
Jean-Pierre Costes,*a Sergiu Shovab, Wolfgang Wernsdorfer*,c

a Laboratoire de Chimie de Coordination du CNRS, UPR 8241, liée par conventions à l'Université Paul Sabatier et à l'Institut National Polytechnique de Toulouse,
205 route de Narbonne, 31077 Toulouse Cedex (France).
Fax : 33 (0)5 61 55 30 03
e-mail : costes@lcc-toulouse.fr

b Department of Chemistry Moldova State University, A.Matesevici str. 60. 2009 Chisinau, Moldova

c Institut Néel, CNRS & UJF, BP 166, 38042 GRENOBLE Cedex 9, France

Supplementary Material
Supplementary Material

Figure S1. Thermal dependence of $\chi_M T$ for 6 at 0.1 T.

Figure S2. Field dependence of the magnetization for 6 at 2K.

Figure S3. Frequency dependence of the out of phase susceptibilities against temperature in a 3 G ac magnetic field oscillating at different frequencies (50, 100, 250, 500 and 1000 Hz) for complex 3.

Figure S4. Magnetization (M) vs magnetic field (H) hysteresis loops for a single crystal of 3 at indicated temperatures and field sweep rates. M is normalized to its saturation value at 1.4 T.

Figure S5. Magnetization (M) vs magnetic field (H) hysteresis loops for a single crystal of 6 at indicated temperatures and field sweep rates. M is normalized to its saturation value at 1.4 T.

Figure S6. Normalized magnetization M/M_s measured as a function of time at the indicated temperatures. The sample was a single crystal of 5.
Figure S3.
Figure S4.
Figure S5.