Supporting Information

Multisignaling Detection of Hg$^{2+}$ Based on a Phosphorescent Iridium(III) Complex

Qiang Zhao, † ShuJuan Liu ‡ Fuyou Li,*,† Tao Yi,† Chunhui Huang*†

†Department of Chemistry & Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China,

‡Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210003, P. R. China

*To whom correspondence should be addressed at: Fax: 86-21-55664621; Tel: 86-21-55664185. E-mail: fyli@fudan.edu.cn (F. Y. L); chhuang@pku.edu.cn (C. H. H).
Figure S1. Response of UV-Vis absorption spectra of Ir(thq)$_2$(acac) (20 µM) in CH$_3$CN solution to various amounts of metal ions.
Figure S2. Response of fluorescence spectra of Ir(thq)₂(acac) (20 µM) in CH₃CN solution to various amounts of metal ions. λₑₓ = 375nm.
Figure S3. Reduction potentials of Ir(thq)$_2$(acac) before and after addition of 1 eq. Hg$^{2+}$.
Table S1. HOMO and LUMO distributions of \(\text{Ir(btp)}_2(\text{acac})-\text{Hg}^{2+} \) and \(\text{Ir(thq)}_2(\text{acac})-\text{Hg}^{2+} \).
Table S2. Calculated charges on Hg and S atoms.

<table>
<thead>
<tr>
<th></th>
<th>Ir(btp)$_2$(acac)</th>
<th>Ir(thq)$_2$(acac)</th>
<th>Ir(btp)$_2$(acac)-Hg$^{2+}$</th>
<th>Ir(thq)$_2$(acac)-Hg$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0.3953</td>
<td>0.4122</td>
<td>0.6080</td>
<td>0.5634</td>
</tr>
<tr>
<td></td>
<td>0.3947</td>
<td>0.4165</td>
<td>0.5940</td>
<td>0.5736</td>
</tr>
<tr>
<td>Hg</td>
<td></td>
<td></td>
<td>0.1587</td>
<td>0.2079</td>
</tr>
</tbody>
</table>