Electronic Supplementary Information

Canopied trans-chelating bis(N-heterocyclic carbene) ligand: synthesis, structure and catalysis

Brad P. Morgan, Gabriela A. Galdamez, Robert J. Gilliard, Jr. and Rhett C. Smith*

Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COSMET), Clemson University, Clemson, SC 29634

Email: rhett@clemson.edu

List of Supporting Information Figures:

Figure S1. 1H NMR spectrum of [Ag(I)]AgBr$_2$ (DMSO, 300 MHz)
Figure S2. Aromatic region of the 1H NMR spectrum of [Ag(I)]AgBr$_2$ (DMSO, 300 MHz)
Figure S3. Aliphatic region of the 1H NMR spectrum of [Ag(I)]AgBr$_2$ (DMSO, 300 MHz)
Figure S4. 1H-1H Correlated Spectrum (COSY) of [Ag(I)]AgBr$_2$ (DMSO, 300 MHz)
Figure S5. Nuclear Overhauser Effect Difference (NOE-DIFF) Spectrum of [Ag(I)]AgBr$_2$ (DMSO, 300 MHz) for protons resonating at 5.43 ppm
Figure S6. Nuclear Overhauser Effect Difference (NOE-DIFF) Spectrum of [Ag(I)]AgBr$_2$ (DMSO, 300 MHz) for protons resonating at 3.96 ppm
Figure S7. Carbon-13 NMR spectrum of [Ag(I)]AgBr$_2$ (DMSO, 75 MHz)
Figure S8. Aromatic region of the 13C NMR spectrum of [Ag(I)]AgBr$_2$ (DMSO, 75 MHz)
Figure S9. Heteronuclear Multiple Quantum Coherence (HMQC) spectrum of [Ag(I)]AgBr$_2$ (300 MHz for 1H, 75 MHz for 13C, in DMSO)
Figure S10. Distortionless Enhancement by Polarization Transfer (DEPT-135) spectrum of [Ag(I)]AgBr$_2$ (DMSO, 75 MHz)
Figure S11. Aromatic region of DEPT-135 spectrum of [Ag(I)]AgBr$_2$ (DMSO, 75 MHz)
Figure S12. 1H NMR spectrum of [H$_2$1]Br$_2$ (DMSO, 300 MHz)
Figure S13. Aromatic region of the 1H NMR spectrum of [H$_2$1]Br$_2$ (DMSO, 300 MHz)
Figure S14. 13C NMR spectrum of [H$_2$1]Br$_2$ (CD$_3$CN, 75 MHz)
Figure S15. Aromatic region of the 13C NMR spectrum of [H$_2$1]Br$_2$ (CD$_3$CN, 75 MHz)
Figure S16. 1H NMR spectrum of [Cl$_2$Pd(1)] (CDCl$_3$, 300 MHz)
Figure S17. Aliphatic region of the 1H NMR spectrum of [Cl$_2$Pd(1)] (CDCl$_3$, 300 MHz)
Figure S18. Aromatic region of the 1H NMR spectrum of [Cl$_2$Pd(1)] (CDCl$_3$, 300 MHz)
Figure S19. 13C NMR spectrum of [Cl$_2$Pd(1)] (CDCl$_3$, 75 MHz)
Figure S20. Aromatic region of the 13C NMR spectrum of [Cl$_2$Pd(1)] (CDCl$_3$, 75 MHz)
Figure S21. ESI-MS of [Cl$_2$Pd(1)] with theoretical isotopic distributions for major peak sets
\(^1\)H NMR (300 MHz) in DMSO

Figure S1. Proton NMR spectrum of [Ag(1)]AgBr\(_2\) (DMSO, 300 MHz)
1H NMR (300 MHz) in DMSO

Figure S2. Aromatic Region of the 1H NMR spectrum of [Ag(1)]AgBr$_2$ (DMSO, 300 MHz)
Figure S3. Aliphatic Region of the 1H NMR spectrum of [Ag(1)]AgBr$_2$ (DMSO, 300 MHz)
Figure S4. 1H-1H Correlated Spectrum (COSY) of [Ag(1)]AgBr$_2$ (DMSO, 300 MHz)
Figure S5. Nuclear Overhauser Effect Difference (NOE-DIFF) Spectrum of [Ag(1)]AgBr₂ (DMSO, 300 MHz) for protons resonating at 5.43 ppm.
Figure S6. Nuclear Overhauser Effect Difference (NOE-DIFF) Spectrum of [Ag(I)]AgBr₂ (DMSO, 300 MHz) for protons resonating at 3.96 ppm
Figure S7. Carbon-13 NMR spectrum of [Ag(1)]AgBr₂ (DMSO, 75 MHz)
Figure S8. Aromatic region of the 13C NMR spectrum of [Ag(1)]AgBr$_2$ (DMSO, 75 MHz)
Figure S9. Heteronuclear Multiple Quantum Coherence (HMQC) spectrum of \([\text{Ag}(1)]\text{AgBr}_2\) (300 MHz for \(^1\text{H}\), 75 MHz for \(^{13}\text{C}\), in DMSO)
Figure S10. Distortionless Enhancement by Polarization Transfer (DEPT-135) spectrum of [Ag(1)]AgBr₂ (DMSO, 75 MHz)
Figure S11. Aromatic region of DEPT-135 spectrum of [Ag(1)]AgBr2 (DMSO, 75 MHz)
1H NMR (300 MHz) in DMSO

Figure S12. Proton NMR spectrum of [H$_2$]Br$_2$ (DMSO, 300 MHz)
Figure S13. Aromatic Region of the 1H NMR spectrum of $[\text{H}_2\text{I}]\text{Br}_2$ (DMSO, 300 MHz)
Figure S14. 13C NMR spectrum of [H$_2$1]Br$_2$ (CD$_3$CN, 75 MHz)
Figure S15. Aromatic region of the 13C NMR spectrum of [H$_2$1]Br$_2$ (CD$_3$CN, 75 MHz)
Figure S16. 1H NMR spectrum of [Cl$_2$Pd(I)] (CDCl$_3$, 300 MHz)
Figure S17. Aliphatic region of the 1H NMR spectrum of $[\text{Cl}_2\text{Pd(I)}]$ (CDCl_3, 300 MHz)
Figure S18. Aromatic region of the 1H NMR spectrum of [Cl$_2$Pd(I)] (CDCl$_3$, 300 MHz)
Figure S19. 13C NMR spectrum of [Cl$_2$Pd(1)] (CDCl$_3$, 75 MHz)
Figure S20. Aromatic region of the 13C NMR spectrum of [Cl$_2$Pd(I)] (CDCl$_3$, 75 MHz)
Figure S21. ESI-MS of [Cl₂Pd(1)] (top) with theoretical isotopic distributions (bottom) for major peak sets.