Bridging the gap between solution and solid state studies in Polyoxometalate chemistry: Discovery of a family of \([V_1M_{17}]\)-based cages encapsulating two \(\{\text{V}^{\text{V}}\text{O}_4\}\) moieties

Haralampos N. Miras,\(^a\) De-Liang Long,\(^a\) Paul Kögerler\(^b\) and Leroy Cronin*\(^a\)

\(^a\) University of Glasgow, Department of Chemistry, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, United Kingdom. E-mail: L.Cronin@chem.gla.ac.uk

\(^b\) Institut für Anorganische Chemie RWTH Aachen D-52074 Aachen, Germany

Redox Titrations

(1) Compound 1 Na4(NH4)2H2W17V3O62, mass used =200 mg
Oxidant = 0.01 M Ce\(^{IV}\) in 0.5 M of sulphuric acid solution
Theoretical amount of oxidant for one electron reduced species in mL: 4.33
Experimental amount required: 4.78

![Figure S1. Redox titration of Compound 1](image)

(2) Compound 3 TEAH6H2Mo17V3O62, mass used =200 mg
Oxidant = 0.01 M Ce\(^{IV}\) in 0.5 M of sulphuric acid solution
Theoretical amount of oxidant for one electron reduced species in mL: 5.23
Experimental amount required: 5.90

![Figure S2. Redox titration of Compound 2a with TEAH cations (for solubility in water)](image)