Ag(I) induced emission with azines having donor-acceptor-donor chromophore

Debdas Ray^a, E Siva Subramaniam Iyer^b Kalyan K. Sadhu^a and P. K. Bharadwaj^a*

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, 208016, India. Tel: +91-512 259 7034 ^bDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

E-mail: <u>pkb@iitk.ac.in</u>

Supporting Information

S1. Experimental section

- S1.1 Characterization of compound LL, HL, complex 1 and 2
- S1.2. ¹H-NMR spectrum of compound LL and HL
- S1.3 ESI-MS of LL, HL and complexes 1 and 2

S2. UV-visible spectra

Fig S2.1 UV-visible spectrum of each ligand (8 μ M) in presence Cu⁺ (40 μ M) as their tetrafluoroborate salt in dry THF solvent.

Fig S2.2 UV-visible spectral changes observed for LL upon addition of Ag^+ as its triflate salt in THF at 298 K. [LL] = 0.01 mM; $[Ag^+] = (0 \text{ to } 0.02 \text{ mM}).$

Fig S2.3 Job's plot of **HL** upon titration with Ag^+

Fig S2.4 Variation in absorbance (Δ) at 470 nm of a solution of **HL** in THF (10 μ M) as a function of [Ag⁺]. The solid blue line represents the best fit with good correlation coefficient: 0.9978

Fig S2.5 Excitation and emission spectrum of **HL** ([**HL**]= 2 μ M) in presence of Ag⁺ ([Ag⁺] = 20 μ M)

Fig S2.6 Fluorescence intensity change upon addition of various metal ions; [LL]=2 μ M, [M^{n+}]= 40 μ M

Fig S2. 7 Emission response of HL (2 μ m) and LL (2 μ m) in the presence of [Ag⁺] (40 μ m) in dry THF. Dark gray for LL and light gray for HL

Fig S2. 8 Emission response of 1 in THF (red line) and DMF (black line)

Fig S2.9 Emission response of **2** in DMF (red line) and LL in presence of Ag^+ -triflate in THF

Fig S2.10 Emission response of LL and in presence of $AgNO_3$ in mixed solvent DCM+EtOH+DMF at 10^{-4} M concentration. Excitation wavelength was 384 nm.

Fig S2. 11 Solid-state emission of **1**

Fig S2.12 Solid-state emission of 2

Fig S2.13 Solvent dependent study of HL

Figure S2.14 Emission response of Ag^+ -complex of HL on increasing amount of water (%, v/v) in DMF.

Figure S2.15 Emission response of (a) HL (b) complex 1 (c) complex 1 + TBNCl (d) complex 1+ TBNCl + Ag⁺ in THF. [1] = 1 μ M; [Ag⁺] = 2 μ M; [TBNCl] = 2 μ M.

S3. Crystal Structure

Fig S3.1 Crystal Structure of ligand LL.HPF₆

Fig S3.2 A perspective view of complex 1

Fig S3.3 A perspective view of complex **2**. The atoms are drawn as thermal ellipsoids at the 50% probability level.

S4. Time resolved fluorescence decay analysis by femtosecond luorescence up-conversion setup

Fig S4.1 Fluorescence decay analysis of HL + Ag(I) complex. The decay is recorded at $[HL] = 10^{-5} \text{ M}$ and $[Ag(I)] = 10^{-3} \text{ M}$

Fig S4.2 Fluorescence decay analysis of LL + Ag(I) complex. The decay is recorded at $[LL] = 10^{-5}$ M and $[Ag(I)] = 10^{-3}$ M

Table S4.1 The time resolved data of HL + Ag(I) and LL + Ag(I) complex

S1. Experimental section

S1.1 Characterization of compound LL, HL, complex 1 and 2

S1.2. ¹H-NMR spectrum of compound LL, HL and complex 1

Fig S1.2.1 ¹H-NMR spectrum of LL

Fig S1.2. 2 ¹H-NMR spectrum of **HL**

S1.3 ESI-MS of LL, HL and complexes 1 $\,$ and 2

Fig S1.3.1 ESI-MS spectrum of LL

Fig S1.3.2 ESI-MS spectrum of HL

Fig S1.3.3 ESI-MS spectrum of 1

Fig S1.3.4 ESI-MS spectrum of 2

S2. UV-visible spectra

Fig S2.1 UV-visible spectrum of each ligand (8 μ M) in presence Cu⁺ (40 μ M) as their tetrafluoroborate salt in dry THF solvent.

Fig S2.2 UV-visible spectral changes observed for LL upon addition of Ag^+ as its triflate salt in THF at 298 K. [LL] = 0.01 mM; [Ag^+] = (0 to 0.02 mM).

Fig S2.3 Job's plot of **HL** upon titration with Ag⁺

Fig S2.4 Variation in absorbance (Δ) at 470 nm of a solution of **HL** (10 μ M) in THF as a function of [Ag⁺]. The solid blue line represents the best fit with good correlation coefficient: 0.9978.

Fig S2.5 Excitation and emission spectrum of HL ([HL]= 2 μ M) in presence of Ag⁺ ([Ag⁺] = 20 μ M).

Fig S2.6 Fluorescence intensity change upon addition of various metal ions; $[LL] = 2 \mu M$, $[M^{n^+}] = 40 \mu M$.

Fig S2.7 Emission response of HL (2 $\mu m)$ in the presence of various metal ions $[M^{n+}]$ (40 $\mu m)$ in dry THF.

Fig S2.8 Emission response of 1 in THF (red line) and DMF (black line)

Fig S2.9 Emission response of 2 in DMF (red line) and LL in presence of Ag⁺-triflate in THF

Fig S2.10 Emission response of LL and in presence of $AgNO_3$ in mixed solvent DCM+EtOH+DMF at $10^{-4}M$ concentration. Excitation wavelength was 384 nm.

Fig S2.12 Solid-state emission of 2

Fig S2.13 Solvent dependent study of HL

Figure S2.14 Emission response of Ag^+ -complex of **HL** on increasing amount of water (%, v/v) in DMF. W: water.

Figure S2.15 Emission response of (a) HL (b) complex 1 (c) complex 1 + TBNCl (d) complex 1+ TBNCl + Ag^+ in THF. [1] = 1 μ M; [Ag^+] = 2 μ M; [TBNCl] = 2 μ M.

S3. Crystal structure

Fig S3.1 Crystal Structure of ligand LL.HPF₆

Fig S3.2 A perspective view of complex 1: Selected bond distances (Å) and angles (°) are: Ag1–N1 2.277(7), Ag1–O1 2.326(6), Ag1–OW1 2.328(7), Ag1–C8 2.567(7), Ag1–C9 2.586(8), N1–Ag1–O1 118.5(2), N1–Ag1–OW1 109.6(3), O1–Ag1–OW1 100.8(2), N1–Ag1–C9 111.5(2), O1–Ag1–C9 87.0(2), OW1–Ag1–C9 127.4(3), C8–Ag1–C9 31.0(2).

Fig S3.3 A perspective view of complex **2**: Selected bond distances (Å) and angles (°) are Ag1–N1 2.217(6), Ag1–N2 2.278(6), Ag1–O1 2.504(8), Ag1–O2 2.615(8), N1–Ag1–N2 135.4(2), N1–Ag1–O1 109.9(2), N2–Ag1–O1 109.7(2), N7–O1–Ag1 98.2(6), N3–N1–Ag1 121.3(5).

S4. Time resolved fluorescence decay analysis by femtosecond luorescence up-conversion setup

Fig S4.1 Fluorescence decay analysis of **HL** + Ag(I) complex. The decay is recorded at $[HL] = 10^{-5}$ M and $[Ag(I)] = 10^{-3}$ M

Fig S4.2 Fluorescence decay analysis of LL + Ag(I) complex. The decay is recorded at $[LL] = 10^{-5}$ M and $[Ag(I)] = 10^{-3}$ M

Table S4.1 The time resolved data of HL + Ag(I) and LL + Ag(I) complex

	$\tau 1 / ps$	τ2 / ps	a1	a2
HL + Ag(I)	3.9	401	.43	.57
LL + Ag(I)	3.36	34.74	.54	.46