SUPPORTING INFORMATION
accompanying

Copper(II) complexes of a polydentate imidazole-based ligand. pH effect on magnetic coupling and catecholase activity

Edgar Mijangosaa, Jan Reedijkb, Laura Gasquea*

a Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México. Ciudad Universitaria, México D.F. 04510, (México).
b Leiden Institute of Chemistry, Leiden University. P.O. Box 9502, 2300 RA, Leiden (The Netherlands)

Table of Contents

Figure S1. EPR spectra of 1 and 2. 2
Figure S2. Diffuse reflectance spectra of 1 and 2. 2
Figure S3. Possible protonation degrees of the ligand \textit{H}_{6}Valbiim. 3
Figure S4. Species distribution diagram for \textit{H}_{6}Valbiim. 3
Figure S5. Changes in chemical shifts of \textit{H}_{6}Valbiim as function of the pH. 4
Figure S6. Initial rates of H_{2}DTBC oxidation in MeOH/H_{2}O and MeCN/H_{2}O. 5
Figure S7. Lineweaver-Burk plots. 6
Figure S8. CV’s of dioxygen in MeOH/H_{2}O and MeCN/H_{2}O. 6
Figure S9. IR spectra of 1 and 2. 7
Figure S10. UV-Vis titration in MeOH. 7
Figure S1. Powder EPR spectra at room temperature of the complexes (Black) 1, [Cu₄(H₂Valbiim)(H₂O)₁₀](BF₄)₄•6H₂O and (Red) 2, [Cu₄(Valbiim)(µ-OH)₂(H₂O)₄]•5H₂O

Figure S2. Diffuse reflectance spectra of the complexes (Black) 1, [Cu₄(H₂Valbiim)(H₂O)₁₀](BF₄)₄•6H₂O and (Red) 2, [Cu₄(Valbiim)(µ-OH)₂(H₂O)₄]•5H₂O

The abnormality near 800 nm is due to change of detector.
Figure S3. Some of the different possible protonation degrees of the ligand H₆Valbiim.

Figure S4. Species distribution diagram as a function of pH for H₆Valbiim in aqueous solution.
Figure S5. Changes in chemical shifts of selected 1H-NMR signals of $H_6Valbiim$ as function of the pH.
Figure S6. Dependence of the reaction rates on the H₂DTBC concentrations for the oxidation catalyzed by Cu₄Valbiim in (up) MeOH/H₂O and (down) MeCN/H₂O.
Figure S7. Lineweaver-Burk plot for aerobic oxidation of H$_2$DTBC by complex Cu$_4$Valbiim in MeCN/H$_2$O.

Figure S8. Cyclic voltammograms of atmospheric O$_2$ saturated solutions of 0.1 M HEPES pH = 8.5 in MeCN/H$_2$O; 1:1 (black line) and MeOH/H$_2$O; 1:1 (red line) at 78.1 KPa. Scan rate 0.1 Vs$^{-1}$. Vitreous carbon disk (7.1mm2). Ag/AgBr, 0.1 M Bu$_4$NBr reference electrode.
Figure S9. IR spectra of the complexes (Black) 1, [Cu₄(H₂Valbiim)(H₂O)₁₀](BF₄)₄•₆H₂O and (Red) 2, [Cu₄(Valbiim)(μ-OH)₂(H₂O)₄]•₅H₂O in KBr pellet.

Figure S10. UV-Vis spectra of [Cu₄Valbiim] (5 mM) in methanol solution at 25 °C as a function of NBu₄OH added. The first line is the spectrum of a solution 4Cu:H₆Valbiim and the subsequent are the spectra of this solution plus 0.5 to 6 eq.