>C(7)</td>
<td>6(4)</td>
<td>14(5)</td>
<td>25(4)</td>
<td>-2(4)</td>
<td>-9(3)</td>
<td>2(4)</td>
</tr>
<tr>
<td>C(8)</td>
<td>18(4)</td>
<td>11(4)</td>
<td>25(4)</td>
<td>2(4)</td>
<td>0(3)</td>
<td>0(4)</td>
</tr>
<tr>
<td>C(9)</td>
<td>5(4)</td>
<td>17(4)</td>
<td>31(5)</td>
<td>3(4)</td>
<td>-2(3)</td>
<td>-5(3)</td>
</tr>
<tr>
<td>C(10)</td>
<td>20(4)</td>
<td>9(4)</td>
<td>30(5)</td>
<td>0(4)</td>
<td>6(3)</td>
<td>1(3)</td>
</tr>
<tr>
<td>C(11)</td>
<td>22(4)</td>
<td>20(5)</td>
<td>23(5)</td>
<td>5(4)</td>
<td>7(3)</td>
<td>-3(4)</td>
</tr>
<tr>
<td>C(12)</td>
<td>20(4)</td>
<td>21(5)</td>
<td>18(4)</td>
<td>-4(4)</td>
<td>0(3)</td>
<td>-3(3)</td>
</tr>
<tr>
<td>C(13)</td>
<td>10(4)</td>
<td>23(5)</td>
<td>26(4)</td>
<td>5(4)</td>
<td>1(3)</td>
<td>-1(4)</td>
</tr>
<tr>
<td>C(14)</td>
<td>15(4)</td>
<td>31(5)</td>
<td>24(5)</td>
<td>5(4)</td>
<td>3(3)</td>
<td>2(4)</td>
</tr>
<tr>
<td>C(15)</td>
<td>19(5)</td>
<td>48(5)</td>
<td>49(6)</td>
<td>10(5)</td>
<td>17(4)</td>
<td>6(4)</td>
</tr>
<tr>
<td>C(16)</td>
<td>15(4)</td>
<td>79(7)</td>
<td>33(6)</td>
<td>11(5)</td>
<td>15(4)</td>
<td>6(5)</td>
</tr>
<tr>
<td>C(17)</td>
<td>41(6)</td>
<td>38(5)</td>
<td>69(8)</td>
<td>-16(5)</td>
<td>21(5)</td>
<td>8(5)</td>
</tr>
<tr>
<td>C(18)</td>
<td>24(4)</td>
<td>31(5)</td>
<td>22(4)</td>
<td>6(4)</td>
<td>2(3)</td>
<td>5(4)</td>
</tr>
<tr>
<td>C(19)</td>
<td>33(5)</td>
<td>54(6)</td>
<td>28(5)</td>
<td>10(5)</td>
<td>0(4)</td>
<td>-2(5)</td>
</tr>
<tr>
<td>C(20)</td>
<td>32(5)</td>
<td>44(5)</td>
<td>29(6)</td>
<td>-4(5)</td>
<td>-2(4)</td>
<td>-9(4)</td>
</tr>
<tr>
<td>C(21)</td>
<td>19(5)</td>
<td>39(5)</td>
<td>35(6)</td>
<td>9(4)</td>
<td>-1(4)</td>
<td>0(4)</td>
</tr>
<tr>
<td>C(22)</td>
<td>17(4)</td>
<td>18(5)</td>
<td>16(5)</td>
<td>1(4)</td>
<td>-4(3)</td>
<td>-2(4)</td>
</tr>
<tr>
<td>C(23)</td>
<td>16(4)</td>
<td>12(4)</td>
<td>34(5)</td>
<td>-1(4)</td>
<td>-1(3)</td>
<td>2(4)</td>
</tr>
<tr>
<td>C(24)</td>
<td>19(4)</td>
<td>10(4)</td>
<td>21(4)</td>
<td>-9(4)</td>
<td>0(3)</td>
<td>2(4)</td>
</tr>
<tr>
<td>C(25)</td>
<td>12(4)</td>
<td>19(4)</td>
<td>29(4)</td>
<td>7(4)</td>
<td>-2(3)</td>
<td>-7(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(26)</td>
<td>8(4)</td>
<td>20(5)</td>
<td>23(4)</td>
<td>1(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(27)</td>
<td>13(4)</td>
<td>16(4)</td>
<td>30(5)</td>
<td>0(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(28)</td>
<td>15(4)</td>
<td>13(5)</td>
<td>24(5)</td>
<td>-3(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(29)</td>
<td>5(4)</td>
<td>34(5)</td>
<td>27(5)</td>
<td>-3(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(30)</td>
<td>17(4)</td>
<td>41(5)</td>
<td>43(6)</td>
<td>21(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(31)</td>
<td>32(5)</td>
<td>114(10)</td>
<td>67(7)</td>
<td>-2(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(32)</td>
<td>14(4)</td>
<td>43(6)</td>
<td>39(6)</td>
<td>9(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(33)</td>
<td>13(4)</td>
<td>32(5)</td>
<td>5(4)</td>
<td>6(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(34)</td>
<td>16(5)</td>
<td>41(5)</td>
<td>114(10)</td>
<td>-6(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(35)</td>
<td>24(5)</td>
<td>96(8)</td>
<td>57(6)</td>
<td>23(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(36)</td>
<td>9(4)</td>
<td>55(6)</td>
<td>71(7)</td>
<td>-9(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(7S)</td>
<td>36(6)</td>
<td>43(6)</td>
<td>113(9)</td>
<td>28(7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(8S)</td>
<td>45(6)</td>
<td>23(6)</td>
<td>87(7)</td>
<td>-3(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(9S)</td>
<td>53(6)</td>
<td>33(6)</td>
<td>57(7)</td>
<td>-2(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(10S)</td>
<td>30(5)</td>
<td>20(5)</td>
<td>81(7)</td>
<td>0(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(11S)</td>
<td>43(5)</td>
<td>37(6)</td>
<td>67(7)</td>
<td>-10(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(12S)</td>
<td>64(7)</td>
<td>46(7)</td>
<td>72(8)</td>
<td>7(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co(1')</td>
<td>12(1)</td>
<td>21(1)</td>
<td>23(1)</td>
<td>1(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cl(1')</td>
<td>21(1)</td>
<td>22(1)</td>
<td>50(2)</td>
<td>6(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O(1')</td>
<td>7(3)</td>
<td>30(3)</td>
<td>20(3)</td>
<td>3(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O(2')</td>
<td>10(3)</td>
<td>28(3)</td>
<td>21(3)</td>
<td>-1(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N(1')</td>
<td>17(3)</td>
<td>13(4)</td>
<td>23(4)</td>
<td>1(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N(2')</td>
<td>13(3)</td>
<td>17(4)</td>
<td>15(3)</td>
<td>-8(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(1')</td>
<td>18(4)</td>
<td>16(4)</td>
<td>21(4)</td>
<td>1(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(2')</td>
<td>20(4)</td>
<td>35(5)</td>
<td>23(5)</td>
<td>2(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(3')</td>
<td>16(5)</td>
<td>57(6)</td>
<td>25(5)</td>
<td>0(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(4')</td>
<td>27(5)</td>
<td>36(5)</td>
<td>22(5)</td>
<td>6(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(5')</td>
<td>25(4)</td>
<td>21(5)</td>
<td>27(5)</td>
<td>5(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(6')</td>
<td>14(4)</td>
<td>12(4)</td>
<td>20(4)</td>
<td>0(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(7')</td>
<td>21(4)</td>
<td>19(5)</td>
<td>14(4)</td>
<td>-2(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(8')</td>
<td>10(4)</td>
<td>18(4)</td>
<td>21(4)</td>
<td>1(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(9')</td>
<td>12(4)</td>
<td>20(5)</td>
<td>24(5)</td>
<td>-4(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(10')</td>
<td>9(4)</td>
<td>25(5)</td>
<td>29(5)</td>
<td>7(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(11')</td>
<td>12(4)</td>
<td>21(5)</td>
<td>26(5)</td>
<td>5(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(12')</td>
<td>16(4)</td>
<td>23(5)</td>
<td>20(4)</td>
<td>6(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(13')</td>
<td>6(4)</td>
<td>18(5)</td>
<td>22(4)</td>
<td>0(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>C(14')</td>
<td>11(4)</td>
<td>26(5)</td>
<td>31(5)</td>
<td>5(4)</td>
<td>-5(3)</td>
<td>6(4)</td>
</tr>
<tr>
<td>C(15')</td>
<td>9(4)</td>
<td>37(5)</td>
<td>39(6)</td>
<td>-8(4)</td>
<td>-7(4)</td>
<td>2(4)</td>
</tr>
<tr>
<td>C(16')</td>
<td>41(6)</td>
<td>32(5)</td>
<td>62(8)</td>
<td>2(5)</td>
<td>-7(5)</td>
<td>15(4)</td>
</tr>
<tr>
<td>C(17')</td>
<td>11(4)</td>
<td>45(6)</td>
<td>41(6)</td>
<td>-8(5)</td>
<td>-7(4)</td>
<td>1(4)</td>
</tr>
<tr>
<td>C(18')</td>
<td>20(4)</td>
<td>40(5)</td>
<td>18(4)</td>
<td>6(4)</td>
<td>0(3)</td>
<td>6(4)</td>
</tr>
<tr>
<td>C(19')</td>
<td>30(5)</td>
<td>61(6)</td>
<td>18(4)</td>
<td>6(5)</td>
<td>3(4)</td>
<td>15(5)</td>
</tr>
<tr>
<td>C(20')</td>
<td>12(4)</td>
<td>38(5)</td>
<td>35(6)</td>
<td>-1(5)</td>
<td>13(4)</td>
<td>4(4)</td>
</tr>
<tr>
<td>C(21')</td>
<td>4(4)</td>
<td>37(5)</td>
<td>41(6)</td>
<td>1(4)</td>
<td>2(4)</td>
<td>3(4)</td>
</tr>
<tr>
<td>C(22')</td>
<td>16(4)</td>
<td>18(5)</td>
<td>26(5)</td>
<td>2(4)</td>
<td>-5(3)</td>
<td>1(4)</td>
</tr>
<tr>
<td>C(23')</td>
<td>15(4)</td>
<td>12(4)</td>
<td>25(4)</td>
<td>4(4)</td>
<td>-1(3)</td>
<td>-3(3)</td>
</tr>
<tr>
<td>C(24')</td>
<td>16(4)</td>
<td>12(4)</td>
<td>29(4)</td>
<td>8(4)</td>
<td>-2(3)</td>
<td>5(4)</td>
</tr>
<tr>
<td>C(25')</td>
<td>19(4)</td>
<td>12(4)</td>
<td>29(4)</td>
<td>-1(4)</td>
<td>2(3)</td>
<td>-3(4)</td>
</tr>
<tr>
<td>C(26')</td>
<td>10(4)</td>
<td>13(4)</td>
<td>37(5)</td>
<td>3(4)</td>
<td>6(3)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>C(27')</td>
<td>13(4)</td>
<td>8(4)</td>
<td>29(5)</td>
<td>4(4)</td>
<td>-3(3)</td>
<td>-4(3)</td>
</tr>
<tr>
<td>C(28')</td>
<td>21(4)</td>
<td>13(5)</td>
<td>31(5)</td>
<td>-1(4)</td>
<td>-6(3)</td>
<td>3(4)</td>
</tr>
<tr>
<td>C(29')</td>
<td>13(4)</td>
<td>23(4)</td>
<td>28(5)</td>
<td>5(4)</td>
<td>1(4)</td>
<td>-3(3)</td>
</tr>
<tr>
<td>C(30')</td>
<td>27(5)</td>
<td>30(5)</td>
<td>31(6)</td>
<td>-12(4)</td>
<td>-2(4)</td>
<td>-2(4)</td>
</tr>
<tr>
<td>C(31')</td>
<td>28(5)</td>
<td>37(5)</td>
<td>25(5)</td>
<td>5(4)</td>
<td>-4(4)</td>
<td>-1(4)</td>
</tr>
<tr>
<td>C(32')</td>
<td>20(4)</td>
<td>39(6)</td>
<td>30(6)</td>
<td>-3(5)</td>
<td>6(4)</td>
<td>-5(4)</td>
</tr>
<tr>
<td>C(33')</td>
<td>13(4)</td>
<td>27(5)</td>
<td>32(5)</td>
<td>-1(4)</td>
<td>1(4)</td>
<td>2(4)</td>
</tr>
<tr>
<td>C(34')</td>
<td>27(5)</td>
<td>36(5)</td>
<td>39(6)</td>
<td>9(4)</td>
<td>-14(4)</td>
<td>8(4)</td>
</tr>
<tr>
<td>C(35')</td>
<td>26(5)</td>
<td>57(6)</td>
<td>39(5)</td>
<td>-10(5)</td>
<td>-14(4)</td>
<td>-2(5)</td>
</tr>
<tr>
<td>C(36')</td>
<td>7(4)</td>
<td>45(6)</td>
<td>64(6)</td>
<td>25(5)</td>
<td>-12(4)</td>
<td>0(4)</td>
</tr>
<tr>
<td>C(37')</td>
<td>78(7)</td>
<td>69(8)</td>
<td>72(9)</td>
<td>-2(6)</td>
<td>15(7)</td>
<td>2(6)</td>
</tr>
<tr>
<td>C(38')</td>
<td>51(6)</td>
<td>74(8)</td>
<td>71(9)</td>
<td>-32(6)</td>
<td>13(5)</td>
<td>14(5)</td>
</tr>
<tr>
<td>C(39')</td>
<td>84(7)</td>
<td>54(7)</td>
<td>57(8)</td>
<td>-9(5)</td>
<td>-19(6)</td>
<td>20(6)</td>
</tr>
<tr>
<td>C(40')</td>
<td>90(7)</td>
<td>62(8)</td>
<td>59(8)</td>
<td>-15(6)</td>
<td>6(7)</td>
<td>-25(7)</td>
</tr>
<tr>
<td>C(41')</td>
<td>50(6)</td>
<td>97(10)</td>
<td>77(9)</td>
<td>-29(7)</td>
<td>-3(5)</td>
<td>-5(6)</td>
</tr>
<tr>
<td>C(42')</td>
<td>79(7)</td>
<td>67(8)</td>
<td>83(10)</td>
<td>-5(6)</td>
<td>4(7)</td>
<td>38(7)</td>
</tr>
<tr>
<td>C(43')</td>
<td>56(7)</td>
<td>67(8)</td>
<td>78(9)</td>
<td>-7(7)</td>
<td>0(6)</td>
<td>5(6)</td>
</tr>
<tr>
<td>C(44')</td>
<td>79(8)</td>
<td>72(6)</td>
<td>67(8)</td>
<td>-6(7)</td>
<td>8(6)</td>
<td>-30(7)</td>
</tr>
<tr>
<td>C(45')</td>
<td>122(10)</td>
<td>33(6)</td>
<td>100(11)</td>
<td>-12(6)</td>
<td>17(8)</td>
<td>-6(6)</td>
</tr>
<tr>
<td>C(46')</td>
<td>85(8)</td>
<td>86(7)</td>
<td>97(10)</td>
<td>-22(9)</td>
<td>30(7)</td>
<td>16(7)</td>
</tr>
<tr>
<td>C(47')</td>
<td>64(7)</td>
<td>59(6)</td>
<td>73(9)</td>
<td>-18(6)</td>
<td>14(6)</td>
<td>-31(6)</td>
</tr>
<tr>
<td>C(48')</td>
<td>77(8)</td>
<td>50(6)</td>
<td>67(9)</td>
<td>13(6)</td>
<td>7(6)</td>
<td>15(5)</td>
</tr>
<tr>
<td>C(49')</td>
<td>55(6)</td>
<td>41(6)</td>
<td>79(7)</td>
<td>-8(6)</td>
<td>28(6)</td>
<td>-15(5)</td>
</tr>
<tr>
<td>C(20S)</td>
<td>70(7)</td>
<td>42(7)</td>
<td>60(7)</td>
<td>13(6)</td>
<td>6(5)</td>
<td>-24(5)</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>C(21S)</td>
<td>35(6)</td>
<td>36(6)</td>
<td>74(8)</td>
<td>9(6)</td>
<td>0(5)</td>
<td>-6(5)</td>
</tr>
<tr>
<td>C(22S)</td>
<td>42(5)</td>
<td>36(6)</td>
<td>58(6)</td>
<td>-4(5)</td>
<td>10(5)</td>
<td>-15(4)</td>
</tr>
<tr>
<td>C(23S)</td>
<td>41(6)</td>
<td>27(6)</td>
<td>66(7)</td>
<td>-1(5)</td>
<td>-1(5)</td>
<td>-15(4)</td>
</tr>
<tr>
<td>C(24S)</td>
<td>43(6)</td>
<td>25(6)</td>
<td>85(8)</td>
<td>-4(6)</td>
<td>13(5)</td>
<td>-13(5)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^{-3}) for (R,R)-(salen-1)CoCl.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>10168</td>
<td>9462</td>
<td>4544</td>
<td>24</td>
</tr>
<tr>
<td>H(2B)</td>
<td>8557</td>
<td>9522</td>
<td>4438</td>
<td>23</td>
</tr>
<tr>
<td>H(2A)</td>
<td>8502</td>
<td>7936</td>
<td>4451</td>
<td>23</td>
</tr>
<tr>
<td>H(3B)</td>
<td>8415</td>
<td>8649</td>
<td>3687</td>
<td>35</td>
</tr>
<tr>
<td>H(3A)</td>
<td>9366</td>
<td>9443</td>
<td>3770</td>
<td>35</td>
</tr>
<tr>
<td>H(4B)</td>
<td>9631</td>
<td>7431</td>
<td>3402</td>
<td>29</td>
</tr>
<tr>
<td>H(4A)</td>
<td>9199</td>
<td>6626</td>
<td>3802</td>
<td>29</td>
</tr>
<tr>
<td>H(5B)</td>
<td>10829</td>
<td>6548</td>
<td>3914</td>
<td>23</td>
</tr>
<tr>
<td>H(5A)</td>
<td>10890</td>
<td>8133</td>
<td>3893</td>
<td>23</td>
</tr>
<tr>
<td>H(6)</td>
<td>10033</td>
<td>6644</td>
<td>4566</td>
<td>18</td>
</tr>
<tr>
<td>H(7)</td>
<td>8537</td>
<td>8944</td>
<td>5163</td>
<td>19</td>
</tr>
<tr>
<td>H(9)</td>
<td>7672</td>
<td>9200</td>
<td>5771</td>
<td>21</td>
</tr>
<tr>
<td>H(11)</td>
<td>8808</td>
<td>8947</td>
<td>7031</td>
<td>26</td>
</tr>
<tr>
<td>H(15C)</td>
<td>6354</td>
<td>8575</td>
<td>7091</td>
<td>57</td>
</tr>
<tr>
<td>H(15B)</td>
<td>7431</td>
<td>8287</td>
<td>7195</td>
<td>57</td>
</tr>
<tr>
<td>H(15A)</td>
<td>6872</td>
<td>7526</td>
<td>6793</td>
<td>57</td>
</tr>
<tr>
<td>H(16C)</td>
<td>6497</td>
<td>10287</td>
<td>6058</td>
<td>63</td>
</tr>
<tr>
<td>H(16B)</td>
<td>5794</td>
<td>9770</td>
<td>6412</td>
<td>63</td>
</tr>
<tr>
<td>H(16A)</td>
<td>6302</td>
<td>8736</td>
<td>6104</td>
<td>63</td>
</tr>
<tr>
<td>H(17C)</td>
<td>7416</td>
<td>11478</td>
<td>6677</td>
<td>73</td>
</tr>
<tr>
<td>H(17B)</td>
<td>7752</td>
<td>10699</td>
<td>7126</td>
<td>73</td>
</tr>
<tr>
<td>H(17A)</td>
<td>6676</td>
<td>10980</td>
<td>7016</td>
<td>73</td>
</tr>
<tr>
<td>H(19C)</td>
<td>9788</td>
<td>7619</td>
<td>7450</td>
<td>58</td>
</tr>
<tr>
<td>H(19B)</td>
<td>10009</td>
<td>9169</td>
<td>7474</td>
<td>58</td>
</tr>
<tr>
<td>H(19A)</td>
<td>10802</td>
<td>8118</td>
<td>7613</td>
<td>58</td>
</tr>
<tr>
<td>H(20C)</td>
<td>11498</td>
<td>9359</td>
<td>6574</td>
<td>53</td>
</tr>
<tr>
<td>H(20B)</td>
<td>11812</td>
<td>9152</td>
<td>7095</td>
<td>53</td>
</tr>
<tr>
<td>H(20A)</td>
<td>11025</td>
<td>10207</td>
<td>6951</td>
<td>53</td>
</tr>
<tr>
<td>H(21C)</td>
<td>10469</td>
<td>6242</td>
<td>6856</td>
<td>47</td>
</tr>
<tr>
<td>H(21B)</td>
<td>11449</td>
<td>6745</td>
<td>7067</td>
<td>47</td>
</tr>
<tr>
<td>H(21A)</td>
<td>11196</td>
<td>6892</td>
<td>6539</td>
<td>47</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>H(22)</td>
<td>12090</td>
<td>7176</td>
<td>4336</td>
<td>21</td>
</tr>
<tr>
<td>H(26)</td>
<td>15072</td>
<td>6715</td>
<td>5608</td>
<td>21</td>
</tr>
<tr>
<td>H(28)</td>
<td>13730</td>
<td>7190</td>
<td>4402</td>
<td>21</td>
</tr>
<tr>
<td>H(30C)</td>
<td>12433</td>
<td>5896</td>
<td>6184</td>
<td>51</td>
</tr>
<tr>
<td>H(30B)</td>
<td>13081</td>
<td>5594</td>
<td>6627</td>
<td>51</td>
</tr>
<tr>
<td>H(30A)</td>
<td>13264</td>
<td>4862</td>
<td>6164</td>
<td>51</td>
</tr>
<tr>
<td>H(31C)</td>
<td>12805</td>
<td>8354</td>
<td>6250</td>
<td>58</td>
</tr>
<tr>
<td>H(31B)</td>
<td>13863</td>
<td>8808</td>
<td>6294</td>
<td>58</td>
</tr>
<tr>
<td>H(31A)</td>
<td>13426</td>
<td>8045</td>
<td>6701</td>
<td>58</td>
</tr>
<tr>
<td>H(32C)</td>
<td>15113</td>
<td>7149</td>
<td>6310</td>
<td>49</td>
</tr>
<tr>
<td>H(32B)</td>
<td>14872</td>
<td>5609</td>
<td>6255</td>
<td>49</td>
</tr>
<tr>
<td>H(32A)</td>
<td>14659</td>
<td>6369</td>
<td>6708</td>
<td>49</td>
</tr>
<tr>
<td>H(34C)</td>
<td>16350</td>
<td>5456</td>
<td>4570</td>
<td>83</td>
</tr>
<tr>
<td>H(34B)</td>
<td>15278</td>
<td>5081</td>
<td>4507</td>
<td>83</td>
</tr>
<tr>
<td>H(34A)</td>
<td>15788</td>
<td>5098</td>
<td>5000</td>
<td>83</td>
</tr>
<tr>
<td>H(35C)</td>
<td>16043</td>
<td>7543</td>
<td>4164</td>
<td>87</td>
</tr>
<tr>
<td>H(35B)</td>
<td>15258</td>
<td>8524</td>
<td>4319</td>
<td>87</td>
</tr>
<tr>
<td>H(35A)</td>
<td>14979</td>
<td>7126</td>
<td>4097</td>
<td>87</td>
</tr>
<tr>
<td>H(36C)</td>
<td>16841</td>
<td>7573</td>
<td>4916</td>
<td>67</td>
</tr>
<tr>
<td>H(36B)</td>
<td>16301</td>
<td>7185</td>
<td>5350</td>
<td>67</td>
</tr>
<tr>
<td>H(36A)</td>
<td>16090</td>
<td>8563</td>
<td>5099</td>
<td>67</td>
</tr>
<tr>
<td>H(7SA)</td>
<td>6255</td>
<td>4034</td>
<td>6589</td>
<td>76</td>
</tr>
<tr>
<td>H(8SA)</td>
<td>6482</td>
<td>4683</td>
<td>5847</td>
<td>64</td>
</tr>
<tr>
<td>H(9SA)</td>
<td>7870</td>
<td>5703</td>
<td>5687</td>
<td>57</td>
</tr>
<tr>
<td>H(10A)</td>
<td>9001</td>
<td>6020</td>
<td>6264</td>
<td>53</td>
</tr>
<tr>
<td>H(11C)</td>
<td>8764</td>
<td>5315</td>
<td>6990</td>
<td>60</td>
</tr>
<tr>
<td>H(12A)</td>
<td>7408</td>
<td>4297</td>
<td>7148</td>
<td>72</td>
</tr>
<tr>
<td>H(1')</td>
<td>9700</td>
<td>6496</td>
<td>-499</td>
<td>22</td>
</tr>
<tr>
<td>H(2D)</td>
<td>11337</td>
<td>8060</td>
<td>-590</td>
<td>31</td>
</tr>
<tr>
<td>H(2C)</td>
<td>11302</td>
<td>6473</td>
<td>-600</td>
<td>31</td>
</tr>
<tr>
<td>H(3D)</td>
<td>11239</td>
<td>7335</td>
<td>-1353</td>
<td>39</td>
</tr>
<tr>
<td>H(3C)</td>
<td>10319</td>
<td>6516</td>
<td>-1270</td>
<td>39</td>
</tr>
<tr>
<td>H(4C)</td>
<td>9943</td>
<td>8535</td>
<td>-1627</td>
<td>34</td>
</tr>
<tr>
<td>H(4D)</td>
<td>10474</td>
<td>9327</td>
<td>-1224</td>
<td>34</td>
</tr>
<tr>
<td>H(5D)</td>
<td>8881</td>
<td>9416</td>
<td>-1125</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>H(5C)</td>
<td>8808</td>
<td>7832</td>
<td>-1147</td>
<td>29</td>
</tr>
<tr>
<td>H(6')</td>
<td>9817</td>
<td>9324</td>
<td>-467</td>
<td>18</td>
</tr>
<tr>
<td>H(7')</td>
<td>11470</td>
<td>7051</td>
<td>120</td>
<td>21</td>
</tr>
<tr>
<td>H(9')</td>
<td>12486</td>
<td>6798</td>
<td>747</td>
<td>22</td>
</tr>
<tr>
<td>H(11')</td>
<td>11678</td>
<td>6942</td>
<td>1999</td>
<td>24</td>
</tr>
<tr>
<td>H(15F)</td>
<td>14152</td>
<td>7240</td>
<td>2082</td>
<td>43</td>
</tr>
<tr>
<td>H(15E)</td>
<td>13103</td>
<td>7459</td>
<td>2201</td>
<td>43</td>
</tr>
<tr>
<td>H(15D)</td>
<td>13538</td>
<td>8356</td>
<td>1825</td>
<td>43</td>
</tr>
<tr>
<td>H(16F)</td>
<td>13787</td>
<td>4838</td>
<td>1930</td>
<td>68</td>
</tr>
<tr>
<td>H(16E)</td>
<td>12993</td>
<td>4441</td>
<td>1557</td>
<td>68</td>
</tr>
<tr>
<td>H(16D)</td>
<td>12725</td>
<td>5056</td>
<td>2027</td>
<td>68</td>
</tr>
<tr>
<td>H(17F)</td>
<td>14536</td>
<td>6268</td>
<td>1381</td>
<td>49</td>
</tr>
<tr>
<td>H(17E)</td>
<td>13933</td>
<td>7341</td>
<td>1097</td>
<td>49</td>
</tr>
<tr>
<td>H(17D)</td>
<td>13759</td>
<td>5796</td>
<td>1010</td>
<td>49</td>
</tr>
<tr>
<td>H(19F)</td>
<td>9808</td>
<td>7681</td>
<td>2580</td>
<td>54</td>
</tr>
<tr>
<td>H(19E)</td>
<td>10795</td>
<td>8142</td>
<td>2427</td>
<td>54</td>
</tr>
<tr>
<td>H(19D)</td>
<td>10529</td>
<td>6605</td>
<td>2423</td>
<td>54</td>
</tr>
<tr>
<td>H(20F)</td>
<td>8632</td>
<td>6847</td>
<td>2048</td>
<td>41</td>
</tr>
<tr>
<td>H(20D)</td>
<td>9324</td>
<td>5751</td>
<td>1877</td>
<td>41</td>
</tr>
<tr>
<td>H(20E)</td>
<td>8795</td>
<td>6725</td>
<td>1523</td>
<td>41</td>
</tr>
<tr>
<td>H(21F)</td>
<td>9055</td>
<td>9227</td>
<td>2035</td>
<td>41</td>
</tr>
<tr>
<td>H(21E)</td>
<td>9247</td>
<td>9150</td>
<td>1512</td>
<td>41</td>
</tr>
<tr>
<td>H(21D)</td>
<td>10034</td>
<td>9679</td>
<td>1868</td>
<td>41</td>
</tr>
<tr>
<td>H(22')</td>
<td>7696</td>
<td>8770</td>
<td>-705</td>
<td>24</td>
</tr>
<tr>
<td>H(26')</td>
<td>5066</td>
<td>9285</td>
<td>554</td>
<td>24</td>
</tr>
<tr>
<td>H(28')</td>
<td>6067</td>
<td>8721</td>
<td>-654</td>
<td>26</td>
</tr>
<tr>
<td>H(30F)</td>
<td>7318</td>
<td>10287</td>
<td>1582</td>
<td>44</td>
</tr>
<tr>
<td>H(30E)</td>
<td>7046</td>
<td>11059</td>
<td>1123</td>
<td>44</td>
</tr>
<tr>
<td>H(30D)</td>
<td>7852</td>
<td>9976</td>
<td>1140</td>
<td>44</td>
</tr>
<tr>
<td>H(31F)</td>
<td>6915</td>
<td>7865</td>
<td>1650</td>
<td>45</td>
</tr>
<tr>
<td>H(31E)</td>
<td>7431</td>
<td>7528</td>
<td>1204</td>
<td>45</td>
</tr>
<tr>
<td>H(31D)</td>
<td>6371</td>
<td>7128</td>
<td>1238</td>
<td>45</td>
</tr>
<tr>
<td>H(32F)</td>
<td>5751</td>
<td>9624</td>
<td>1654</td>
<td>44</td>
</tr>
<tr>
<td>H(32E)</td>
<td>5165</td>
<td>8890</td>
<td>1255</td>
<td>44</td>
</tr>
<tr>
<td>H(32D)</td>
<td>5443</td>
<td>10412</td>
<td>1203</td>
<td>44</td>
</tr>
<tr>
<td>H(34F)</td>
<td>4528</td>
<td>11032</td>
<td>-449</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>H(34E)</td>
<td>4113</td>
<td>10755</td>
<td>27</td>
<td>52</td>
</tr>
<tr>
<td>H(34D)</td>
<td>3482</td>
<td>10546</td>
<td>-428</td>
<td>52</td>
</tr>
<tr>
<td>H(35F)</td>
<td>4570</td>
<td>7696</td>
<td>-812</td>
<td>62</td>
</tr>
<tr>
<td>H(35E)</td>
<td>4742</td>
<td>9186</td>
<td>-968</td>
<td>62</td>
</tr>
<tr>
<td>H(35D)</td>
<td>3713</td>
<td>8671</td>
<td>-912</td>
<td>62</td>
</tr>
<tr>
<td>H(36F)</td>
<td>3948</td>
<td>7274</td>
<td>-47</td>
<td>59</td>
</tr>
<tr>
<td>H(36E)</td>
<td>3128</td>
<td>8293</td>
<td>-175</td>
<td>59</td>
</tr>
<tr>
<td>H(36D)</td>
<td>3779</td>
<td>8510</td>
<td>273</td>
<td>59</td>
</tr>
<tr>
<td>H(1SA)</td>
<td>5730</td>
<td>6339</td>
<td>3386</td>
<td>87</td>
</tr>
<tr>
<td>H(2SA)</td>
<td>4819</td>
<td>7818</td>
<td>2962</td>
<td>78</td>
</tr>
<tr>
<td>H(3SA)</td>
<td>5502</td>
<td>9329</td>
<td>2500</td>
<td>79</td>
</tr>
<tr>
<td>H(4SA)</td>
<td>7101</td>
<td>9270</td>
<td>2431</td>
<td>84</td>
</tr>
<tr>
<td>H(5SA)</td>
<td>7992</td>
<td>7739</td>
<td>2879</td>
<td>90</td>
</tr>
<tr>
<td>H(6SA)</td>
<td>7278</td>
<td>6278</td>
<td>3318</td>
<td>91</td>
</tr>
<tr>
<td>H(13C)</td>
<td>5096</td>
<td>4794</td>
<td>2532</td>
<td>81</td>
</tr>
<tr>
<td>H(14A)</td>
<td>5186</td>
<td>2528</td>
<td>2514</td>
<td>87</td>
</tr>
<tr>
<td>H(15G)</td>
<td>6385</td>
<td>1544</td>
<td>2186</td>
<td>102</td>
</tr>
<tr>
<td>H(16G)</td>
<td>7515</td>
<td>2804</td>
<td>1837</td>
<td>106</td>
</tr>
<tr>
<td>H(17G)</td>
<td>7303</td>
<td>5116</td>
<td>1814</td>
<td>78</td>
</tr>
<tr>
<td>H(18A)</td>
<td>6138</td>
<td>6034</td>
<td>2174</td>
<td>77</td>
</tr>
<tr>
<td>H(19G)</td>
<td>8230</td>
<td>5590</td>
<td>-2020</td>
<td>69</td>
</tr>
<tr>
<td>H(20G)</td>
<td>6803</td>
<td>6719</td>
<td>-2165</td>
<td>69</td>
</tr>
<tr>
<td>H(21G)</td>
<td>5788</td>
<td>6836</td>
<td>-1610</td>
<td>58</td>
</tr>
<tr>
<td>H(22C)</td>
<td>6231</td>
<td>6268</td>
<td>-884</td>
<td>54</td>
</tr>
<tr>
<td>H(23A)</td>
<td>7655</td>
<td>5185</td>
<td>-716</td>
<td>54</td>
</tr>
<tr>
<td>H(24C)</td>
<td>8659</td>
<td>4922</td>
<td>-1291</td>
<td>61</td>
</tr>
<tr>
<td>Table 1. Crystal data and structure refinement for \textit{rac}-(salen-I)CoI.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification code</td>
<td>\textit{rac}-(salen-I)CoI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C\textsubscript{36} H\textsubscript{52} Co I N\textsubscript{2} O\textsubscript{2} * CH\textsubscript{2}Cl\textsubscript{2}, 1/2(C6H14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formula weight</td>
<td>858.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>173(2) K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>(a = 10.969(4) \text{ Å} \quad \alpha = 97.299(9)^\circ.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b = 12.522(5) \text{ Å} \quad \beta = 105.834(9)^\circ.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c = 16.694(7) \text{ Å} \quad \gamma = 106.802(9)^\circ.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>2058.3(14) Å(^3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.385 Mg/m(^3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.331 mm(^{-1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F(000))</td>
<td>890</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.40 x 0.15 x 0.05 mm(^3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.04 to 24.71°.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index ranges</td>
<td>-12(\leq h \leq 11, -14\leq k \leq 11, -19\leq l \leq 19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflections collected</td>
<td>10444</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6823 [R(int) = 0.0491]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completeness to theta = 24.71°</td>
<td>97.2 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption correction</td>
<td>SADABS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9364 and 0.6181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on (F^2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6823 / 159 / 537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>0.881</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final R indices [I>2\sigma(I)]</td>
<td>R(_1) = 0.0563, wR(_2) = 0.1322</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R(_1) = 0.0995, wR(_2) = 0.1537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.690 and -0.847 e.Å(^3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for rac-(salen-I)CoI. U(eq) is defined as one third of the trace of the orthogonalized U^i tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(1)</td>
<td>3723(1)</td>
<td>1632(1)</td>
<td>3717(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>Co(1)</td>
<td>1484(1)</td>
<td>248(1)</td>
<td>3939(1)</td>
<td>17(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>4645(2)</td>
<td>637(2)</td>
<td>1075(2)</td>
<td>83(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>3442(2)</td>
<td>2401(2)</td>
<td>806(1)</td>
<td>56(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1086(3)</td>
<td>-1040(3)</td>
<td>3127(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>264(3)</td>
<td>640(3)</td>
<td>3121(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>2492(4)</td>
<td>-276(4)</td>
<td>4803(3)</td>
<td>21(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>1418(4)</td>
<td>1245(4)</td>
<td>4845(3)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>3159(11)</td>
<td>609(9)</td>
<td>5606(7)</td>
<td>14(3)</td>
</tr>
<tr>
<td>C(1)</td>
<td>2605(12)</td>
<td>297(10)</td>
<td>5691(7)</td>
<td>23(3)</td>
</tr>
<tr>
<td>C(1S)</td>
<td>3410(6)</td>
<td>1200(6)</td>
<td>1232(4)</td>
<td>44(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>3821(6)</td>
<td>272(5)</td>
<td>6410(4)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(2S)</td>
<td>3930(8)</td>
<td>-2988(7)</td>
<td>605(5)</td>
<td>69(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>4314(11)</td>
<td>1228(10)</td>
<td>7167(7)</td>
<td>23(3)</td>
</tr>
<tr>
<td>C(3)</td>
<td>3779(14)</td>
<td>935(11)</td>
<td>7299(8)</td>
<td>28(3)</td>
</tr>
<tr>
<td>C(3S)</td>
<td>3863(7)</td>
<td>-4044(7)</td>
<td>-4(5)</td>
<td>56(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>3708(11)</td>
<td>2120(10)</td>
<td>7209(7)</td>
<td>29(3)</td>
</tr>
<tr>
<td>C(4)</td>
<td>3173(12)</td>
<td>1637(11)</td>
<td>7271(7)</td>
<td>22(3)</td>
</tr>
<tr>
<td>C(4S)</td>
<td>5002(7)</td>
<td>-4511(6)</td>
<td>308(5)</td>
<td>49(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>2490(5)</td>
<td>2033(5)</td>
<td>6462(3)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>1967(10)</td>
<td>955(9)</td>
<td>5711(6)</td>
<td>14(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>2576(10)</td>
<td>1483(9)</td>
<td>5645(6)</td>
<td>17(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>2904(5)</td>
<td>-1148(5)</td>
<td>4702(3)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2546(5)</td>
<td>-1935(4)</td>
<td>3915(3)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>3082(5)</td>
<td>-2840(4)</td>
<td>3918(3)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>2735(5)</td>
<td>-3677(4)</td>
<td>3208(3)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>1818(5)</td>
<td>-3578(4)</td>
<td>2450(3)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>1259(5)</td>
<td>-2718(4)</td>
<td>2388(3)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>1634(5)</td>
<td>-1854(4)</td>
<td>3154(3)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>3179(5)</td>
<td>-4731(4)</td>
<td>3210(3)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>2011(6)</td>
<td>-5723(5)</td>
<td>3253(5)</td>
<td>54(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>C(16) & 4407(6) & -4548(5) & 3976(4) & 35(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(17) & 3518(6) & -5038(6) & 2410(4) & 51(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18) & 316(5) & -2665(5) & 1544(3) & 21(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19) & 97(6) & -3629(5) & 807(4) & 38(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20) & 914(6) & -1539(5) & 1306(3) & 29(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21) & -1088(5) & -2755(5) & 1626(4) & 28(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22) & 692(5) & 1907(5) & 4781(3) & 26(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23) & -119(5) & 2070(4) & 4012(3) & 18(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24) & -230(5) & 1475(4) & 3260(3) & 18(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25) & -938(5) & 1778(4) & 2457(3) & 18(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(26) & -1520(5) & 2590(4) & 2584(3) & 21(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(27) & -1469(5) & 3166(4) & 3370(3) & 18(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(28) & -768(5) & 2888(4) & 4092(3) & 19(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(29) & -991(5) & 1255(5) & 1562(3) & 23(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(30) & -1762(5) & -47(5) & 1322(3) & 28(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(31) & 441(5) & 1457(5) & 1528(3) & 31(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(32) & -1712(6) & 1766(5) & 878(3) & 31(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(33) & -2082(5) & 4142(5) & 3418(3) & 23(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(34) & -3493(5) & 3751(6) & 2767(4) & 41(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(35) & -1130(6) & 5158(5) & 3231(4) & 43(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(36) & -2194(6) & 4481(5) & 4302(4) & 35(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for rac-(salen-1)CoI.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(1)-Co(1)</td>
<td>2.7144(11)</td>
</tr>
<tr>
<td>Co(1)-O(1)</td>
<td>1.828(3)</td>
</tr>
<tr>
<td>Co(1)-O(2)</td>
<td>1.858(3)</td>
</tr>
<tr>
<td>Co(1)-N(2)</td>
<td>1.866(4)</td>
</tr>
<tr>
<td>Co(1)-N(1)</td>
<td>1.877(4)</td>
</tr>
<tr>
<td>Cl(1)-C(1S)</td>
<td>1.760(7)</td>
</tr>
<tr>
<td>Cl(2)-C(1S)</td>
<td>1.739(8)</td>
</tr>
<tr>
<td>O(1)-C(13)</td>
<td>1.325(6)</td>
</tr>
<tr>
<td>O(2)-C(24)</td>
<td>1.318(6)</td>
</tr>
<tr>
<td>N(1)-C(7)</td>
<td>1.305(7)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.476(11)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.519(12)</td>
</tr>
<tr>
<td>N(2)-C(22)</td>
<td>1.300(7)</td>
</tr>
<tr>
<td>N(2)-C(6)</td>
<td>1.497(10)</td>
</tr>
<tr>
<td>N(2)-C(6)</td>
<td>1.539(11)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.515(12)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.537(16)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.505(16)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.543(12)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.480(12)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.624(14)</td>
</tr>
<tr>
<td>C(3S)-C(4S)</td>
<td>1.523(11)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.524(12)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.569(13)</td>
</tr>
<tr>
<td>C(4S)-C(4S)#1</td>
<td>1.495(15)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.487(12)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.566(11)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.421(7)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.420(7)</td>
</tr>
<tr>
<td>C(8)-C(13)</td>
<td>1.422(7)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.363(7)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.430(7)</td>
</tr>
<tr>
<td>C(10)-C(14)</td>
<td>1.533(7)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.387(8)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.442(7)</td>
</tr>
<tr>
<td>C(12)-C(18)</td>
<td>1.526(7)</td>
</tr>
<tr>
<td>C(14)-C(17)</td>
<td>1.515(8)</td>
</tr>
<tr>
<td>C(14)-C(16)</td>
<td>1.519(7)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.529(8)</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.524(8)</td>
</tr>
<tr>
<td>C(18)-C(20)</td>
<td>1.524(8)</td>
</tr>
<tr>
<td>C(18)-C(21)</td>
<td>1.557(7)</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.425(7)</td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.409(7)</td>
</tr>
<tr>
<td>C(23)-C(28)</td>
<td>1.419(7)</td>
</tr>
<tr>
<td>C(24)-C(25)</td>
<td>1.440(7)</td>
</tr>
<tr>
<td>C(25)-C(26)</td>
<td>1.371(7)</td>
</tr>
<tr>
<td>C(25)-C(29)</td>
<td>1.532(7)</td>
</tr>
<tr>
<td>C(26)-C(27)</td>
<td>1.394(7)</td>
</tr>
<tr>
<td>C(27)-C(28)</td>
<td>1.385(7)</td>
</tr>
<tr>
<td>C(27)-C(33)</td>
<td>1.560(7)</td>
</tr>
<tr>
<td>C(29)-C(32)</td>
<td>1.525(8)</td>
</tr>
<tr>
<td>C(29)-C(31)</td>
<td>1.535(7)</td>
</tr>
<tr>
<td>C(29)-C(30)</td>
<td>1.545(7)</td>
</tr>
<tr>
<td>C(33)-C(35)</td>
<td>1.522(8)</td>
</tr>
<tr>
<td>C(33)-C(34)</td>
<td>1.524(7)</td>
</tr>
<tr>
<td>C(33)-C(36)</td>
<td>1.530(8)</td>
</tr>
<tr>
<td>O(1)-Co(1)-O(2)</td>
<td>86.13(15)</td>
</tr>
<tr>
<td>O(1)-Co(1)-N(2)</td>
<td>161.11(18)</td>
</tr>
<tr>
<td>O(2)-Co(1)-N(2)</td>
<td>93.56(18)</td>
</tr>
<tr>
<td>O(1)-Co(1)-N(1)</td>
<td>93.04(17)</td>
</tr>
<tr>
<td>O(2)-Co(1)-N(1)</td>
<td>171.42(17)</td>
</tr>
<tr>
<td>N(2)-Co(1)-N(1)</td>
<td>84.46(19)</td>
</tr>
<tr>
<td>O(1)-Co(1)-I(1)</td>
<td>100.62(12)</td>
</tr>
<tr>
<td>O(2)-Co(1)-I(1)</td>
<td>95.76(11)</td>
</tr>
<tr>
<td>N(2)-Co(1)-I(1)</td>
<td>98.21(14)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>N(1)-Co(1)-I(1)</td>
<td>92.79(14)</td>
</tr>
<tr>
<td>C(13)-O(1)-Co(1)</td>
<td>129.3(3)</td>
</tr>
<tr>
<td>C(24)-O(2)-Co(1)</td>
<td>129.2(3)</td>
</tr>
<tr>
<td>C(7)-N(1)-C(1)</td>
<td>119.2(6)</td>
</tr>
<tr>
<td>C(7)-N(1)-C(1)</td>
<td>119.9(6)</td>
</tr>
<tr>
<td>C(1)-N(1)-C(1)</td>
<td>26.3(5)</td>
</tr>
<tr>
<td>C(7)-N(1)-Co(1)</td>
<td>126.8(4)</td>
</tr>
<tr>
<td>C(1)-N(1)-Co(1)</td>
<td>111.5(5)</td>
</tr>
<tr>
<td>C(1)-N(1)-Co(1)</td>
<td>112.5(5)</td>
</tr>
<tr>
<td>C(22)-N(2)-C(6)</td>
<td>119.3(6)</td>
</tr>
<tr>
<td>C(22)-N(2)-C(6)</td>
<td>119.6(6)</td>
</tr>
<tr>
<td>C(22)-N(2)-Co(1)</td>
<td>125.8(4)</td>
</tr>
<tr>
<td>C(6)-N(2)-Co(1)</td>
<td>112.8(5)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(2)</td>
<td>118.6(8)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(6)</td>
<td>101.0(7)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(6)</td>
<td>109.2(9)</td>
</tr>
<tr>
<td>C(6)-C(1)-N(1)</td>
<td>106.4(8)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(2)</td>
<td>113.9(8)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(2)</td>
<td>114.2(8)</td>
</tr>
<tr>
<td>Cl(2)-C(1S)-Cl(1)</td>
<td>112.2(4)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>111.3(7)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>114.0(7)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)</td>
<td>25.8(5)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(3)</td>
<td>25.6(6)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)</td>
<td>116.3(7)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)</td>
<td>106.9(7)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>122.2(9)</td>
</tr>
<tr>
<td>C(4)-C(3)-C(2)</td>
<td>118.7(10)</td>
</tr>
<tr>
<td>C(4S)-C(3S)-C(2S)</td>
<td>114.9(6)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>118.6(9)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>127.2(11)</td>
</tr>
<tr>
<td>C(4S)#1-C(4S)-C(3S)</td>
<td>115.2(7)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>110.5(7)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>31.6(5)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)</td>
<td>116.3(7)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>115.1(7)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(4)</td>
<td>28.0(6)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>104.8(7)</td>
</tr>
<tr>
<td>C(1)-C(6)-N(2)</td>
<td>101.9(8)</td>
</tr>
<tr>
<td>C(1)-C(6)-C(5)</td>
<td>109.7(7)</td>
</tr>
<tr>
<td>N(2)-C(6)-C(5)</td>
<td>111.2(7)</td>
</tr>
<tr>
<td>C(5)-C(6)-N(2)</td>
<td>118.3(7)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(1)</td>
<td>109.0(9)</td>
</tr>
<tr>
<td>N(2)-C(6)-C(1)</td>
<td>101.6(7)</td>
</tr>
<tr>
<td>N(1)-C(7)-C(8)</td>
<td>125.0(5)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)</td>
<td>117.8(4)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(13)</td>
<td>121.4(5)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(13)</td>
<td>120.7(4)</td>
</tr>
<tr>
<td>C(10)-C(9)-C(8)</td>
<td>122.2(5)</td>
</tr>
<tr>
<td>C(9)-C(10)-C(11)</td>
<td>116.0(5)</td>
</tr>
<tr>
<td>C(9)-C(10)-C(14)</td>
<td>123.5(5)</td>
</tr>
<tr>
<td>C(11)-C(10)-C(14)</td>
<td>120.2(4)</td>
</tr>
<tr>
<td>C(12)-C(11)-C(10)</td>
<td>125.5(5)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)</td>
<td>117.0(4)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(18)</td>
<td>121.8(4)</td>
</tr>
<tr>
<td>C(13)-C(12)-C(18)</td>
<td>121.2(5)</td>
</tr>
<tr>
<td>O(1)-C(13)-C(8)</td>
<td>122.7(4)</td>
</tr>
<tr>
<td>O(1)-C(13)-C(12)</td>
<td>118.8(4)</td>
</tr>
<tr>
<td>C(8)-C(13)-C(12)</td>
<td>118.4(5)</td>
</tr>
<tr>
<td>C(17)-C(14)-C(16)</td>
<td>107.9(5)</td>
</tr>
<tr>
<td>C(17)-C(14)-C(15)</td>
<td>109.8(5)</td>
</tr>
<tr>
<td>C(16)-C(14)-C(15)</td>
<td>108.3(5)</td>
</tr>
<tr>
<td>C(17)-C(14)-C(10)</td>
<td>111.0(5)</td>
</tr>
<tr>
<td>C(16)-C(14)-C(10)</td>
<td>112.3(4)</td>
</tr>
<tr>
<td>C(15)-C(14)-C(10)</td>
<td>107.5(4)</td>
</tr>
<tr>
<td>C(19)-C(18)-C(20)</td>
<td>107.2(5)</td>
</tr>
<tr>
<td>C(19)-C(18)-C(12)</td>
<td>112.8(5)</td>
</tr>
<tr>
<td>C(20)-C(18)-C(12)</td>
<td>109.6(4)</td>
</tr>
<tr>
<td>C(19)-C(18)-C(21)</td>
<td>107.4(4)</td>
</tr>
<tr>
<td>C(20)-C(18)-C(21)</td>
<td>109.7(5)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>C(12)-C(18)-C(21)</td>
<td>110.0(4)</td>
</tr>
<tr>
<td>N(2)-C(22)-C(23)</td>
<td>126.7(5)</td>
</tr>
<tr>
<td>C(24)-C(23)-C(28)</td>
<td>121.4(5)</td>
</tr>
<tr>
<td>C(24)-C(23)-C(22)</td>
<td>121.3(5)</td>
</tr>
<tr>
<td>C(28)-C(23)-C(22)</td>
<td>117.2(5)</td>
</tr>
<tr>
<td>O(2)-C(24)-C(23)</td>
<td>122.1(4)</td>
</tr>
<tr>
<td>O(2)-C(24)-C(25)</td>
<td>119.7(4)</td>
</tr>
<tr>
<td>C(23)-C(24)-C(25)</td>
<td>118.3(5)</td>
</tr>
<tr>
<td>C(26)-C(25)-C(24)</td>
<td>116.9(5)</td>
</tr>
<tr>
<td>C(26)-C(25)-C(29)</td>
<td>121.5(5)</td>
</tr>
<tr>
<td>C(24)-C(25)-C(29)</td>
<td>121.6(5)</td>
</tr>
<tr>
<td>C(25)-C(26)-C(27)</td>
<td>126.2(5)</td>
</tr>
<tr>
<td>C(28)-C(27)-C(26)</td>
<td>116.8(5)</td>
</tr>
<tr>
<td>C(28)-C(27)-C(33)</td>
<td>122.7(5)</td>
</tr>
<tr>
<td>C(26)-C(27)-C(33)</td>
<td>120.3(5)</td>
</tr>
<tr>
<td>C(27)-C(28)-C(23)</td>
<td>120.2(5)</td>
</tr>
<tr>
<td>C(32)-C(29)-C(25)</td>
<td>112.1(5)</td>
</tr>
<tr>
<td>C(32)-C(29)-C(31)</td>
<td>108.2(5)</td>
</tr>
<tr>
<td>C(25)-C(29)-C(31)</td>
<td>110.2(4)</td>
</tr>
<tr>
<td>C(32)-C(29)-C(30)</td>
<td>107.0(4)</td>
</tr>
<tr>
<td>C(25)-C(29)-C(30)</td>
<td>110.6(4)</td>
</tr>
<tr>
<td>C(31)-C(29)-C(30)</td>
<td>108.6(5)</td>
</tr>
<tr>
<td>C(35)-C(33)-C(34)</td>
<td>111.5(5)</td>
</tr>
<tr>
<td>C(35)-C(33)-C(36)</td>
<td>109.7(5)</td>
</tr>
<tr>
<td>C(34)-C(33)-C(36)</td>
<td>107.8(5)</td>
</tr>
<tr>
<td>C(35)-C(33)-C(27)</td>
<td>106.1(4)</td>
</tr>
<tr>
<td>C(34)-C(33)-C(27)</td>
<td>110.0(4)</td>
</tr>
<tr>
<td>C(36)-C(33)-C(27)</td>
<td>111.7(5)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x+1,-y-1,-z
Table 4. Anisotropic displacement parameters (Å\(^2\)x 10\(^3\)) for rac-(salen-1)CoI. The anisotropic displacement factor exponent takes the form: -2\(\pi^2\)\[h^2 a^{*2} U^{11} + \ldots + 2 h k a^{*} b^{*} U^{12} \]

<table>
<thead>
<tr>
<th></th>
<th>(U^{11})</th>
<th>(U^{22})</th>
<th>(U^{33})</th>
<th>(U^{12})</th>
<th>(U^{13})</th>
<th>(U^{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(1)</td>
<td>21(1)</td>
<td>30(1)</td>
<td>28(1)</td>
<td>11(1)</td>
<td>8(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>Co(1)</td>
<td>18(1)</td>
<td>17(1)</td>
<td>16(1)</td>
<td>3(1)</td>
<td>4(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>54(1)</td>
<td>87(2)</td>
<td>123(2)</td>
<td>30(1)</td>
<td>35(1)</td>
<td>40(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>57(1)</td>
<td>49(1)</td>
<td>56(1)</td>
<td>7(1)</td>
<td>16(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>23(2)</td>
<td>17(2)</td>
<td>20(2)</td>
<td>0(1)</td>
<td>2(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>20(2)</td>
<td>22(2)</td>
<td>20(2)</td>
<td>6(1)</td>
<td>1(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>27(2)</td>
<td>18(2)</td>
<td>15(2)</td>
<td>2(2)</td>
<td>1(2)</td>
<td>12(2)</td>
</tr>
<tr>
<td>N(2)</td>
<td>23(2)</td>
<td>34(3)</td>
<td>19(2)</td>
<td>-2(2)</td>
<td>2(2)</td>
<td>18(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>17(5)</td>
<td>6(5)</td>
<td>20(4)</td>
<td>2(4)</td>
<td>3(4)</td>
<td>8(4)</td>
</tr>
<tr>
<td>C(1)</td>
<td>21(5)</td>
<td>25(5)</td>
<td>24(5)</td>
<td>7(4)</td>
<td>7(4)</td>
<td>10(4)</td>
</tr>
<tr>
<td>C(1S)</td>
<td>44(3)</td>
<td>61(4)</td>
<td>38(3)</td>
<td>20(3)</td>
<td>25(3)</td>
<td>20(3)</td>
</tr>
<tr>
<td>C(2)</td>
<td>26(3)</td>
<td>30(3)</td>
<td>22(3)</td>
<td>8(2)</td>
<td>1(2)</td>
<td>19(2)</td>
</tr>
<tr>
<td>C(2S)</td>
<td>68(5)</td>
<td>86(5)</td>
<td>53(4)</td>
<td>21(4)</td>
<td>1(4)</td>
<td>40(4)</td>
</tr>
<tr>
<td>C(3)</td>
<td>30(5)</td>
<td>24(5)</td>
<td>19(5)</td>
<td>5(4)</td>
<td>6(4)</td>
<td>16(4)</td>
</tr>
<tr>
<td>C(3)</td>
<td>48(6)</td>
<td>25(6)</td>
<td>21(5)</td>
<td>6(4)</td>
<td>5(5)</td>
<td>21(5)</td>
</tr>
<tr>
<td>C(3S)</td>
<td>40(4)</td>
<td>70(5)</td>
<td>57(4)</td>
<td>21(4)</td>
<td>10(3)</td>
<td>16(3)</td>
</tr>
<tr>
<td>C(4)</td>
<td>26(5)</td>
<td>26(5)</td>
<td>27(5)</td>
<td>2(4)</td>
<td>-1(4)</td>
<td>7(4)</td>
</tr>
<tr>
<td>C(4)</td>
<td>17(5)</td>
<td>33(6)</td>
<td>14(4)</td>
<td>-2(4)</td>
<td>4(4)</td>
<td>11(4)</td>
</tr>
<tr>
<td>C(4S)</td>
<td>41(3)</td>
<td>50(4)</td>
<td>49(4)</td>
<td>16(3)</td>
<td>8(3)</td>
<td>8(3)</td>
</tr>
<tr>
<td>C(5)</td>
<td>24(3)</td>
<td>36(3)</td>
<td>19(3)</td>
<td>1(2)</td>
<td>5(2)</td>
<td>18(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>14(4)</td>
<td>20(5)</td>
<td>12(4)</td>
<td>12(3)</td>
<td>4(4)</td>
<td>8(4)</td>
</tr>
<tr>
<td>C(6)</td>
<td>10(5)</td>
<td>25(5)</td>
<td>16(4)</td>
<td>3(4)</td>
<td>1(4)</td>
<td>11(4)</td>
</tr>
<tr>
<td>C(7)</td>
<td>25(3)</td>
<td>30(3)</td>
<td>21(3)</td>
<td>9(2)</td>
<td>5(2)</td>
<td>11(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>17(2)</td>
<td>14(3)</td>
<td>21(3)</td>
<td>4(2)</td>
<td>4(2)</td>
<td>9(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>13(2)</td>
<td>18(3)</td>
<td>22(3)</td>
<td>6(2)</td>
<td>1(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>20(2)</td>
<td>14(3)</td>
<td>32(3)</td>
<td>12(2)</td>
<td>12(2)</td>
<td>14(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>24(3)</td>
<td>21(3)</td>
<td>18(3)</td>
<td>-1(2)</td>
<td>5(2)</td>
<td>10(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>16(2)</td>
<td>25(3)</td>
<td>18(2)</td>
<td>4(2)</td>
<td>5(2)</td>
<td>12(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>19(2)</td>
<td>23(3)</td>
<td>18(2)</td>
<td>4(2)</td>
<td>7(2)</td>
<td>14(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>14(2)</td>
<td>19(3)</td>
<td>34(3)</td>
<td>8(2)</td>
<td>7(2)</td>
<td>10(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>37(3)</td>
<td>22(3)</td>
<td>111(6)</td>
<td>20(4)</td>
<td>28(4)</td>
<td>18(3)</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>39(3)</td>
<td>70(4)</td>
<td>32(3)</td>
<td>42(3)</td>
<td>38(3)</td>
<td>23(3)</td>
</tr>
<tr>
<td></td>
<td>34(3)</td>
<td>77(4)</td>
<td>34(3)</td>
<td>41(4)</td>
<td>38(3)</td>
<td>22(3)</td>
</tr>
<tr>
<td></td>
<td>36(3)</td>
<td>34(3)</td>
<td>19(3)</td>
<td>26(3)</td>
<td>38(3)</td>
<td>28(3)</td>
</tr>
<tr>
<td></td>
<td>7(3)</td>
<td>8(3)</td>
<td>4(2)</td>
<td>2(3)</td>
<td>10(2)</td>
<td>16(2)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for rac-(salen-I)Col.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>3830</td>
<td>1275</td>
<td>5514</td>
<td>17</td>
</tr>
<tr>
<td>H(1B)</td>
<td>1772</td>
<td>-127</td>
<td>5809</td>
<td>28</td>
</tr>
<tr>
<td>H(1SB)</td>
<td>3730(60)</td>
<td>1310(50)</td>
<td>1920(40)</td>
<td>60(20)</td>
</tr>
<tr>
<td>H(1SA)</td>
<td>2660(80)</td>
<td>420(70)</td>
<td>930(50)</td>
<td>90(30)</td>
</tr>
<tr>
<td>H(2B)</td>
<td>4660(60)</td>
<td>320(50)</td>
<td>6440(40)</td>
<td>50(20)</td>
</tr>
<tr>
<td>H(2A)</td>
<td>3460(80)</td>
<td>-150(70)</td>
<td>6540(50)</td>
<td>80(30)</td>
</tr>
<tr>
<td>H(2S1)</td>
<td>3760</td>
<td>-3206</td>
<td>1119</td>
<td>104</td>
</tr>
<tr>
<td>H(2S2)</td>
<td>3248</td>
<td>-2677</td>
<td>321</td>
<td>104</td>
</tr>
<tr>
<td>H(2S3)</td>
<td>4826</td>
<td>-2406</td>
<td>767</td>
<td>104</td>
</tr>
<tr>
<td>H(3SB)</td>
<td>3090(50)</td>
<td>-4490(50)</td>
<td>-10(30)</td>
<td>28(16)</td>
</tr>
<tr>
<td>H(3SA)</td>
<td>3760(50)</td>
<td>-4020(50)</td>
<td>-660(40)</td>
<td>36(17)</td>
</tr>
<tr>
<td>H(4A)</td>
<td>4416</td>
<td>2861</td>
<td>7287</td>
<td>35</td>
</tr>
<tr>
<td>H(4B)</td>
<td>3441</td>
<td>2149</td>
<td>7730</td>
<td>35</td>
</tr>
<tr>
<td>H(4C)</td>
<td>3822</td>
<td>2348</td>
<td>7681</td>
<td>26</td>
</tr>
<tr>
<td>H(4D)</td>
<td>2455</td>
<td>1346</td>
<td>7521</td>
<td>26</td>
</tr>
<tr>
<td>H(4SB)</td>
<td>5790(70)</td>
<td>-3850(60)</td>
<td>550(50)</td>
<td>80(30)</td>
</tr>
<tr>
<td>H(4SA)</td>
<td>4960(60)</td>
<td>-4800(60)</td>
<td>860(40)</td>
<td>60(20)</td>
</tr>
<tr>
<td>H(5B)</td>
<td>1750(50)</td>
<td>1930(50)</td>
<td>6570(30)</td>
<td>28(16)</td>
</tr>
<tr>
<td>H(5A)</td>
<td>2670(80)</td>
<td>2730(70)</td>
<td>6290(50)</td>
<td>100(30)</td>
</tr>
<tr>
<td>H(6A)</td>
<td>1276</td>
<td>307</td>
<td>5805</td>
<td>17</td>
</tr>
<tr>
<td>H(6B)</td>
<td>3425</td>
<td>1943</td>
<td>5561</td>
<td>20</td>
</tr>
<tr>
<td>H(7)</td>
<td>3360(60)</td>
<td>-1380(60)</td>
<td>5270(40)</td>
<td>70(20)</td>
</tr>
<tr>
<td>H(9)</td>
<td>3670(40)</td>
<td>-2790(40)</td>
<td>4450(30)</td>
<td>6(12)</td>
</tr>
<tr>
<td>H(11)</td>
<td>1650(40)</td>
<td>-4090(40)</td>
<td>1990(30)</td>
<td>8(12)</td>
</tr>
<tr>
<td>H(15A)</td>
<td>1304</td>
<td>-6003</td>
<td>2694</td>
<td>80</td>
</tr>
<tr>
<td>H(15B)</td>
<td>1646</td>
<td>-5457</td>
<td>3683</td>
<td>80</td>
</tr>
<tr>
<td>H(15C)</td>
<td>2336</td>
<td>-6343</td>
<td>3409</td>
<td>80</td>
</tr>
<tr>
<td>H(16A)</td>
<td>4710</td>
<td>-5209</td>
<td>3922</td>
<td>52</td>
</tr>
<tr>
<td>H(16B)</td>
<td>4172</td>
<td>-4461</td>
<td>4501</td>
<td>52</td>
</tr>
<tr>
<td>H(16C)</td>
<td>5131</td>
<td>-3855</td>
<td>4000</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>H(17A)</td>
<td>4243</td>
<td>-4389</td>
<td>2375</td>
<td>77</td>
</tr>
<tr>
<td>H(17B)</td>
<td>2719</td>
<td>-5219</td>
<td>1907</td>
<td>77</td>
</tr>
<tr>
<td>H(17C)</td>
<td>3813</td>
<td>-5705</td>
<td>2431</td>
<td>77</td>
</tr>
<tr>
<td>H(19A)</td>
<td>-505</td>
<td>-3550</td>
<td>281</td>
<td>56</td>
</tr>
<tr>
<td>H(19B)</td>
<td>-308</td>
<td>-4367</td>
<td>933</td>
<td>56</td>
</tr>
<tr>
<td>H(19C)</td>
<td>964</td>
<td>-3588</td>
<td>733</td>
<td>56</td>
</tr>
<tr>
<td>H(20A)</td>
<td>1059</td>
<td>-898</td>
<td>1764</td>
<td>44</td>
</tr>
<tr>
<td>H(20B)</td>
<td>292</td>
<td>-1495</td>
<td>774</td>
<td>44</td>
</tr>
<tr>
<td>H(20C)</td>
<td>1776</td>
<td>-1503</td>
<td>1225</td>
<td>44</td>
</tr>
<tr>
<td>H(21A)</td>
<td>-983</td>
<td>-2136</td>
<td>2090</td>
<td>42</td>
</tr>
<tr>
<td>H(21B)</td>
<td>-1489</td>
<td>-3495</td>
<td>1752</td>
<td>42</td>
</tr>
<tr>
<td>H(21C)</td>
<td>-1676</td>
<td>-2691</td>
<td>1088</td>
<td>42</td>
</tr>
<tr>
<td>H(22)</td>
<td>650(70)</td>
<td>2290(70)</td>
<td>5280(50)</td>
<td>90(30)</td>
</tr>
<tr>
<td>H(26)</td>
<td>-2020(40)</td>
<td>2790(40)</td>
<td>2120(30)</td>
<td>1(11)</td>
</tr>
<tr>
<td>H(28)</td>
<td>-720(50)</td>
<td>3180(40)</td>
<td>4650(30)</td>
<td>17(14)</td>
</tr>
<tr>
<td>H(30A)</td>
<td>-2655</td>
<td>-191</td>
<td>1384</td>
<td>42</td>
</tr>
<tr>
<td>H(30B)</td>
<td>-1260</td>
<td>-423</td>
<td>1701</td>
<td>42</td>
</tr>
<tr>
<td>H(30C)</td>
<td>-1861</td>
<td>-354</td>
<td>729</td>
<td>42</td>
</tr>
<tr>
<td>H(31A)</td>
<td>395</td>
<td>1123</td>
<td>952</td>
<td>46</td>
</tr>
<tr>
<td>H(31B)</td>
<td>906</td>
<td>1097</td>
<td>1941</td>
<td>46</td>
</tr>
<tr>
<td>H(31C)</td>
<td>937</td>
<td>2282</td>
<td>1668</td>
<td>46</td>
</tr>
<tr>
<td>H(32A)</td>
<td>-2631</td>
<td>1644</td>
<td>888</td>
<td>47</td>
</tr>
<tr>
<td>H(32B)</td>
<td>-1746</td>
<td>1394</td>
<td>316</td>
<td>47</td>
</tr>
<tr>
<td>H(32C)</td>
<td>-1223</td>
<td>2589</td>
<td>991</td>
<td>47</td>
</tr>
<tr>
<td>H(34A)</td>
<td>-3842</td>
<td>4388</td>
<td>2769</td>
<td>61</td>
</tr>
<tr>
<td>H(34B)</td>
<td>-4088</td>
<td>3115</td>
<td>2916</td>
<td>61</td>
</tr>
<tr>
<td>H(34C)</td>
<td>-3455</td>
<td>3498</td>
<td>2196</td>
<td>61</td>
</tr>
<tr>
<td>H(35A)</td>
<td>-1042</td>
<td>4932</td>
<td>2671</td>
<td>65</td>
</tr>
<tr>
<td>H(35B)</td>
<td>-244</td>
<td>5407</td>
<td>3672</td>
<td>65</td>
</tr>
<tr>
<td>H(35C)</td>
<td>-1491</td>
<td>5788</td>
<td>3229</td>
<td>65</td>
</tr>
<tr>
<td>H(36A)</td>
<td>-1289</td>
<td>4831</td>
<td>4723</td>
<td>52</td>
</tr>
<tr>
<td>H(36B)</td>
<td>-2689</td>
<td>3798</td>
<td>4458</td>
<td>52</td>
</tr>
<tr>
<td>H(36C)</td>
<td>-2675</td>
<td>5031</td>
<td>4290</td>
<td>52</td>
</tr>
</tbody>
</table>