Electronic Suplementary Information to

A Hybrid Material Assembled by Anthocyanins from Açaí Fruit Intercalated between niobium lamellar oxide

Ângela Albuquerque Teixeira-Neto^a, Ana Lucia Shiguihara^a, Celly M. S. Izumi^a, Marcos Augusto Bizeto^b, Fabrice Leroux^c, Marcia L. Arruda Temperini^a and Vera R. Leopoldo Constantino^{*a}

- ^a Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo-SP, Brazil.
- ^b Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo Campus Diadema, Rua Prof. Artur Riedel, 275, CEP 09972-270, Diadema-SP, Brazil.
- ^c Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, Université Blaise Pascal, 24, avenue des Landais, 63177 Aubière Cedex, France.

Cyanidin-3-glucoside molecule possesses dimensions of $12 \times 6.3 \times 12$ Å (Fig. S1) when in its most stable configuration (simulation carried on with the aid of Chem3D software, from CambridgeSoft Corp., using MM2 method).

Fig. S1. Space-filling models of the cyanidin-3-glucoside molecule in its most stable configuration.

Fig. S2 shows pictures of dye-hex_{exf} 80mL/g sample before and after heating process at 170°C under air atmosfere in the TG-DSC furnace (Netzsch thermoanalyser model TG/DSC 490 PC Luxx). No color changes were observed.

Fig. S2. Pictures of dye-hex_{exf} 80mL/g sample before (left) and after (right) heating process at 170°C under air.

Fourier transform infrared spectra (FTIR) were recorded on a Bomem spectrophotometer, model MB-102, with a reflectance accessory; the samples were diluted in solid KBr. FTIR spectra of dye-hexaniobate samples are presented in Fig. S3. The spectra of both dye-hex_{exf} sample (Fig. S3a) and dye-hex_{int} material (Fig. S3b) are very similar, although the spectra of their precursors are very different between them.

Fig. S3. FTIR spectra of (a) dye-hex_{exf} sample and (b) dye-hex_{int} sample. For comparison purposes, FTIR spectra of their respective precursors are also shown

The bands at about 1070 cm⁻¹ (δ_{C-H}), 1245 and 1280 cm⁻¹ (v_{C-O} from phenols), 1335 cm⁻¹ (v_{C-C} inter-ring), 1458, 1475, 1516 and 1630 cm⁻¹ (v_{C-C} from ring stretching) are due to anthocyanin group (marked with A) and are in agreement to the FTIR spectra of some hydroxyflavylium derivatives previously reported.¹ FTIR spectra of hybrid samples also show absorption bands that can be correlated to sugar units such as glucose.² The absorption band at 900 cm⁻¹ (v_{Nb-O}) and in the 500-700 cm⁻¹ range are assigned to the inorganic phase.^{3,4} Bands marked with B and T are due to n-butylamine or TEA⁺ cations in

the precursors samples respectively (Fig. S3).

Field emission scanning electron microscopy (FEG-SEM) images of carbon coated samples were obtained in a JEOL microscope, model JSM-7000F, at the Instituto de Química (Universidade de São Paulo - USP). FEG-SEM images of dye-hexaniobate hybrids (Fig. S4) reveal the presence of platelets in a face-to-face array in both dye-hex_{exf} (Fig. S4a) and dye-hex_{int} (Fig. S4b) samples. This kind of morphology corroborates the supposition that exfoliated hexaniobate layers are restacked when in presence of the cation dye, leading to a face-to-face oriented layered material with morphology similar to that observed for dye-hex_{int} sample.

Fig. S4. SEM images of (a) dye-hex_{exf} 80mL/g sample and (b) dye-hex_{int} sample.

References

- 1. J.C. Merlin, J.P. Cornard, A. Stastoua and M. Saidi-Idrissi, *Spectrochim. Acta*, 1994, **50A**, 703.
- 2. M. Kacurakova and M. Mathlouthi, Carbohydr. Res., 1996, 284, 145.
- 3. J.M. Jehng and I.E. Wachs, Chem. Mater., 1991, 3, 100.
- 4. M.A. Bizeto, F.P. Christino, M.F.M. Tavares and V.R.L. Constantino, *Quim. Nova,* 2006, **29**, 1215.