Rhodium, palladium and platinum complexes of tris(pyridylalkyl)amine and tris(benzimidazolylmethyl)amine N₄-tripodal ligands

David G. Lonnon, Donald C. Craig and Stephen B. Colbran*

B. Additional NMR spectroscopy figures

ESI Fig. B1. Plot of the %product against time for the conversion of [Pd(pmap)Cl]+ to [Pd(epmpa)Cl]+ at 390 K in d₆-dmso. The points are the experimental data from the 300 MHz ¹H NMR spectra shown in Figure 8 (in the paper) and the curve shows the fit of the data to a single exponential.
ESI Fig. B2: Variable temperature 300 MHz \(^1\)H NMR spectra of [Pd(pmea)Cl]Cl in CD\(_2\)CN.

Dalton Transactions: Electronic Supplementary Material
ESI Fig. B3: Variable temperature 300 MHz 1H NMR spectra of [Pd(pmea)Cl]Cl in CD$_2$Cl.
ESI Figure B4: 300 MHz variable temperature 1H NMR spectra of [Pd(pmea)Cl]Cl in d_6-dms (denotes water). Note: The spectra in ESI Figs B2–B4 show peaks for only the asymmetric isomer with one bound and one dangling pyridylmethyl legs (see text of paper).
ESI Fig. B5: Variable temperature 300 MHz 1H NMR spectra of [Pt(tmpa)Cl]Cl in d_6-dmso.
ESI Fig. B6: 300 MHz variable temperature 1H NMR spectra of [Pt(pmea)Cl]Cl (two isomers — see text of the paper) in d_6-dmso. All changes were fully reversed upon cooling.
ESI Fig. B7: Variable temperature 300 MHz 1H NMR spectra of [Pd(Et-tbima)Cl]Cl in d_6-dms o.
ESI Fig. B8. 300 MHz variable temperature 1H NMR spectra for [Pd(tbima)$_2$Cl]$_2^{2+}$ in d_6-dmsol solution. The first four spectra (from the bottom) show the clean break-up of the dimer (36 protons) to afford the monomer, [Pd(tbima)Cl]$^+$ (18 protons). The subsequent nine spectra show the changes in the NMR spectrum of the monomeric cation at increasingly higher temperatures; all changes in the latter nine spectra were completely reversed on cooling (* denotes a peak for an impurity).