Figure S1. Electron spray ionization-mass spectra of complex 2
Figure S2. Product yields as a function of equivalents of \(m\)-CPBA added into an acetonitrile:dichloromethane (v/v, 1:9) solution of complex 1 and cyclohexane in air. (a) 0 - 100 equiv of \(m\)-CPBA; (b) 200 - 800 equiv of \(m\)-CPBA.

Figure S3. Product yields as a function of equivalents of \(m\)-CPBA added into an acetonitrile:dichloromethane (v/v, 1:9) solution of complex 1 and adamantane in air. (a) 0 - 100 equiv of \(m\)-CPBA; (b) 200 - 800 equiv of \(m\)-CPBA.
Figure S4. Product yields as a function of equivalents of m-CPBA added into an acetonitrile:dichloromethane (v/v, 1:9) solution of complex 3 and cyclohexane in air. (a) 0 - 100 equiv of m-CPBA; (b) 200 - 800 equiv of m-CPBA.

Figure S5. Product yields as a function of equivalents of m-CPBA added into an acetonitrile:dichloromethane (v/v, 1:9) solution of complex 3 and adamantane in air. (a) 0 - 100 equiv of m-CPBA; (b) 200 - 800 equiv of m-CPBA.
Figure S6. Product yields as a function of equivalents of m-CPBA added into an acetonitrile:dichloromethane (v/v, 1:9) solution of complex 4 and cyclohexane in air. (a) 0 - 100 equiv of m-CPBA; (b) 200 - 800 equiv of m-CPBA.

Figure S7. Product yields as a function of equivalents of m-CPBA added into an acetonitrile:dichloromethane (v/v, 1:9) solution of complex 4 and adamantane in air. (a) 0 - 100 equiv of m-CPBA; (b) 200 - 800 equiv of m-CPBA.