Lariat ethers with fluoroaryl side-arms: a study of CF...metal cation interaction in the complexes of *N*-(*o*-fluoroaryl)azacrown ethers

Petr K. Sazonov^{*,a}, Lidiya Kh. Minacheva^b, Andrei V. Churakov^b, Vladimir S. Sergienko^b, Galina A. Artamkina^a, Yuri F. Oprunenko^a, and Irina P. Beletskaya^{*,a} ^a Chemistry Department of the M.V. Lomonosov Moscow State University, 119992 Moscow.Fax: +7 495 939 3618; e-mail: beletska@org.chem.msu.ru ^b N.S. Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow Fax: +7 495 954 1279; e-mail: min@igic.ras.ru

Electronic supplementary information

Figure S1. Experimental (blue, in acetone- d_6) and simulated (red, with parameters given above) ¹H NMR spectra of aromatic protons of F₂-A₂18C6. Simulation performed with WinNuts program.

Acquisition Time (sec)) (0.1280, 0.0320)	Comment	F2A2 NOESY	Date	15 Sep 2008 11:13:00
Date Stamp	Sep 12 2008	File Name	G:\NMR Spectra\Data\F2A2_NOESY_12Sep2008\NOESY.fid\fid		
Frequency (MHz)	(400.45, 400.45)	Nucleus	(1H, 1H)	Number of Transients	32
Original Points Count	(512, 128)	Points Count	(1024, 256)	Pulse Sequence	NOESY
Solvent	Acetone	Sweep Width (Hz)	(4000.00, 4000.00)		

Figure S2. 2D NOESY spectrum of F_2 - A_218C6 (acetone d_6). Cross-peaks observed between a triplet at 7.12 ppm and a triplet at 3.52 ppm allow to assign these signals to protons H^6 and NCH₂, respectively.

Figure S3. 2D NOESY spectrum of the Na⁺ complex of F_2 -A₂18C6 (acetone d₆, 3 equiv. NaI). Cross-peaks observed between a triplet at 7.51 ppm and a triplet at 3.41 ppm allow to assign these signals to protons H⁶ and NCH₂, respectively.

Figure S4. UV-spectra of F2-A218C6 (5·10⁻⁵ mol/L , methanol, 22°C) as a function of Ba(ClO₄)₂ concentration.

Figure S5. The dependence of the absorbance of F_2 -A₂18C6 (at 254 nm) on the concentration of Ba(ClO₄)₂ (methanol, 22°C) and its fitting to equation (1). A_L is the absorbance of the starting ligand solution, $[M]_i$ is the molar concentration of the metal salt, metal binding constant (β) and the absorbance of the complex (A_{∞}) are the objective variables.