Supporting Information

Metal-Free and Transition-Metal Tetraferrocenylporphyrins Part 1: Synthesis, Characterization, Electronic Structure, and Conformational Flexibility of Neutral Compounds

Victor N. Nemykin[†]*, Pierluca Galloni,[‡]* Barbara Floris[‡], Christopher D. Barrett,[†] Ryan G. Hadt[†], Roman I. Subbotin[†], Andrea G. Marrani[¥], Robertino Zanoni[¥], and Nikolay M. Loim[§]

Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA; Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", via della ricerca scientifica, 00133 Rome, Italy; Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", p.le Aldo Moro 5, 00185 Rome, Italy; and A. N. Nesmeyanov Institute of Organoelement Compounds, 28 Vavilov Str., 117813 Moscow, Russia.

- [†] University of Minnesota Duluth
- [‡] Università di Roma "Tor Vergata"
- [¥]Università degli Studi di Roma "La Sapienza"
- [§] Institute of Organoelement Compounds

^{*} Corresponding author. E-mail: vnemykin@d.umn.edu; galloni@scienze.uniroma2.it

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2008

Supporting Information Figure 1. Typical example of ¹H and ¹³C NMR spectra of diamagnetic MTFcP (ZnTFcP) complexes in CDCl₃. Solvent labeled with asterisk.

Supporting Information Figure 1. Typical example of ¹H and ¹³C NMR spectra of diamagnetic MTFcP (ZnTFcP) complexes in CDCl₃. Solvent labeled with asterisk.

Supporting Information Figure 2. Variable-temperature ¹H NMR spectra of NiTFcP in the β -pyrrolic protons region in THF-d8.

Supporting Information Figure 2. Variable-temperature ¹H NMR spectra of H_2TFcP in the β -pyrrolic protons region in THF-d8. Impurity in this particular sample is labeled with asterisk.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2008

Supporting Information Figure 2. Variable-temperature ¹H NMR spectra of ZnTFcP in the β -pyrrolic protons region in THF-d8.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2008

Supporting Information Figure 3. APCI spectra of H₂TFcP (A), CoTFcP (B), NiTFcP (C), CuTFcP (D), and ZnTFcP (E) complexes in THF.

Supporting Information Figure 3. APCI MS/MS spectra of CuTFcP and CoTFcP complexes in THF.

Electronic Supplementary Information for Dalton Transactions This journal is o The Royal Society of Chemistry 2008

Supporting Information Figure 3. ESI spectrum of CoTFcP complex and APCI MS/MS spectra of H₂TFcP, NiTFcP, and ZnTFcP complexes in THF.

		H ₂ TFcP		
E, (eV)	Fe	Fc + Fe	Ν	Porph
-4.298	81.2	97.8	0.1	2.1
-4.268	78.2	93.4	1.1	5.5
-4.116	78.4	98.3	0.0	1.7
-4.112	77.2	98.4	0.1	1.4
-4.103	68.6	97.5	0.1	2.5
-4.092	61.6	97.7	0.1	2.2
-4.089	66.1	98.0	0.2	1.8
-4.078	66.6	98.0	0.2	1.8
-4.074	57.8	96.8	0.1	3.1
-3.877	45.6	68.4	10.6	21.0
-2.620	9.9	21.3	10.6	<i>68.1</i>
-2.591	11.8	19.4	10	70.7
-1.668	30.8	49.7	0.5	49.8
-1.228	61.8	94.7	0.5	4.8

Supporting Information Table 1. Calculated (BPW91) atomic orbital contributions to respective molecular orbitals for H_2 TFcP and all MTFcP (M = Co, Ni, Cu, and Zn).^a

Co	TI	Fc	Р
	_		_

α set							βs	et			
E, (eV)	Fe	Fc + Fe	Со	Ν	Porph	E, (eV)	Fe	Fc + Fe	Со	Ν	Porph
-4.249	14.3	17.9	54.5	6.4	21.2	-4.013	60.0	97.5	1.3	0.1	1.2
-4.226	73.7	91.0	0.6	1.3	7.1	-4.005	60.1	98.4	0.0	0.0	1.6
-4.015	60.4	98.3	0.0	0.0	1.6	-4.001	60.0	97.9	0.3	0.1	1.7
-4.012	60.8	98.6	0.1	0.1	1.2	-3.992	58.0	97.2	0.0	0.1	2.6
-4.005	59.8	98.2	0.0	0.0	1.7	-3.983	57.4	96.6	0.1	0.1	3.1
-4.001	60.2	98.2	0.0	0.1	1.7	-3.982	57.7	97.1	1.3	0.2	1.5
-3.993	58.1	97.2	0.0	0.2	2.6	-3.932	3.2	5.7	89.7	2.2	2.4
-3.981	58.2	98.2	0.0	0.2	1.6	-3.834	44.2	73.7	3.2	6.6	16.4
-3.981	57.6	97.1	0.1	0.2	2.6	-3.741	1.1	2.9	67.3	2.7	27.1
-3.845	46.7	78.0	1.0	6.0	15	-3.341	1.5	4.4	59.7	0.6	35.2
-2.545	7.8	20.4	1.2	10.5	67.9	-2.483	7.9	20.3	5.5	11	63.2
-2.527	7.9	20.5	2.6	10.7	66.1	-2.401	7.8	19.7	11.7	11.1	57.5
-2.038	0.2	0.7	38.7	36.8	23.8	-1.682	26.3	54.1	0.8	0.4	44.6
-1.684	26.2	53.9	0.8	0.4	44.8	-1.477	1.2	2.8	41.4	31.9	23.8

		NiTFcP			
E, (eV)	Fe	Fc + Fe	Ni	Ν	Porph
-4.279	81.4	97.0	0.5	0.2	2.3
-4.248	75.4	92.2	0.4	0.9	6.5
-4.031	59.4	98.2	0.0	0.0	1.8
-4.031	59.4	98.2	0.0	0.0	1.8
-4.027	61.0	98.9	0.1	0.0	0.9
-4.026	59.8	97.9	0.0	0.1	2.0
-4.021	58.1	97.4	0.1	0.2	2.4
-4.021	58.1	97.4	0.1	0.2	2.4
-4.018	57.6	98.3	0.1	0.1	1.6
-3.884	46.3	77.9	1.0	5.9	15.3
-2.520	7.6	19.9	2.3	10.8	67.0
-2.520	7.6	19.9	2.3	10.8	67.0
-2.184	0.1	0.6	36.0	39.7	23.7
-1.667	27.2	56.1	0.5	0.4	43.0

CuTFcP

		α set						βs	et		
E, (eV)	Fe	Fc + Fe	Cu	Ν	Porph	E, (eV)	Fe	Fc + Fe	Cu	Ν	Porph
-4.242	74.2	89.2	1.5	2.8	6.5	-4.233	75	92	0.2	1.1	6.7
-4.056	16.4	27.9	20.2	34.9	17.0	-4.014	60.3	98.3	0.0	0.0	1.7
-4.015	60.3	98.3	0.0	0.0	1.7	-4.014	60.3	98.3	0.0	0.0	1.7
-4.015	60.3	98.3	0.0	0.0	1.7	-4.013	61.1	99	0.0	0.0	1.0
-4.014	61.1	98.9	0.0	0.0	1.0	-4.007	60.1	97.7	0.0	0.2	2.1
-4.001	54.2	87.9	3.2	5.4	3.5	-3.992	57.9	97.1	0.0	0.2	2.8
-3.993	57.9	97.1	0.0	0.2	2.7	-3.992	57.9	97.1	0.0	0.2	2.8
-3.993	57.9	97.1	0.0	0.2	2.7	-3.986	58.3	98.3	0.0	0.1	1.6
-3.987	58.4	98.3	0.0	0.1	1.6	-3.847	46.8	78.1	1.0	6.3	14.6
-3.808	34.5	58.4	5.4	15.4	20.9	-2.988	0.3	1.2	34.7	41.4	22.7
-2.578	<i>8.3</i>	21.3	0.5	10.1	<i>68.1</i>	-2.558	8.4	21.6	0.6	10.3	67.5
-2.578	<i>8.3</i>	21.3	0.5	10.1	<i>68.1</i>	-2.558	8.4	21.6	0.6	10.3	67.5
-1.713	26.4	54.1	0.9	0.5	44.5	-1.709	26.6	54.5	0.9	0.5	44.1
-1.331	44.5	95.1	0.0	0.4	4.4	-1.329	44.5	95.1	0.1	0.4	4.4

		ZnTFcP			
E, (eV)	Fe	Fc + Fe	Zn	Ν	Porph
-4.267	82.2	97.9	0.1	0.0	2.1
-4.267	42.3	95.5	2.3	0.0	2.1
-4.224	56.6	90.9	0.9	0.4	7.8
-4.008	42.1	96.2	2.0	0.0	1.9
-4.008	48.5	96.5	1.4	0.0	2.1
-4.007	45.8	97.0	1.7	0.0	1.3
-3.998	45.6	95.0	2.0	0.1	2.9
-3.984	52.9	96.0	0.8	0.0	3.2
-3.984	34.7	90.9	3.8	0.0	5.3
-3.977	44.0	94.4	2.4	0.0	3.2
-3.831	38.0	77.2	2.0	1.5	19.3
-2.599	25.5	39.7	0.8	1.1	<i>58.4</i>
-2.599	13.4	26.2	0.8	1.8	71.2
-1.724	30.4	61.5	2.2	0.6	35.8
-1.328	33.8	91.7	2.2	0.2	6.0

a. HOMO is in bold and LUMO(s) is in bold/italic; abbreviations: Fe - all iron centers; Fc + Fe - Cp ligands plus iron centers; N - nitrogen atoms of porphyrins core; Porph – carbon atoms of porphyrin core.

Approach (D	1 W 21).		
Transition	λ, nm	f	Transitions and expansion coefficients ^b
1	881.05	0.0269	268 → 270 0.30113; 269 → 270 0.49331
2	870.06	0.0495	269 → 270 0.50609
3	839.35	0.0025	267 → 270 0.58338
4	835.09	0.0027	$263 \rightarrow 270 \ 0.52249; 265 \rightarrow 270 \ 0.31967$
5	832.63	2E-4	266 → 270 0.55347
6	832.08	4E-4	$264 \rightarrow 270 \ 0.63643$
7	831.48	1E-3	265 → 270 0.59985
8	825.47	1E-4	$262 \rightarrow 270 \ 0.56044; 267 \rightarrow 271 \ -0.38706$
9	816.21	0.0171	$263 \rightarrow 271\ 0.45954; 268 \rightarrow 271\ 0.31883$
10	815.34	0.0079	$265 \rightarrow 271\ 0.46396;\ 268 \rightarrow 271\ 0.42384$
11	813.55	1E-3	$262 \rightarrow 271 \ 0.40688; 264 \rightarrow 271 \ -0.31404; 266 \rightarrow 271 \ -0.30416;$
			$267 \rightarrow 271 \ 0.30166$
12	811.19	3E-4	$262 \rightarrow 271\ 0.41078; 264 \rightarrow 271\ 0.54533$
13	807.28	0.0428	$265 \rightarrow 271 - 0.35653; 268 \rightarrow 270 \ 0.37930$
14	801.63	0.0383	$263 \rightarrow 271 - 0.41937; 265 \rightarrow 271 - 0.34201; 268 \rightarrow 271 0.36539$
15	798.4	0.0143	266 → 271 0.49264
16	791.68	1E-3	$267 \rightarrow 271\ 0.39283$
17	738.83	0.0138	$261 \rightarrow 270 \ 0.66210$
18	730.31	0.0029	$258 \rightarrow 270\ 0.54933;\ 261 \rightarrow 271\ -0.43492$
19	729.34	0.0015	$259 \rightarrow 270 \ 0.40826; \ 260 \rightarrow 270 \ -0.54148$
20	727.38	0.0013	$259 \rightarrow 270\ 0.52980;\ 260 \rightarrow 270\ 0.39083$
21	720.97	0.017	$258 \rightarrow 270 \ 0.42941; 261 \rightarrow 271 \ 0.51968$
22	713.38	0.0018	$259 \rightarrow 271\ 0.32278;\ 260 \rightarrow 271\ 0.58452$
23	712.58	0.0094	258 → 271 0.69280
24	711.1	0.0025	$259 \rightarrow 271\ 0.59319;\ 260 \rightarrow 271\ -0.30975$
25	618.26	0.0212	$256 \rightarrow 270\ 0.39130;\ 257 \rightarrow 271\ 0.53951;\ 257 \rightarrow 270\ 0.13797$
26	597.9	0.0553	$256 \rightarrow 271 - 0.37045; 257 \rightarrow 270 \ 0.52238; 257 \rightarrow 271 - 0.13016;$
			269 → 270 0.11499
27	539.16	0.035	269 → 272 0.67413
28	509.41	0.0149	$267 \rightarrow 272 \ 0.68915$
29	508.77	0	$268 \rightarrow 272 \ 0.68434$
30	507.34	0.0141	266 → 272 0.68677
31	505.75	2E-4	265 → 272 0.68618
32	505.08	0.0033	$264 \rightarrow 272\ 0.69057$
33	504.77	0	$263 \rightarrow 272 \ 0.68257$
34	504.34	0.0066	$262 \rightarrow 272 \ 0.68877$
35	472.96	0.0024	$261 \rightarrow 272\ 0.69155$
36	469.55	0.0739	$260 \rightarrow 272\ 0.58088$
37	468.15	0.0188	259 → 272 0.64240
38	467.22	0	$258 \rightarrow 272 \ 0.69522$
39	463.56	0.0841	$269 \rightarrow 274 \ 0.51078$
40	462.48	0	$269 \rightarrow 273 \ 0.66061$
41	461.12	0.0188	269 → 275 0.64308
42	459.31	5E-4	269 → 276 0.67704
43	458.04	0.1267	269 → 274 0.36929; 269 → 278 0.40181
44	452.92	0.1047	269 → 279 0.54218
45	452.84	0	$269 \rightarrow 277 \ 0.62408$
46	451.42	0	$255 \rightarrow 270 \ 0 \ 44275^{\circ} \ 255 \rightarrow 271 \ 0 \ 47243^{\circ} \ 269 \rightarrow 277 \qquad 0 \ 20036$

Supporting Information Table 2. Calculated Vertical Excitation Energies of H₂TFcP Using a TDDFT Approach (BPW91).^a

47	447.64	3E-4	$255 \rightarrow 270 \ 0.46178; 255 \rightarrow 271 \ -0.47631; 257 \rightarrow 272 \ -0.10926$	
48	445.28	0.0123	$254 \rightarrow 270 - 0.33302; 269 \rightarrow 278 \ 0.47221; 254 \rightarrow 271 -0.27357;$	
			256 → 270 -0.11927	
49	440.93	0.0265	$254 \rightarrow 270 \ 0.49172; 269 \rightarrow 279 - 0.30122; 254 \rightarrow 271 - 0.29685;$	
			269 → 278 0.14672	
50	434.97	0.0088	$257 \rightarrow 272 \ 0.62302; 253 \rightarrow 270 \ -0.23979; 269 \rightarrow 280 \ -0.12533$	
51	433.96	1E-4	268 → 273 0.59480	
52	433.81	7E-4	267 → 273 0.56936	
53	432.89	0.0013	$266 \rightarrow 273\ 0.49066;\ 268 \rightarrow 274\ 0.39924$	
54	432.12	0	$267 \rightarrow 274\ 0.54578$	
55	431.44	0	$266 \rightarrow 274\ 0.44644;\ 267 \rightarrow 275\ 0.47640$	
56	431.33	0.0036	$266 \rightarrow 273\ 0.32119;\ 267 \rightarrow 276\ 0.51369$	
57	430.95	0	$265 \rightarrow 273\ 0.55750$	
58	430.57	0.0037	$268 \rightarrow 275 - 0.45732$	
59	430.45	0.0024	$264 \rightarrow 273\ 0.56907;\ 265 \rightarrow 274\ 0.32032$	
60	430.38	0	$266 \rightarrow 275\ 0.47431; 268 \rightarrow 276\ 0.44093$	

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2008

a. HOMO is in bold and LUMOs are in bold/italic; b. only contributions with expansion coefficients larger than 0.3 are shown; more detailed table with contributions is available from the authors upon request.