Two-Dimensional Double-Metal Cyanide Complexes: Highly Active Catalysts for the Homopolymerization of Propylene Oxide and Copolymerization of Propylene Oxide and Carbon Dioxide

Nicholas J. Robertson, Zengquan Qin, Gregory C. Dallinger, Emil B. Lobkovsky, Stephen Lee and Geoffrey W. Coates*

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, USA. Email: gc39@cornell.edu

Table of contents
X-ray analysis of Co(H₂O)₂[Pd(CN)₄] · 4 H₂O Page S1
NMR spectra of poly(propylene oxide) and poly(propylene carbonate) Page S6
Gradient COSY NMR spectrum Page S10

X-ray analysis of Co(H₂O)₂[Pd(CN)₄] · 4 H₂O

Fig. 1 Top view of the X-ray crystal structure of Co(H₂O)₂[Pd(CN)₄] · 4 H₂O.
Table 1. Crystal data and structure refinement for Co(H$_2$O)$_2$[Pd(CN)$_4$]·4 H$_2$O.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>PdCo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C$_2$H$_6$Co0.50N2O3Pd0.50</td>
</tr>
<tr>
<td>Formula weight</td>
<td>188.75</td>
</tr>
<tr>
<td>Temperature</td>
<td>105(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.9360 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pnma</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 12.041(2) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 14.217(3) Å, β = 90°</td>
</tr>
<tr>
<td></td>
<td>c = 7.4030(15) Å, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1267.3(4) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.979 Mg/m3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>2.745 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>740</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.07 x 0.04 x 0.01 mm3</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>4.09 to 30.09°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>0≤h≤12, 0≤k≤14, 0≤l≤7</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>721</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>721 [R(int) = 0.0000]</td>
</tr>
<tr>
<td>Completeness to theta = 22.38°</td>
<td>84.3 %</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>721 / 0 / 79</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.144</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0535, wR2 = 0.1599</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0579, wR2 = 0.1651</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.608 and -1.543 e·Å$^{-3}$</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (\AA^2 x 10^3) for Co(H$_2$O)$_2$[Pd(CN)$_4$] \cdot 4 H$_2$O. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)</td>
<td>4353(1)</td>
<td>7500</td>
<td>9907(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>Co(1)</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>14(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>6867(4)</td>
<td>7500</td>
<td>4263(7)</td>
<td>30(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1810(2)</td>
<td>5691(2)</td>
<td>5585(5)</td>
<td>23(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>6601(3)</td>
<td>5605(2)</td>
<td>5591(5)</td>
<td>20(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>2479(4)</td>
<td>2500</td>
<td>-499(7)</td>
<td>27(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>5285(3)</td>
<td>4032(3)</td>
<td>7113(5)</td>
<td>19(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>4334(3)</td>
<td>5945(3)</td>
<td>6926(6)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>4292(3)</td>
<td>6517(3)</td>
<td>8010(7)</td>
<td>11(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>4556(4)</td>
<td>6522(3)</td>
<td>11787(7)</td>
<td>15(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for Co(H$_2$O)$_2$[Pd(CN)$_4$]·4 H$_2$O.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Distance</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)-C(1)</td>
<td>1.983(5)</td>
<td></td>
</tr>
<tr>
<td>Pd(1)-C(1)#1</td>
<td>1.983(5)</td>
<td></td>
</tr>
<tr>
<td>Pd(1)-C(2)#1</td>
<td>1.983(5)</td>
<td></td>
</tr>
<tr>
<td>Pd(1)-C(2)</td>
<td>1.983(5)</td>
<td></td>
</tr>
<tr>
<td>Co(1)-N(2)</td>
<td>2.117(4)</td>
<td></td>
</tr>
<tr>
<td>Co(1)-N(2)#2</td>
<td>2.117(4)</td>
<td></td>
</tr>
<tr>
<td>Co(1)-N(1)#2</td>
<td>2.111(4)</td>
<td></td>
</tr>
<tr>
<td>Co(1)-N(1)</td>
<td>2.111(4)</td>
<td></td>
</tr>
<tr>
<td>N(2)-Co(1)-N(2)#2</td>
<td>91.36(16)</td>
<td></td>
</tr>
<tr>
<td>Co(1)-O(3)#2</td>
<td>2.156(3)</td>
<td></td>
</tr>
<tr>
<td>Co(1)-O(3)</td>
<td>2.156(3)</td>
<td></td>
</tr>
<tr>
<td>N(1)-C(2)#3</td>
<td>1.149(6)</td>
<td></td>
</tr>
<tr>
<td>N(2)-C(1)</td>
<td>1.143(6)</td>
<td></td>
</tr>
<tr>
<td>C(2)-N(1)#3</td>
<td>1.149(6)</td>
<td></td>
</tr>
<tr>
<td>Pd(1)-O(1)</td>
<td>3.056(5)</td>
<td></td>
</tr>
<tr>
<td>C(1)-Pd(1)-C(1)#1</td>
<td>89.6(3)</td>
<td></td>
</tr>
<tr>
<td>C(1)-Pd(1)-C(2)#1</td>
<td>175.06(18)</td>
<td></td>
</tr>
<tr>
<td>C(1)#1-Pd(1)-C(2)#1</td>
<td>90.4(2)</td>
<td></td>
</tr>
<tr>
<td>C(1)-Pd(1)-C(2)</td>
<td>90.4(2)</td>
<td></td>
</tr>
<tr>
<td>C(1)#1-Pd(1)-C(2)</td>
<td>175.06(18)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+3/2,z #2 -x+1,-y+1,-z+1 #3 -x+1,-y+1,-z+2
Table 4. Anisotropic displacement parameters (Å\(^2\times 10^3\)) for Co(H\(_2\)O)\(_2\)[Pd(CN)\(_4\)] \cdot 4 H\(_2\)O. The anisotropic displacement factor exponent takes the form:
\(-2\pi^2 h^2 a^*a^* U^{11} + \ldots + 2hk a^* b^* U^{12}\).

<table>
<thead>
<tr>
<th></th>
<th>(U^{11})</th>
<th>(U^{22})</th>
<th>(U^{33})</th>
<th>(U^{23})</th>
<th>(U^{13})</th>
<th>(U^{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)</td>
<td>7(1)</td>
<td>16(1)</td>
<td>11(1)</td>
<td>0</td>
<td>0(1)</td>
<td>0</td>
</tr>
<tr>
<td>Co(1)</td>
<td>9(1)</td>
<td>20(1)</td>
<td>12(1)</td>
<td>0(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>20(3)</td>
<td>41(3)</td>
<td>30(3)</td>
<td>0</td>
<td>-4(3)</td>
<td>0</td>
</tr>
<tr>
<td>O(2)</td>
<td>14(2)</td>
<td>30(2)</td>
<td>26(2)</td>
<td>-1(2)</td>
<td>0(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>O(3)</td>
<td>14(2)</td>
<td>26(2)</td>
<td>21(2)</td>
<td>0(2)</td>
<td>-5(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>O(4)</td>
<td>27(3)</td>
<td>25(3)</td>
<td>29(3)</td>
<td>0</td>
<td>0(3)</td>
<td>0</td>
</tr>
<tr>
<td>N(1)</td>
<td>16(2)</td>
<td>19(2)</td>
<td>20(3)</td>
<td>-7(2)</td>
<td>4(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>N(2)</td>
<td>14(2)</td>
<td>14(2)</td>
<td>25(3)</td>
<td>0(2)</td>
<td>-3(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>11(2)</td>
<td>5(3)</td>
<td>17(3)</td>
<td>-2(3)</td>
<td>-3(2)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>14(2)</td>
<td>9(3)</td>
<td>20(3)</td>
<td>-7(3)</td>
<td>3(2)</td>
<td>4(2)</td>
</tr>
</tbody>
</table>
NMR spectra of poly(PO-co-PC) and PPO

Fig. 2 Full 1H NMR spectrum (300 MHz, CDCl$_3$) from Fig. 3A in the text (reference PPC, $f_{CO_2} = 1.0$). See references 5(h) and 22 in the text for polymer synthesis details.

Fig. 3 13C NMR spectrum (125 MHz, CDCl$_3$) of reference PPC used in Fig. 3A of the text ($f_{CO_2} = 1.0$). CCC = Carbonate-Carbonate-Carbonate. See references 5(h) and 22 in the text for polymer synthesis details.
Fig. 4 Full 1H NMR spectrum (300 MHz, CDCl$_3$) from Fig. 3B in the text (Table 1, entry 7, $f_{CO_2} = 0.56$).

Fig. 5 13C NMR spectrum (125 MHz, CDCl$_3$) of poly(PO-co-PC) produced in Table 1, entry 7 of the text ($f_{CO_2} = 0.56$). ECC = Ether-Carbonate-Carbonate, ECE = Ether-Carbonate-Ether.
Fig. 6 Full 1H NMR spectrum (300 MHz, CDCl$_3$) from Fig. 3C in the text (Table 1, entry 3, $f_{CO_2} = 0.27$).

Fig. 7 13C NMR spectrum (125 MHz, CDCl$_3$) of poly(PO-co-PC) produced in Table 1, entry 3 of the text ($f_{CO_2} = 0.27$).
Fig. 8 Full 1H NMR spectrum (300 MHz, CDCl$_3$) from Fig. 3D in the text (Table 1, entry 14, $f_{CO_2} = 0$).

Fig. 9 13C NMR spectrum (125 MHz, CDCl$_3$) of PPO produced in Table 1, entry 14 of the text ($f_{CO_2} = 0$).
Gradient COSY NMR spectrum

Fig. 10 gCOSY spectrum (400 MHz, CDCl$_3$) of poly(PO-co-PC) produced in Table 1, entry 7 of the text ($f_{co_2} = 0.56$).